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HARDY SPACES IN REINHARDT DOMAINS, AND
HAUSDORFF OPERATORS

L. AIZENBERG AND E. LIFLYAND

Abstract. We give criteria for a function to be in the Hardy
space on a bounded complete Reinhardt domain. Using these

and known one-dimensional results, we obtain boundedness con-
ditions for Hausdorff operators on Hardy spaces in Reinhardt

domains. The only known earlier result for the polydisk is a
paticular case of the obtained results.

1. Introduction

The aim of this paper is to obtain criteria for a function to be in the
Hardy space on a bounded complete Reinhardt domain. In the obtained
multivariate results, one-dimensional conditions are essentially used. As an
application, we give far-going multidimensional extensions of conditions for
Hausdorff operators to be bounded in Hardy spaces.

Hausdorff means, the Cesàro means among them, have been known for a
long time in connection with summability of number series. For Hausdorff
summability of power series in one variable, strong results were obtained in
[5], [6] (some of them can be found in [15]; for Cesàro means, see [17], [18]).
These results are generalized to several dimensions in [3], the only known mul-
tidimensional generalization, where the sole case of the polydisk is considered,
while the spaces are Hp, 1 ≤ p < ∞.
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We extend these results to Hardy spaces on a rather wide class of domains—
the Reinhardt domains. Sufficient conditions for the boundedness of Hausdorff
type operators turn out to be necessary for a smaller subclass of domains, still
quite wide. Of course, the polydisk is among them.

The approach is different from that in dimension one in [5], [6] and in
several dimensions in [3], where estimates of special composition operators
ensured the desired results. The point is that estimating (and sometimes even
finding) such composition operators might be an extremely difficult task in
the multivariate setting. Our approach is based on an inductive argument (see
Main Lemma below) where one-dimensional results can be directly applied.

The outline of the paper is as follows. In the first section, we give necessary
basics on Hardy spaces in dimension one and present known and certain new
notions on Reinhardt domains and Hardy spaces in several dimensions. In
the second section, we prove two versions of the main lemma in which a
criterion is given for a function to belong to the Hardy space Hp, 0 < p < ∞,
and separately to H∞. In the third section, we present recent results on
Hausdorff operators in the one-dimensional case in the form given in [6] and
then define multivariate operators of Hausdorff type. In the first subsection
of the following section, we prove sufficient conditions for the boundedness
of Hausdorff type operators in Hardy spaces on a wide class of Reinhardt
domains. In the second subsection of that section, we discuss the case of the
polydisk. Next, we give necessary conditions for the boundedness of Hausdorff
type operators in Hardy spaces on a smaller class of Reinhardt domains.
However, the polydisk belongs to this subclass. In the last subsection of
that section, we present necessary and sufficient conditions for H∞. In the
last section, certain concluding remarks are given.

By C, we will denote constants that may depend only on a considered
domain and may be different even in the same occurrence.

2. Hardy spaces

2.1. One-dimensional results. Let Uρ = {ζ : |ζ| < ρ} be the disk of radius
ρ in the complex plane C. For 1 ≤ p < ∞, the Hardy space Hp is the space of
analytic functions f : U1 → C such that

‖f ‖Hp = sup
r<1

(∫ 2π

0

|f(reiθ)|p dθ

)1/p

< ∞;

for p = ∞, the definition is the same with usual modification of the norm. Such
a defined Hp is a Banach space (and Hilbert for p = 2). If 1 ≤ p ≤ q ≤ ∞, then
H1 ⊃ Hp ⊃ Hq. Functions f ∈ Hp possess boundary values (nontangential
limits) f(eiθ) which are p-integrable on ∂U1.
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It is well known that for functions ϕ(ζ) holomorphic in Uρ, the integral

(1)
∫

|ζ|=r<ρ

|ϕ(ζ)|p|dζ|

is a nondecreasing function of r (see, e.g., [8, Theorem 2.12]).

2.2. Multivariate results. Hardy classes of holomorphic functions of sev-
eral complex variables are usually defined on bounded domains D ∈ C

n as
follows. If the boundary ∂D is smooth, then the class Hp(D) consists of the
functions f holomorphic in D such that

(2) lim
ε→0

∫
∂D

|f(z − ενz)|p dσ(z) < ∞,

where νz is the external unit normal vector to ∂D at the point z, and dσ(z) is
an element of the (2n − 1)-dimensional surface ∂D (see, e.g., [9], [19]). How-
ever, the definition for the polydisk Un = {z : |zj | < 1, j = 1, . . . , n} usually
differs from the general definition and is defined by the following condition
instead of (2)

(3) lim
r→1

∫
Tn

|f(rz)|p
∣∣∣∣dz1

z1
∧ · · · ∧ dzn

zn

∣∣∣∣ < ∞,

where T
n = {z : |zj | = 1, j = 1, . . . , n} and 0 < r < 1 (see, e.g., [3], [14]).

Let us consider bounded complete Reinhardt domains D ⊂ C
n. They ap-

pear naturally as domains of convergence of multidimensional power series

(4)
∑

|α|≥0

cαzα,

where z = (z1, . . . , zn) ∈ C
n and α = (α1, . . . , αn), with all αj nonnegative in-

tegers. Here zα = zα1
1 · · · zαn

n and |α| = α1 + · · · +αn. We now define the Hardy
class Hp(D) to be that of functions f(z) holomorphic in D and satisfying

(5) lim
r→1−

∫
∂Dr

|f(z)|p dσ(z) < ∞,

where 0 < r < 1, Dr = rD is the rth homothety of D, and dσ(z) is an ele-
ment of the (2n − 1)-dimensional surface ∂Dr. Since the integral (5) can be
representable by integrating first over the circles � ∩ ∂Dr, where each � is a
complex line passing through the origin, and then by integrating over the set
of such lines with respect to the corresponding positive measure, it is also a
nondecreasing function of r. This explains why the usual limit is used in (5)
instead of the upper limit; by the way, the usual limit can analogously be
written in (3) in place of the upper limit.

Let us consider the family of parallel complex lines

(6) mk = {z = (z1, . . . , zk−1, t, zk+1, . . . , zn), t ∈ C}
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crossing the domain D. The intersection of each of these lines with D is a
disk. For 0 < r < 1, let us consider the set

(7)
⋃

{mk }
(mk ∩ ∂Dr).

We will say that the domain D is k-tame if the limit as r → 1− of the set
(7) is exactly the whole ∂D. For example, the ball {z : |z| < 1}, where |z| =
(|z1|2 + · · · + |zn|2)1/2, is a k-tame domain for each k, 1 ≤ k ≤ n, while the
polydisk Un is not k-tame for any k. However, it is true for Un that

lim
r→1−

⋃
1≤k≤n

⋃
{mk }

(mk ∩ ∂Dr) = ∂D.(8)

There is a need to define additional types of Reinhardt domains. First, we
will call the domain D quasi-tame if (8) holds true.

Lemma 1. Every bounded complete Reinhardt domain is quasi-tame.

Proof. Formula (8) is valid for a finite union of polydisks centered in the
origin. Every bounded complete Reinhardt domain D is the limit of expanding
sequence of domains, each of them being the union of such polydisks. The
boundary of D is the limit of the boundaries of these domains, which completes
the proof. �

Further, a complete bounded Reinhardt domain D is called k-cylindric,
1 ≤ k ≤ n, if D ⊂ {z : |zk | < ρ} for some ρ > 0, and ∂D contains a piece of the
hyper-surface Γk(ρ) = {z : |zk | = ρ}, that is, Γk(ρ) ∩ {z : (z1, . . . , zk−1, zk+1,
. . . , zn) ∈ R} ⊂ ∂D, where R is a domain in C

n−1.

3. Main Lemma and related results

In this section, we present our main results. Their analog for the bundle of
complex lines passing through the origin was obtained for complete bounded
Reinhardt domains in [1], [2] and reads as follows.

Let A be a bundle of complex lines passing through 0. For each line α from
A the intersection D ∩ α is a disk.

Lemma 2. For f to belong to Hp(D) it is necessary and sufficient that:
(1) for almost all α ∈ A, the function f |D∩α belongs to Hp(D ∩ α) and
(2) f belongs to Lp on ∂D.

This lemma allows one to easily extend certain classical results to the mul-
tidimensional case, for example, the well-known Smirnov theorem (1928): If
f ∈ Hp(U1) and f ∈ Lq(∂U1), q > p, then f ∈ Hq(U1).

Let us prove a multidimensional version. Assume that f ∈ Hp(D) and f ∈
Lq(∂D). Then (1) yields that f ∈ Hp(D ∩ α) for almost all α ∈ A. It follows
from f ∈ Lq(∂D) and Fubini’s theorem that f |D∩α in Lq on the boundary of
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this intersection for almost all α. By the one-dimensional Smirnov theorem
f ∈ Hq(D ∩ α) for almost all α. Again applying Lemma 2, we obtain f ∈
Hq(D), as desired.

In a completely similar way one can prove the next theorem. To formulate
it, let us remark the following. If f ∈ Hp(D), then in almost every section
D ∩ α this function will have angular boundary values on the boundary of
this section, that is, on the circle. Therefore, boundary values of f almost
everywhere on ∂D can be understood in the sense of (2n − 1)-dimensional
measure. We will denote these boundary values by f as well.

Theorem 3. If 0 < p < ∞, then

‖f ‖p
p =

∫
∂D

|f(ζ)|p dσ(z)

and

lim
r→1−

∫
∂D

|f(rζ) − f(ζ)|p dσ(z) = 0.

This theorem immediately yields the following corollary.

Corollary 4. If f ∈ Hp(D) and 0 < p < ∞, then for ζ ∈ ∂D

lim
r→1−

‖f(rζ) − f(ζ)‖p = 0,

and polynomials are dense in Hp(D).

We note that Lemma 2, Smirnov’s theorem for Reinhardt domains, The-
orem 3 and other multidimensional analogs of the one-dimensional classical
theorems were mentioned in [1], [2]. The reason we give the proof of the mul-
tidimensional Smirnov theorem is to illustrate the method, while Theorem 3
is given since Corollary 4 will be used below.

It is worth mentioning that later a multidimensional generalization of Smir-
nov’s theorem was proved in [11] for bounded domains D in Cn with Lya-
punov’s boundary, that is, ∂D ∈ C1+ε with some ε > 0.

We also note a result in [20] in the spirit of the last assertion of Corollary 4:
it is proved there that if f ∈ Hp(D), 1 ≤ p < ∞, D is a strictly pseudoconvex
domain with C3 boundary, then there exists a sequence {fn}, n = 1,2, . . . , of
functions, holomorphic in D, that converges in the Hp-sense to f .

3.1. The case p < ∞. We first consider the case when 0 < p < ∞.

Main Lemma for 0 < p < ∞. Let D be a bounded complete Reinhardt
domain, k-tame with k being a fixed integer, 1 ≤ k ≤ n. For a function f
holomorphic in D to belong to the class Hp(D), it is necessary and sufficient
that:

(1) for almost all complex lines mk the restriction of the function f(z) to
the disk mk ∩ D = Qk belongs to the Hardy class Hp(Qk) and



1038 L. AIZENBERG AND E. LIFLYAND

(2) the function f is Lp summable on ∂D, that is,

(9)
∫

∂D

|f(z)|p dσ(z) < ∞.

Here, we understand the values f(z), z ∈ ∂D, as angular boundary values
on the circles mk ∩ ∂D which by (1) exist almost everywhere for almost all
mk, that is, almost everywhere on ∂D.

Proof of Main Lemma for 0 < p < ∞. First, let f ∈ Hp(D). Denoting [cf.
(6)]

ψ(mk, r) =
∫

mk ∩∂Dr

|f(z)|p|dt|

and taking into account that this function is nondecreasing in r, we get, by
the Lebesgue theorem (see, e.g., [16, Theorem 12.6]),

(10) lim
r→1−

∫
{mk }

ψ(mk, r)dμ =
∫

{mk }
lim

r→1−
ψ(mk, r)dμ,

where dμ is the measure corresponding to the equality

(11)
∫

{mk }

∫
mk ∩∂D

|f(z)|p|dt| dμ =
∫

∂D

|f(z)|p dσ.

Since the left-hand side in (10) is finite because of (5), the function under
the integral sign on the right-hand side of (10) is finite for almost all mk.
This implies condition (1). On the other hand, the well-known property of
functions from the Hardy spaces Hp in the disk (see, e.g., [10])

(12) lim
r→ρ

∫
|ζ|=r<ρ

|ϕ(ζ)|p|dζ| =
∫

|ζ|=ρ

|ϕ(ζ)|p|dζ|

implies that the integral on the right-hand side of (10) is just (11).
Conversely, let (1) and (2) hold true. The same Lebesgue theorem yields

(10). By (12),

lim
r→1−

ψ(mk, r) =
∫

mk ∩∂D

|f(z)|p|dt|

for almost all mk. Therefore, the right-hand side in (10) is just the left-hand
side in (11). This yields, by (10) and (2), the finiteness of the left-hand side
in (10). Hence, (5) holds true, that is, f ∈ Hp(D). The proof is complete. �

Lemma 5. Let D be a bounded complete Reinhardt domain. For a function
f holomorphic in D to belong to the class Hp(D), it is necessary and sufficient
that (2) holds true and (1) from Main Lemma holds true for all k.

Proof. The proof repeats that of the previous lemma, and making use of
the fact that

lim
r→1−

⋃
{mk }

(mk ∩ ∂Dr) ⊂ ∂D
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and then of (8). This completes the proof. �

3.2. The case p = ∞. Contrary to many other situations, here the case
p = ∞ is easier and less restrictive.

Main Lemma for p = ∞. Let D be a bounded complete Reinhardt domain
and k be a fixed integer, 1 ≤ k ≤ n. For a function f holomorphic in D to
belong to the class H∞(D), it is sufficient that:

(1) for almost all complex lines mk, the restriction of the function f(z) to
the disk mk ∩ D = Qk belongs to the Hardy class H∞(Qk) and

(2) the function f is L∞(∂D), that is,

(13) ess sup
∂D

|f(z)| = B < ∞;

and it is necessary that:
(1′) for all complex lines mk, the restriction of the function f(z) to Qk

belongs to the Hardy class H∞(Qk) and
(2′) there holds

(14) sup
∂D

|f(z)| = B < ∞.

For a function f holomorphic in D to belong to the class H∞(D), it is
necessary and sufficient that (2) holds true and (1′) holds true for all mk.

Proof. Let f ∈ H∞(D), then (14) holds true, and moreover

(15) sup
D

|f(z)| = B < ∞.

By this, we have f |Qk
∈ H∞(Qk).

Conversely, let (1) and (2) hold true. Then it immediately follows from (13)
that sup∂Qk

|f(z)| ≤ B for almost all mk; on the other hand, f |Qk
∈ H∞(Qk)

for almost all mk. Therefore, for almost all mk

(16) sup
Qk

|f(z)| ≤ B.

Since a complete Reinhardt domain is the union of polydisks, (15) follows
from (16) by continuity.

The last assertion of the lemma is proved by repeating the above argument.
The proof is complete. �

3.3. A remark on operators. The following remark will be helpful in our
argument.

Remark 1. Let 0 < p < ∞. It is worth mentioning for the sequel that if A
is a linear bounded operator in the space Hp(U1), in the disk of radius 1, it
will be such in the space Hp(Uρ), in the disk of radius ρ (since we define the
operator by its action on polynomials and polynomials are dense in Hp(Uρ),
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it also acts in Hp(Uρ)). Indeed, it follows from both the definition and the
basic property of Hp that

‖ϕ‖Hp(Uρ) =
(∫

|ζ|=ρ

|ϕ(ζ)|p|dζ|
)1/p

.

Conformal mapping of the unit disk U1 onto the disk Uρ is the homothety
ζ → ρζ. By this the function ϕ(ζ) holomorphic in Uρ turns out to be the
function ϕ(ρζ) holomorphic in U1. Further,∫

|ζ|=ρ

|ϕ(ζ)|p|dζ| = ρ

∫
|ζ|=1

|ϕ(ρζ)|p|dζ|,

therefore

(17) ‖ϕ‖Hp(Uρ) = ‖ϕ(ρζ)‖Hp(U1)ρ
1/p.

If the operator A is linear and bounded in Hp(U1) with

(18) ‖Aϕ(ρ ·)‖Hp(U1) ≤ K‖ϕ(ρ ·)‖Hp(U1),

then it follows from (17) that for the same operator in Hp(Uρ)

(19) ‖Aϕ‖Hp(Uρ) ≤ K‖ϕ‖Hp(Uρ).

Moreover, comparing (17) and (18), we see that the norm of A is the same in
both Hp(U1) and Hp(Uρ).

4. Hausdorff operators

4.1. One-dimensional notions and results. After the appearance of the
paper [12], general Hausdorff summability of power series was studied in [5]
and then in [6] as follows.

Let Δ be the forward difference operator defined on scalar sequences μ =
(μn)∞

n=0 by Δμn = μn − μn+1 and Δkμn = Δ(Δk−1μn) for k = 1,2, . . . with
Δ0μn = μn.

Setting cn,k =
(
n
k

)
Δn−kμk, k ≤ n, we define the Hausdorff matrix H = Hμ

with generating sequence μ to be the lower triangular matrix with the entries

Hμ(i, j) =

{
0, i < j,

ci,j , i ≥ j.

It induces two operators on spaces of power series which are formally given
by

Hμf(z) = Hμ

( ∞∑
n=0

anzn

)
=

∞∑
n=0

(
n∑

k=0

cn,kak

)
zn,
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which is obtained by letting the matrix Hμ multiply the Taylor coefficients of
f, and

Aμf(z) = Aμ

( ∞∑
n=0

anzn

)
=

∞∑
k=0

( ∞∑
n=k

cn,kan

)
zk,

which is obtained by letting the transposed matrix Aμ = H∗
μ to act on the

Taylor coefficients of f. Such a matrix Aμ is called a quasi-Hausdorff matrix.
The convergence of the power series Aμf is more delicate than that of Hμ.
However, it is clear that if f is a polynomial then Aμf is also a polynomial.
If the space considered contains the polynomials, we may ask whether Aμ

extends to a bounded operator on the corresponding space. This is the case
for Hp, 0 < p < ∞, where polynomials are dense.

An important special case of such matrices occurs when μn is the moment
sequence of a finite (positive) Borel measure μ on (0,1]:

μn =
∫ 1

0

tn dμ(t), n = 0,1, . . . .

In this case for k ≤ n

cn,k =
(

n
k

)∫ 1

0

tk(1 − t)n−k dμ(t).

Various choices of the measure μ give rise to well-known classical matrices.
For example, when μ is the Lebesgue measure one has the Cesàro matrix.

The following two theorems give criteria for boundedness of the Hausdorff
and quasi-Hausdorff matrices on Hp (see in [6], Theorems 2.4 and 2.3, respec-
tively).

Theorem A. Let μ be a finite positive Borel measure on (0,1]. Then
Hμ : H1 → H1 is a bounded operator if and only if

(20)
∫ 1

0

(
1 + ln(1/t)

)
dμ(t) < +∞.

If 1 < p ≤ ∞, then Hμ : Hp → Hp is a bounded operator if and only if

(21) ‖Hμ‖Hp →Hp =
∫ 1

0

t1/p−1 dμ(t) < ∞.

Theorem B. Let μ be a finite positive Borel measure on (0,1] and 1 ≤ p <
∞. Then Aμ : Hp → Hp defines a bounded operator if and only if

(22) ‖Aμ‖Hp →Hp =
∫ 1

0

t−1/p dμ(t) < +∞.



1042 L. AIZENBERG AND E. LIFLYAND

4.2. Multivariate Hausdorff operators. Let us consider a natural mul-
tidimensional analog of the Hausdorff type operators by defining it on the
power series (4), representing functions holomorphic in D, as

(23) (Hμf)(z) =
∑

|α|≥0

(∑
β≤α

n∏
j=1

hαj ,βj (μj)cβ

)
zα

for the Hausdorff operator, while for the quasi-Hausdorff operator

(24) (Aμf)(z) =
∑

|α|≥0

(∑
β≥α

n∏
j=1

hαj ,βj (μj)cβ

)
zα,

where β ≤ α and β ≥ α means that βj ≤ αj and βj ≥ αj , respectively, for all
j = 1, . . . , n. Here, as above in dimension one, hαj ,kj (μj) =

(
αj

kj

)
Δαj −kj μj(kj),

kj ≤ αj , with μj(kj) being the moment sequence of a finite (positive) Borel
measure μj on (0,1]:

μj(kj) =
∫ 1

0

tkj dμj(t), kj = 0,1, . . . .

In this case for kj ≤ αj

hαj ,kj (μj) =
(

αj

kj

)∫ 1

0

tkj (1 − t)αj −kj dμj(t).

This extension of the one-dimensional Hausdorff operators to several dimen-
sions was first suggested in [3].

While (23) is well defined for p ≤ ∞, for (24) the definition is correct when
p < ∞.

Various choices of the measures μj give rise to the well-known classical
matrices. For example, when all μj are the Lebesgue measures one has the
multidimensional Cesàro matrix, of the classical form in the case when D is
the polydisk.

We also mention that (23) can be considered as a repeated one-dimensional
Hausdorff operator in each of the n variables. This feature will be pivotal in
the proofs of the following results. Let us, for brevity, illustrate this for Hμ

in the two-dimensional case. We have

(Hμf)(z, ζ) =
∞∑

M=0

∞∑
N=0

(
M∑

m=0

N∑
n=0

hM,m(μ1)hN,n(μ2)cmn

)
zmζn

=
∞∑

M=0

M∑
m=0

hM,m(μ1)

( ∞∑
N=0

N∑
n=0

hN,n(μ2)cmnζn

)
zm.

The relation in the parenthesis on the right-hand side is the one-dimensional
Hausdorff operator in the second variable generated by the measure μ2. It
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depends on m and serves as the mth coefficients on which the other one-
dimensional Hausdorff method generated by the measure μ1 acts.

5. Conditions for the boundedness of Hausdorff operators

We will consider sufficient and necessary conditions for the boundedness of
Hausdorff type operators on Hardy spaces separately, since they coincide only
on a special subclass of Reinhardt domains.

5.1. Sufficient conditions for 1 ≤ p < ∞. As often happens, sufficient
conditions hold true for a wider class of objects.

We will start with results of maximal generality. By Hμk
:= (Hμk

)(zk) we
will denote the operator Hμk

with respect to the kth variable zk with all other
variables fixed; the same for Aμk

.

Theorem 6. Let a complete bounded Reinhardt domain D be k-tame. The
Hausdorff operator Hμk

is bounded on Hp(D) for 1 < p < ∞ provided

(25)
∫ 1

0

s1/p−1 dμk(s) < ∞

and for p = 1 provided

(26)
∫ 1

0

(
1 + ln(1/s)

)
dμk(s) < ∞.

Theorem 7. Let a complete bounded Reinhardt domain D be k-tame. The
quasi-Hausdorff operator Aμk

is bounded on Hp(D) for 1 ≤ p < ∞ provided

(27)
∫ 1

0

s−1/p dμk(s) < ∞.

The proofs of both theorems are completely identical, therefore we shall
give the proof only for one of them, Hμk

.

Proof. Applying the operator Hμk
with respect to the kth variable zk with

all other variables fixed and taking into account the main lemma, we conclude
that for almost all mk the norm of this operator is bounded in the sense that

‖Hμk
f ‖p

Hp(mk ∩D) ≤ C‖f ‖p
Hp(mk ∩D) = C

∫
mk ∩∂D

|f(z)|p|dt|.

It remains to observe that by (11) the integral over the whole ∂D is equal to∫
{mk }

∫
mk ∩∂D

|f(z)|p|dt| dμ.

We derive from the Main Lemma and (11) that Hμf is continuous in Hp(D).
The proof is complete. �
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Corollary 8. Let D be a bounded complete Reinhardt domain D, k-tame
for all k, 1 ≤ k ≤ n. Then the Hausdorff operator Hμf is bounded in Hp(D)
for 1 < p < ∞ provided

(28)
n∏

k=1

∫ 1

0

s1/p−1 dμk(s) < ∞,

and for p = 1 provided

(29)
n∏

k=1

∫ 1

0

(
1 + ln(1/s)

)
dμk(s) < ∞.

The Hausdorff operator Aμf is bounded in Hp(D) for 1 ≤ p < ∞ provided

(30)
n∏

k=1

∫ 1

0

s−1/p dμk(s) < ∞.

Corollary 9. Let D be a bounded complete Reinhardt domain. Then the
Hausdorff operator Hμf is bounded in Hp(D) for 1 < p < ∞ provided (28)
holds and for p = 1 provided (29) holds, while the Hausdorff operator Aμf is
bounded in Hp(D) for 1 ≤ p < ∞ provided (30) holds.

Applying (8), we prove this corollary exactly in the same way as the theo-
rem.

5.2. The case of polydisk. Let us consider an interesting particular case
of the polydisk Un. Corollary 9 concerns the Hardy class Hp

1 (Un), when the
integral over the whole boundary ∂D is involved. However, in the study of
boundary properties of holomorphic functions in the polydisk, the Hardy class
Hp

2 (Un) used is defined by means of the integral (3). We now wish to show
that Hp

1 (Un) is wider than Hp
2 (Un). Without loss of generality and for the

sake of simplicity, let us restrict ourselves to the case n = 2.
Let f ∈ Hp

2 (Un), that is,

lim
r→1

∫
T2

|f(rz)|p
∣∣∣∣dz1

z1
∧ dz2

z2

∣∣∣∣ < ∞.

Using properties of functions from the Hardy class (first of all the monotonicity
of (1)), it is easy to show that for r ≤ 1

(31)
∫

T2
|f(rz1, z2)|p

∣∣∣∣dz1

z1
∧ dz2

z2

∣∣∣∣ ≤
∫

T2
|f(z)|p

∣∣∣∣dz1

z1
∧ dz2

z2

∣∣∣∣.
Denoting the right-hand side of (31) by J and repeating in essence the ar-
guments from the proof of the main lemma, we get that for almost all r,
0 ≤ r ≤ 1, the function f(z1, z2) belongs to each Hardy class Hp

2 (U2
(r,1)), where
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U2
(r,1) = {z : |z1| < r, |z2| < 1}. For the affiliation f ∈ Hp

1 (U2), it suffices to
show that

lim
r→1−

∫
∂U2

r

|f |p dσ < ∞.

The boundary ∂U2
r consists of the two hyper-surfaces Γ1

r = {z : |z1| ≤ r, |z2| =
r} and Γ2

r = {z : |z1| = r, |z2| ≤ r}. We have∫
Γj

r

|f |p dσ ≤ CJ

∫ 1

0

dr = CJ

for both j = 1,2. By this f ∈ Hp
1 (U2). Hence,

Hp
1 (U2) ⊂ Hp

2 (U2).

Let us give an example to demonstrate that this inclusion is proper. Recall
that for the function f(z1) =

∑∞
k=0 akzk

1 to belong to the Hardy class H2(Uρ),
it is necessary and sufficient that

∞∑
k=0

|ak |2ρ2k < ∞.

This is a classical fact—it is just Parseval’s identity for H2(Uρ), see, for ex-
ample, [4]. Analogously, it is easy to prove that for the function

f(z1, z2) =
∞∑

k,l=0

aklz
k
1zl

2

holomorphic in the polydisk U2
(r,ρ) to belong to the Hardy class H2

2 , it is
necessary and sufficient that

(32)
∞∑

k,l=0

|akl|2r2kρ2l < ∞.

For multiple Fourier series, a similar assertion is given in [21]. Similarly, for
the function f(z1, z2) ∈ H2

1 (U2), it is necessary and sufficient that

(33)
∞∑

k,l=0

|akl|2
[∫ 1

0

r2k dr +
∫ 1

0

ρ2l dρ

]
< ∞.

Consider the function

(34) f(z1, z2) =
∑
k=1

(z1z2)k

√
k

.

For this function, (32) is not valid when r = ρ = 1, while (33) holds true, that
is, the function (34) does not belong to H2

2 (U2) but belongs to H2
1 (U2). The

same function squared does not belong to H1
2 (U2) but belongs to H1

1 (U2).
Using a two-dimensional analog of the Hausdorff–Young inequality (for the

one-dimensional case, see, for example, [4, §6.1] or [13, Chapter 2, §11.4]) for
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power series, it is easy to build an example of a function that, in a similar way,
shows that the class Hp

2 (U2) is strictly smaller than Hp
1 (U2) for 1 ≤ p < ∞.

However, for p = ∞ these classes coincide, since maximum of the absolute
value of a function holomorphic in the polydisk is attained on its skeleton T

n.

5.3. Necessary conditions. It turns out that sufficient conditions for the
boundedness of Hausdorff type operators are also necessary for a smaller class
of Reinhardt domains, the above defined k-cylindric domains.

Theorem 10. Let a complete bounded Reinhardt domain D be k-cylindric.
If an operator Hμk

is bounded in Hp(D), 1 < p < ∞ (p = 1, respectively), then
(25) holds true ((26) for p = 1, respectively).

Theorem 11. Let a complete bounded Reinhardt domain D be k-cylindric.
If an operator Aμk

is bounded in Hp(D), 1 < p < ∞, then (27) holds true.

As for the case of sufficient conditions, both theorems are proved in a
completely similar way. We present the proof of the first one explicitly.

Proof of Theorem 10. Let us consider in D the subclass of Hp(Uρ) which
consists of holomorphic functions of one variable zk from the Hardy class in
the disk Uρ. These functions do belong to the whole Hp(D) as well, since
the integral over ∂Dr is the sum of two integrals, one over Γk(rρ) ∩ ∂Dr and
the other over ∂Dr \ Γk(rρ). In the second integral, we have |zk | < ρ, and
our functions are continuous at these points. The first integral is a repeated
integral, for which the inner integral tends to the norm in Hp(D ∩ mk) as r →
1−, while the external integral is that over mk with respect to an appropriate
positive measure. By the k-cylindricity, the norm in Hp(D ∩ mk) is the same
in this case, since our functions depend only upon zk. Therefore, the operator
Hμk

is also continuous when acting on functions of one variable from Hp(Uρ).
Applying now the known and given above one-dimensional necessary (and
sufficient) results, we conclude on the necessity of (25) (and (26) for p = 1,
respectively). The proof is complete. �

As above, extending an assumed restriction to all k yields a general result,
this time necessary.

Corollary 12. If a complete bounded Reinhardt domain D is k-cylindric
for all k, 1 ≤ k ≤ n. Then the condition (28) [or, relatively, (29)] is necessary
for the boundedness of Hμ in Hp(D) when 1 < p < ∞ (or, correspondingly,
when p = 1).

The necessary condition for the boundedness of Aμ when 1 ≤ p < ∞ is (30).

And, finally, let us give as a corollary a very special partial result earlier
obtained in [3] for a smaller Hardy class.
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Corollary 13. If a domain D is the polydisk, then the condition (28)
[or, relatively, (29)] is necessary and sufficient for the boundedness of Hμ in
Hp(D) when 1 < p < ∞ (or, correspondingly, when p = 1).

The necessary and sufficient condition for the boundedness of Aμ when
1 ≤ p < ∞ is (30).

5.4. Necessary and sufficient conditions for p = ∞. Since the version of
the main lemma for p = ∞ is less restrictive, so is its application to Hausdorff
operators as well.

Theorem 14. Let D be a complete bounded Reinhardt domain. The Haus-
dorff operator Hμk

is bounded on H∞(D) if and only if

(35)
∫ 1

0

s−1 dμk(s) < ∞.

Proof. The proof of sufficiency goes along the same lines as that of the
corresponding theorems for p < ∞, Theorems 6 and 7.

Let us go on to the necessity. Let ρ be the maximal radius of Qk. Consid-
ering the function of one variable zk in the disk Uρ from the class H∞(Uρ),
we conclude that it is also from H∞(D). If the operator Hμk

(or Aμk
) is

bounded in H∞(D), it is necessary that it be bounded on the class of all
above-mentioned functions from H∞(Uρ), since

sup |f | |Qk
= sup |f | |D.

The necessity follows from this and the corresponding result for functions of
one variable. �

We are now in a position to give the multidimensional result in full gener-
ality.

Corollary 15. Let D be a bounded complete Reinhardt domain. Then
the Hausdorff operator Hμf is bounded in H∞(D) if and only if

(36)
n∏

k=1

∫ 1

0

s−1 dμk(s) < ∞.

6. Concluding remarks

To summarize the obtained results: we have proved the main lemma and
corresponding related results as criteria for a function to belong to Hardy
spaces on a wide class of Reinhardt domains.

It easily follows from the main lemma that most classical theorems on
Hp classes in the disk are true for Hp(D) for the corresponding Reinhardt
domains D as well (Smirnov’s theorem, for example, and others; see [4], [7],
[10], [13]).
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We have applied the mentioned criteria to study Hausdorff operators. These
operators, in various settings, became more popular in the last decade. Our
sufficient results for the boundedness of Hausdorff operators on Hardy spaces
turn out to be necessary for a smaller class of Reinhardt domains. For the
polydisk we have necessary and sufficient conditions, which was obtained ear-
lier for a smaller Hardy class. On the other hand, for the unit ball in C

n we
have only sufficient conditions.

Sharpness of the sufficient assumptions and, moreover, of the necessary
assumptions is an interesting open problem.

Finally, let us mention that we have generalized one-dimensional results for
Hausdorff operators to all n variables. Of course, we are able to formulate and
prove corresponding results for any group of variables but omit this. First,
it is a routine task, and, secondly, at present we see no application of such
results.

Boundedness of quasi-Hausdorff operators in H∞ is proved in a much more
sophisticated way in dimension one (see [6]) and is open in several dimensions.
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