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MAPPING AND CONTINUITY PROPERTIES OF THE
BOUNDARY SPECTRUM IN BANACH ALGEBRAS

S. MOUTON

Abstract. We present further properties of the boundary spec-
trum S∂(a) = {λ : λ − a ∈ ∂S} of a, where ∂S denotes the topo-
logical boundary of the set S of all noninvertible elements of a

Banach algebra A, and where a is an element of A. In par-
ticular, we investigate the conditions under which it is true that

S∂(f(a)) = f(S∂(a)), where f is a complex valued function which

is analytic on a neighbourhood of the spectrum of a. We also con-
sider continuity properties of the boundary spectrum.

1. Introduction and preliminaries

Let A be a complex Banach algebra with unit 1. If λ ∈ C, then we shall
write λ for the element λ1 in A. Let K(C) denote the set of nonempty compact
subsets of the complex plane C.

If E is a subset of A, then the topological boundary and the topological
interior of E relative to A will be denoted by ∂E and intE, respectively (or
by ∂AE and intAE, respectively, if the particular Banach algebra needs to be
emphasized). For an ε > 0 and an element x in A, the notation B(x, ε) will be
used to denote the open ball in A with centre x and radius ε. Let A−1 denote
the group of all invertible elements of A, and let exp(A) = {ea : a ∈ A} and
Exp(A) = {ec1 · · · eck : k ∈ N, c1, . . . , ck ∈ A}, i.e., Exp(A) is the component
of 1 in A−1. We denote the set of quasinilpotent elements in A by QN(A) and
the radical of A by Rad(A). Recall that Rad(A) = {a ∈ A : 1 − Aa ⊆ A−1} =
{a ∈ A : Aa ⊆ QN(A)}. For a compact set K, let C(K) indicate the Banach
algebra of all continuous complex valued functions on K.

Given an element a in a Banach algebra A, recall that the spectrum of a is

σ(a) ≡ σ(a,A) = {λ ∈ C : λ − a /∈ A−1} = {λ ∈ C : λ − a ∈ S},
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where S (or SA, if necessary) denotes the set of all noninvertible elements
of A. The boundary spectrum of a replaces S by its boundary:

S∂(a) ≡ S∂(a,A) = {λ ∈ C : λ − a ∈ ∂S}.

This concept was introduced in [10], and in [11] it was shown that the boun-
dary spectrum plays an interesting role in spectral continuity in ordered Ba-
nach algebras.

In this paper, we present mapping properties of the boundary spectrum,
similar in spirit to some of the work in [4] and [5]. More specifically, we
investigate the conditions under which it is true that S∂(f(a)) = f(S∂(a)),
where f is a complex valued function which is analytic on a neighbourhood
of σ(a). We also compare our results with corresponding mapping properties
of the boundary ∂σ of the spectrum. In addition, we investigate “regularity-
type” properties (see [6], [8], [12], [13]) of the set R∂ := A\∂S = A−1 ∪ intS,
as well as the continuity properties of the boundary spectrum.

2. The boundary spectrum

Let A be a complex Banach algebra with unit 1 and let S be the (closed)
set of all noninvertible elements of A. For a ∈ A, the boundary spectrum
S∂(a) of a is defined as the set of all λ ∈ C such that λ − a is an element of
the boundary of S, that is

S∂(a) = {λ ∈ C : λ − a ∈ ∂S}.

From [10], we know that S∂(a) is a nonempty, compact subset of the complex
plane such that ∂σ(a) ⊆ S∂(a) ⊆ σ(a). In [10], several other properties of the
boundary spectrum were established. In particular, we recall the following
results.

Lemma 2.1 ([10, Lemma 2.6]). Let A be a Banach algebra, a ∈ ∂S and d
an invertible element. Then ad ∈ ∂S and da ∈ ∂S.

Theorem 2.2 ([10, Corollary 2.12]). Let B be a closed subalgebra of a
Banach algebra A such that B contains the unit element 1 of A. If a ∈ B,
then S∂(a,B) ⊆ S∂(a,A).

We also showed that, in general, ∂σ(a) �= S∂(a) [10, Example 2.3]. See
also Example 3.7. In the following example, we illustrate that, in general,
S∂(a) �= σ(a) as well. For this purpose, let Γ denote the circle with centre 0
and radius 1 and D the closed disk with centre 0 and radius 1 in C.

Example 2.3. Let A = C(Γ) and B the subalgebra of A consisting of all
elements of A which can be extended to a function on D which is analytic on
its interior. If f(z) = z for all z ∈ D, then f ∈ B and S∂(f,B) �= σ(f,B).
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Proof. Since σ(f,A) = Γ and σ(f,B) = D [14, Problem 9, p. 399], we have
that D\Γ ⊆ σ(f,B)\S∂(f,A) ⊆ σ(f,B)\S∂(f,B), by Theorem 2.2. Therefore,
S∂(f,B) �= σ(f,B). �

In [10], an elementary mapping property of the boundary spectrum was
established.

Proposition 2.4 ([10, Proposition 2.7]). Let a be an invertible element of
a Banach algebra A. Then S∂(a−1) = (S∂(a))−1.

Some mapping properties of ∂σ and S∂ are fairly obvious. In the interest
of completeness, we provide these properties in the remainder of this section.

Proposition 2.5. Let a be an element of a Banach algebra A and let
λ ∈ C. Then
1. ∂σ(λa) = λ∂σ(a) and ∂σ(a + λ) = ∂σ(a) + λ.
2. S∂(λa) = λS∂(a) and S∂(a + λ) = S∂(a) + λ.

Proof. For any set K ⊆ C, we have ∂(λK) = λ∂K and ∂(K +λ) = ∂K +λ.
This, together with the spectral mapping theorem, yields (1). For (2), since
the case λ = 0 is trivial, we suppose that λ �= 0 and that μ ∈ S∂(λa), so
that μ − λa ∈ ∂S. By Lemma 2.1, we have γ − a ∈ ∂S, where γ = μ

λ . Since
γ ∈ S∂(a), it follows that μ = λγ ∈ λS∂(a). This yields the inclusion S∂(λa) ⊆
λS∂(a). The inclusion λS∂(a) ⊆ S∂(λa) and the other equation are proved
similarly. �

The open mapping property of analytic functions shows that if f is an-
alytic on a neighbourhood of the spectrum of a, then it is always the case
[5, Proposition 2.2], that the boundary of the spectrum of the element f(a)
is contained in the image under f of the boundary of the spectrum of the
element a.

Proposition 2.6. Let a be an element of a Banach algebra A and let f be
a complex valued function which is analytic on a neighbourhood of σ(a). Then
∂σ(f(a)) ⊆ f(∂σ(a)).

Proof. Let λ0 ∈ ∂σ(f(a)). Then by the spectral mapping theorem λ0 =
f(μ0) for some μ0 ∈ σ(a). If f is constant on the component K of σ(a) to
which μ0 belongs, then λ0 = f(ω0) for any ω0 ∈ ∂K, so that λ0 ∈ f(∂σ(a)).
So suppose that f is not constant on the component K of σ(a) containing
μ0 and suppose that μ0 ∈ intσ(a), say B(μ0, ε) ⊆ K. By the open mapping
theorem [2, p. 99] f(B(μ0, ε)) is open, say B(λ0, ε

′) ⊆ f(B(μ0, ε)) ⊆ f(σ(a)).
This yields the contradiction λ0 ∈ intf(σ(a)), so that μ0 ∈ ∂σ(a), and the
result follows. �

Under certain circumstances, it is the case that

∂σ(f(a)) = f(∂σ(a)) = f(S∂(a)) = S∂(f(a)).(2.1)
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For instance, if the spectrum under consideration has empty interior, then
some results are immediate.

Proposition 2.7. Let a be an element of a Banach algebra A and let f be
a complex valued function which is analytic on a neighbourhood of σ(a).
1. If σ(a) has no interior points, then S∂(f(a)) ⊆ f(S∂(a)).
2. If σ(f(a)) has no interior points, then f(∂σ(a)) ⊆ ∂σ(f(a)) and f(S∂(a)) ⊆

S∂(f(a)).
3. If σ(a) has no interior points and f is one-to-one, then (2.1) holds.

Proof. If the spectrum of an element has empty interior, then this spectrum
is equal to its boundary and, hence, to the corresponding boundary spectrum.
This, together with the spectral mapping theorem, yields (1) and (2). If σ(a)
has no interior points and f is one-to-one, then σ(f(a)) has no interior points,
since if λ0 were an interior point of σ(f(a)), say B(λ0, ε) ⊆ σ(f(a)), then σ(a)
would contain the open set f −1(B(λ0, ε)). Hence (3), follows from (1), (2)
and Proposition 2.6. �

We will show later that parts of Proposition 2.7(3) can be strengthened
considerably.

The proof of the following proposition is a standard argument and will be
omitted.

Proposition 2.8. Let a be an element of a Banach algebra A.
1. If f is a constant function, then (2.1) holds.
2. Let U be an open set such that σ(a) ∩ ∂U = ∅. If f is the characteristic

function of U , then (2.1) holds.

3. Mapping properties

In this paragraph, we shall write K2 for the set {λ2 : λ ∈ K} (i.e. K2 =
f(K) where f(λ) = λ2).

If the spectrum of a is symmetric with respect to the origin, then it is
easy to verify that the set of all squares of elements of the boundary of the
spectrum of a is contained in the boundary of the spectrum of the element a2.
Together with Proposition 2.6, we have the following.

Proposition 3.1. Let a be an element of a Banach algebra A such that
σ(a) is symmetric with respect to the origin. Then (∂σ(a))2 = ∂σ(a2).

To obtain a corresponding result for the boundary spectrum S∂ , we need
some preliminary results, starting with the following lemma.

Lemma 3.2. Let a and b be elements of a Banach algebra A with b �= 0, and
let ε0 > 0. Then there exist an ε1 > 0 and an ε2 > 0 such that B(a, ε1)B(b,
ε2) ⊆ B(ab, ε0).
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Proof. Let ε1 = ε0
2‖b‖ and ε2 = ‖b‖ε0

2‖a‖ ‖b‖+ε0
, and let x ∈ B(a, ε1) and y ∈

B(b, ε2). Then

‖xy − ab‖ ≤ ‖x‖ ‖y − b‖ + ‖x − a‖ ‖b‖

<

(
ε0

2‖b‖ + ‖a‖
)(

‖b‖ε0

2‖a‖ ‖b‖ + ε0

)
+

(
ε0

2‖b‖

)
‖b‖

= ε0,

so that xy ∈ B(ab, ε0). This yields the desired inclusion. �
Corollary 3.3. Let n ∈ N with n ≥ 2 and let a1, . . . , an be elements of a

Banach algebra A with aj �= 0 for all j = 2, . . . , n. If ε0 > 0, then there exist
εj > 0 (j = 1, . . . , n) such that

B(a1, ε1)B(a2, ε2) · · · B(an, εn) ⊆ B(a1a2 · · · an, ε0).

Theorem 3.4. Let n ∈ N with n ≥ 2 and let a1, . . . , an be elements of a
Banach algebra A. If a1a2 · · · an ∈ intS, then aj /∈ ∂S for at least one j ∈
{1, . . . , n}.

Proof. If aj = 0 for some j ∈ {2, . . . , n} the result is obvious. So sup-
pose that aj �= 0 for all j = 2, . . . , n and suppose that a1a2 · · · an ∈ intS, say
B(a1a2 · · · an, ε0) ⊆ S. Together with Corollary 3.3, it follows that there exist
εj > 0 (j = 1, . . . , n) such that

B(a1, ε1)B(a2, ε2) · · · B(an, εn) ⊆ S.(3.1)

If aj ∈ ∂S for all j = 1, . . . , n, then there exists a cj ∈ B(aj , εj) ∩ A\S for each
j = 1, . . . , n. By definition of S the product c1c2 · · · cn /∈ S. On the other hand,
(3.1) implies that c1c2 · · · cn ∈ S. This contradiction yields the result. �

We are now in a position to present two corollaries containing useful results.

Corollary 3.5. Let n ∈ N with n ≥ 2 and let a1, . . . , an be mutually com-
muting elements of a Banach algebra A. If aj ∈ ∂S for all j = 1, . . . , n, then
a1a2 · · · an ∈ ∂S.

Proof. The assumptions imply that a1a2 · · · an ∈ S, so that the result fol-
lows from Theorem 3.4. �

Corollary 3.6. Let a be an element of a Banach algebra A.
1. If a ∈ ∂S, then an ∈ ∂S for all n ∈ N.
2. If 0 ∈ S∂(a), then 0 ∈ S∂(an) for all n ∈ N.

Using Corollary 3.6, we can give another example to illustrate that the
boundary of the spectrum of an element is in general properly contained in
the boundary spectrum of the element.

Example 3.7. Let K = {λ = reiθ ∈ C : r ∈ [0,1] and θ ∈ [0, π
2 ]} and let A =

C(K). If g(z) = z2 for all z ∈ K and a = g2, then a ∈ A and ∂σ(a) �= S∂(a).
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Proof. Since σ(a) = (σ(g))2 = (g(K))2 = D (where D is the closed unit
disk with centre 0 and radius 1), clearly 0 /∈ ∂σ(a). However, since σ(g) =
{λ = reiθ ∈ C : r ∈ [0,1] and θ ∈ [0, π]}, it follows that 0 ∈ ∂σ(g), so that 0 ∈
S∂(g). Corollary 3.6(2) now implies that 0 ∈ S∂(g2) = S∂(a), so that 0 ∈
S∂(a)\∂σ(a). �

The following theorem states that the set of squares of elements of the
boundary spectrum of a is contained in the boundary spectrum of the ele-
ment a2, provided that one of two conditions is satisfied, one of which is that
the boundary spectrum of a is symmetric with respect to the origin.

Theorem 3.8. Let a be an element of a Banach algebra A. If either S∂(a) ∩
−σ(a) = ∅ or S∂(a) = −S∂(a) is symmetric with respect to the origin, then
(S∂(a))2 ⊆ S∂(a2).

Proof. If S∂(a) ∩ −σ(a) = ∅ and λ ∈ S∂(a), then λ − a ∈ ∂S and λ + a
is invertible, so that λ2 − a2 = (λ + a)(λ − a) ∈ ∂S, by Lemma 2.1. Hence,
λ2 ∈ S∂(a2).

If S∂(a) is symmetric with respect to the origin and λ ∈ S∂(a), then both λ
and −λ are in S∂(a), so that both λ − a and λ + a are in ∂S. It follows from
Corollary 3.5 that λ2 − a2 = (λ + a)(λ − a) ∈ ∂S, so that λ2 ∈ S∂(a2). �

Using induction, the second part of Theorem 3.8 can be generalized slightly.

Corollary 3.9. Let a be an element of a Banach algebra A and let n ∈ N.
If S∂(a2k

) is symmetric with respect to the origin for all k = 0,1, . . . , n − 1,
then (S∂(a))2

n ⊆ S∂(a2n

).

For a ∈ A in the following lemma, the set of all complex valued functions
which are analytic and one-to-one on a neighbourhood of σ(a) is indicated by
H1(a).

Lemma 3.10. Let A be a Banach algebra and let w : A → K(C) be any
mapping such that w(a) ⊆ σ(a) for all a ∈ A. Then the following statements
are equivalent:
1. w(f(a)) ⊆ f(w(a)) for all a ∈ A and all f ∈ H1(a).
2. f(w(a)) ⊆ w(f(a)) for all a ∈ A and all f ∈ H1(a).

Proof. If a ∈ A and f ∈ H1(a), say f is analytic and one-to-one on an open
set G containing σ(a), then it follows from [2, Corollary 7.6, p. 99], that
g : H → C is analytic (and one-to-one) where g = f −1 and H = f(G). Con-
sider the element b = f(a) in A. By the spectral mapping theorem σ(b) =
f(σ(a)) ⊆ H , so that g ∈ H1(b). Furthermore, g(b) = (g ◦ f)(a) = a [3, Prob-
lem 4, p. 209].

Now, if (1) holds, a ∈ A and f ∈ H1(a), then w(g(b)) ⊆ g(w(b)), so that
w(a) ⊆ g(w(f(a))), by the preceding paragraph. Applying f , we obtain (2).
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Similarly, if (2) holds, a ∈ A and f ∈ H1(a), then g(w(b)) ⊆ w(g(b)), so that
g(w(f(a))) ⊆ w(a), and (1) follows by applying f . �

Proposition 2.6 and Lemma 3.10 yield the following result, which is a
stronger version of the first part of Proposition 2.2 in [5].

Proposition 3.11. Let a be an element of a Banach algebra A and let f be
a complex valued function which is analytic and one-to-one on a neighbourhood
of σ(a). Then ∂σ(f(a)) = f(∂σ(a)).

Clearly, Proposition 3.11 implies Proposition 2.5(1). Proposition 3.11 also
strengthens the first part of Proposition 2.7(3).

Even for f a polynomial, the property ∂σ(f(a)) = f(∂σ(a)) does not hold
in general if f is not one-to-one on a neighbourhood of the spectrum of a. To
see this, consider the Banach algebra A = C(K) with K as in Example 3.7
and let a = g, where g(z) = z2 for all z ∈ K. Then a ∈ A and if f(z) = z2,
then ∂σ(f(a)) �= f(∂σ(a)). Recalling Proposition 3.1, we also note that σ(a)
is not symmetric with respect to the origin.

Theorem 3.13 shows that Proposition 3.11 remains true if ∂σ is replaced
with S∂ . We need the following result.

Theorem 3.12. Let a be an element of a Banach algebra A and let f be a
complex valued function which is analytic and one-to-one on a neighbourhood
G of σ(a). If λ0 ∈ G and β = f(λ0), then there exists an invertible element
y ∈ A such that β − f(a) = (λ0 − a)y.

Proof. Let g(λ) = β − f(λ). Then λ0 is a zero of g in G. Since f is one-to-
one on G, this is the only zero of g in G. Therefore, there exists an analytic
function h on G such that g(λ) = (λ0 − λ)h(λ) for all λ ∈ G, with h(λ) �= 0
for all λ ∈ G\{λ0}. Since f is one-to-one on G, it follows from [2, Problem 4,
p. 100] that g′(λ) = −f ′(λ) �= 0 for all λ ∈ G. Therefore, h(λ0) = −g′(λ0) �= 0,
so that h has no zeros on G. It follows that 0 /∈ h(σ(a)) = σ(h(a)), so that
y = h(a) is invertible. By the holomorphic functional calculus β − f(a) =
g(a) = (λ0 − a)y, and the result follows. �

Theorem 3.13. Let a be an element of a Banach algebra A and let f be a
complex valued function which is analytic and one-to-one on a neighbourhood
of σ(a). Then S∂(f(a)) = f(S∂(a)).

Proof. Let β = f(λ0), where λ0 ∈ S∂(a). By Theorem 3.12, we have β −
f(a) = (λ0 − a)y, for some invertible element y ∈ A. Since λ0 − a ∈ ∂S, it
follows from Lemma 2.1 that β − f(a) ∈ ∂S, so that β ∈ S∂(f(a)). This
proves the inclusion f(S∂(a)) ⊆ S∂(f(a)). Together with Lemma 3.10, the
result follows. �

In view of Theorem 3.13 and Proposition 2.8(1), the boundary spectrum
is a Mobius spectrum in the sense of Harte and Wickstead [5, Definition 2.1].
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Clearly, Theorem 3.13 implies Propositions 2.4 and 2.5(2), and also streng
thens the last part of Proposition 2.7(3).

It follows from Theorem 3.13 that if a is an element of a Banach algebra A
such that the diameter of the spectrum of a is less than 2π, then S∂(ea) =
eS∂(a).

Finally, we remark that, despite a number of instances where the bound-
ary ∂σ of the spectrum and the boundary spectrum S∂ behave similarly (see
for instance Proposition 3.11 and Theorem 3.13), it does not seem obvious
whether ∂σ can in general be replaced by S∂ in Proposition 2.6. (By Propo-
sition 2.7, this is the case if σ(a) has no interior points.) Hence, we have the
following open question.

Problem. Let a be an element of a Banach algebra A and let f be a
complex valued function which is analytic on a neighbourhood of σ(a). Is

S∂(f(a)) ⊆ f(S∂(a))?

4. Regularity-type properties

The spectrum σR(a) of an element a in a Banach algebra A relative to
any subset R of A is defined by σR(a) = {λ ∈ C : a − λ /∈ R}. If we define
R∂ = A−1 ∪ intS, then σR∂

(a) = S∂(a).
In [6], [8], [12] and [13] the concepts of regularities and semiregularities

were introduced. In particular, in [12] Müller defined a nonempty subset R
of a Banach algebra A to be a lower semiregularity if

(i) a ∈ A, n ∈ N, an ∈ R ⇒ a ∈ R,
(ii) if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1

and ab ∈ R, then a, b ∈ R.
If R is a lower semiregularity, then A−1 ⊆ R [12, Lemma 2]. Also, by [12,

Remark 3], a nonempty subset R of a Banach algebra A satisfying

a, b ∈ A, ab = ba, ab ∈ R ⇒ a, b ∈ R

is a lower semiregularity. Some of the results in Section 3 show that we have
the following (weaker) result for the set R∂ .

Theorem 4.1. Let A be a Banach algebra and let a, b ∈ A.
1. If an ∈ R∂ , then a ∈ R∂ .
2. If ab = ba and ab ∈ R∂ , then a ∈ R∂ or b ∈ R∂ .

Proof. Let an ∈ R∂ . If an ∈ A−1, then a ∈ A−1 ⊆ R∂ . If an ∈ intS, then
it follows from Corollary 3.6(1) that a /∈ ∂S, and so a ∈ R∂ , yielding (1).
Towards (2), let ab = ba and ab ∈ R∂ . If ab ∈ A−1, then a, b ∈ A−1 ⊆ R∂ ,
so suppose that ab ∈ intS. Then ab /∈ ∂S, so that a /∈ ∂S or b /∈ ∂S, by
Corollary 3.5. Hence a ∈ R∂ or b ∈ R∂ . �
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By (ii) above and [12, Lemma 2(iii)] (see also [6, Proposition 1.3]) a lower
semiregularity R satisfies the following property:
(P1) If a, b ∈ A, ab = ba and b ∈ A−1, then

ab ∈ R ⇔ a ∈ R and b ∈ R.

We show that R∂ satisfies property (P1):

Proposition 4.2. Let A be a Banach algebra and let a, b ∈ A be such that
ab = ba and b ∈ A−1. Then ab ∈ R∂ if and only if a ∈ R∂ and b ∈ R∂ .

Proof. Suppose that ab = ba and b ∈ A−1. Let a ∈ R∂ (and b ∈ R∂). If
a ∈ A−1, then ab ∈ A−1 ⊆ R∂ , so suppose that a ∈ intS. If ab /∈ R∂ , then
ab ∈ ∂S, so that a ∈ ∂S by Lemma 2.1. This contradiction yields ab ∈ R∂ .
Conversely, let ab ∈ R∂ . Since b ∈ A−1, b ∈ R∂ . If a /∈ R∂ , then a ∈ ∂S, so
that ab ∈ ∂S, by Lemma 2.1. This contradiction yields a ∈ R∂ . �

Let R be a nonempty subset of a Banach algebra A. The concept of a
regularity was defined in [6, Definition 1.2]. By [6, Remark 3], if R satisfies
the property
(P2) ab ∈ R ⇔ a ∈ R and b ∈ R for all commuting elements a, b ∈ A,
then R is a regularity.

The following example will show that R∂ does not have property (P2). For
this purpose, let D denote the closed disk with center 0 and radius 1 in C and
let B = A(D) denote the Banach algebra of all continuous complex valued
functions on D which are analytic in the interior of D.

Example 4.3. Let A = B × B and consider R∂ = A−1 ∪ intA SA. If a =
(f,0) ∈ A and b = (0, f) ∈ A where f(z) = z for all z ∈ D, then ab = ba, a ∈ R∂

and b ∈ R∂ , but ab /∈ R∂ .

Proof. By Example 2.3, 0 /∈ S∂(f,B). Since S∂(a,A) = {λ ∈ C : (λ − f,λ) ∈
∂ASA} and S∂(b,A) = {λ ∈ C : (λ,λ − f) ∈ ∂ASA}, it is easily checked that
0 /∈ S∂(a,A) and 0 /∈ S∂(b,A). Therefore, a ∈ R∂ and b ∈ R∂ . However, ab =
(0,0) ∈ ∂ASA, so that ab /∈ R∂ . �

We conclude by giving a characterization of the radical (Corollary 4.6)
in terms of R∂ . Recall that, since λ − a ∈ exp(A) whenever |λ| > ‖a‖ [1,
Theorem 3.3.6], we have that A = Exp(A) + Exp(A).

Theorem 4.4. Let A be a Banach algebra and let B be a subset of A
containing Exp(A). Then Rad(A) = {a ∈ A : Ba ⊆ QN(A)}.

Proof. For the nontrivial inclusion, suppose that Ba ⊆ QN(A) and let b ∈ A
with b = c + d (c, d ∈ Exp(A)). Since ca ∈ Ba, it follows from the assumption
and [1, Theorem 3.3.6], that 1 − ca ∈ exp(A), say 1 − ca = ex where x ∈ A.
Again, since e−xda ∈ Ba, it follows that 1 − e−xda ∈ exp(A), say 1 − e−xda =
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ey , where y ∈ A. Therefore, 1 − ba = (1 − ca)(1 − e−xda) = exey ∈ Exp(A) ⊆
A−1. We have proved that 1 − Aa ⊆ A−1, so that a ∈ Rad(A). �

Theorem 4.4 includes [7, Proposition 4.1], and since A−1 ⊆ R if R is a lower
semiregularity, we have the following.

Corollary 4.5. Let A be a Banach algebra and let R be a lower semireg-
ularity. Then Rad(A) = {a ∈ A : Ra ⊆ QN(A)}.

Since A−1 ⊆ R∂ , we also have the following.

Corollary 4.6. Let A be a Banach algebra. Then Rad(A) = {a ∈ A :
R∂a ⊆ QN(A)}.

5. Continuity properties

We recall from [1, pp. 48, 50], that the Hausdorff distance between two
nonempty compact sets K1 and K2 in the complex plane is defined by

Δ(K1,K2) = max
{

sup
λ∈K1

d(λ,K2), sup
λ∈K2

d(λ,K1)
}

,

where d(z,K) is the distance from a point z to a compact set K in C. If
also r > 0, then K + r denotes the set {z ∈ C : d(z,K) ≤ r}. A function
F : X → K(C) (with X a normed space) is continuous at x ∈ X if for every
ε > 0 there exists a δ > 0 such that if ‖y − x‖ < δ, then Δ(F (y), F (x)) < ε
and F is upper semicontinuous on X if for every x ∈ X and every open set U
containing F (x) there exists a δ > 0 such that if ‖y − x‖ < δ then U contains
F (y).

Let A be a Banach algebra. We shall write r(a) for the spectral radius of
an element a ∈ A. In general, the function a �→ S∂(a) from A to K(C) is not
continuous, as illustrated by a well-known example by Kakutani [1, p. 49]. In
the case of commuting elements, we have the following property.

Proposition 5.1. Let a and b be commuting elements of a Banach alge-
bra A. Then C\σ(a) ∩ S∂(b) ⊆ S∂(a) + r(a − b).

Proof. If α ∈ C\σ(a) ∩ S∂(b) is such that d(α,S∂(a)) > r(a − b), then d(α,
σ(a)) > r(a − b), by [10, Proposition 2.1]. From the proof of [1, Theorem 3.4.1],
it follows that α /∈ σ(b), and since S∂(b) ⊆ σ(b), we have a contradiction. �

A somewhat neater result holds in the context of an ordered Banach algebra
[10, Theorem 3.8]. (See also [9, Theorems 4.2 and 4.12].)

Corollary 5.2. Let a and b be commuting elements of a Banach algebra A
such that S∂(a) ∩ σ(b) = ∅ = S∂(b) ∩ σ(a). Then

Δ(S∂(a), S∂(b)) ≤ r(a − b) ≤ ‖a − b‖.

Since S∂(a) ⊆ σ(a) for all a ∈ A and A\∂S is open, a standard argument
yields the upper semicontinuity of the map a �→ S∂(a):
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Theorem 5.3. Let a be an element of a Banach algebra A and let U be an
open set containing S∂(a). Then there exists a δ > 0 such that if ‖x − a‖ < δ,
then U contains S∂(x).

Corollary 5.4. Let a be an element of a Banach algebra A and let U be
an open set such that σ(a) ∩ ∂U = ∅ and S∂(a) ∩ U �= ∅. Then there exists a
δ > 0 such that if ‖x − a‖ < δ, then S∂(x) ∩ U �= ∅.

The above corollary follows directly from [1, Theorems 3.4.2 and 3.4.4].
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