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JENSEN MEASURES AND ANNIHILATORS OF
HOLOMORPHIC FUNCTIONS

NIHAT GOGUS AND EVGENY A. POLETSKY

Abstract. For a relatively compact domain M in a complex
manifold, we completely characterize in terms of Jensen measures

the annihilating measures of the algebra A(M) of holomorphic

functions and the space h(M) of pluriharmonic functions con-
tinuous on M . We also establish the equivalence of Mergelyan

type approximation properties of a domain for different function
spaces.

1. Introduction

Jensen measures, introduced by Bishop in [B], found many applications to
uniform algebras. The most comprehensive discussion of the subject can be
found in the book [Ga] of Th. Gamelin, where Jensen measures were used as
representing measures.

Of course, not all representing measures are Jensen measure. A represent-
ing measure is a point evaluation plus an annihilator of the algebra. Annihi-
lators are usually complex measures and their nature is quite mysterious.

The main goal of this paper is to relate Jensen measures and annihilators
of the uniform algebra A(M) of functions continuous on the closure M of
a relatively compact domain M in a complex manifold N and holomorphic
on M .

Let D be the unit disk in C and let M ′ = D × M ⊂ C × N . In Section 3,
we introduce a continuous operator G∗ : C∗(M ′) → C∗(M) with the following
important property: for any z ∈ M it transforms the set J((z,0),M ′) of all
Jensen measures on M ′ with barycenters at (z,0) into measures in A⊥(M).
In the same section, we introduce an operator P ∗ : C∗(M) → C∗(M ′) which
is the right inverse of G∗.
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In Section 4, we obtain the description of the space A⊥(M) in terms of
Jensen measures: for any z ∈ M the set A⊥(M) is the weak-∗ closure of the
real positive cone over G∗(J((z,0),M ′)). Moreover, Corollary 4.4 produces a
holomorphicity test similar to the F. and M. Riesz Theorem.

Weak-∗ closures are rather difficult to handle. To alleviate this problem, we
consider two subspaces of C(M ′): the space S(M ′) of functions holomorphic
in average (see Section 4 for the definition) and the space h(M ′) of functions
pluriharmonic on M ′. In Theorems 4.5 and 6.1, we show that P ∗(A⊥(M)) =
S⊥(M ′) while G∗(S⊥(M ′)) = A⊥(M) and P ∗(A⊥(M)) ⊂ h⊥(M ′) while
G∗(h⊥(M ′)) = A⊥(M). The new spaces are more flexible and should be easier
to study.

The real annihilators of h(M) are annihilators of the space hR(M) of real
pluriharmonic functions on M . Theorem 5.2 provides a simple description of
this space: for any z ∈ M the space h⊥

R
(M) is the weak-∗ closure of the set

L(z,M) = {a(μ − ν) : a ∈ R, μ, ν ∈ J(z,M)}.
In the final Section 6, we address the Mergelyan property for A(M) which

is known only for strongly pseudoconvex domains and some particular cases.
We show in Theorem 6.1 that it is equivalent to the Mergelyan property for
spaces S(M ′) and h(M ′).

2. Measures generated by analytic disks

Let D be the unit disk and T = ∂D. For a complex manifold M of dimen-
sion m, we denote by H(M) be the set of all holomorphic mappings defined
on neighborhoods of D which map D into M . Let C(M) be the set of all
continuous functions on M .

Let K(z,M) be the set of all measures νf,α on M such that for a function
φ ∈ C(M)

νf,α(φ) =
1

2πi

∫
|ζ|=1

φ(f(ζ))α(ζ)dζ,

where f ∈ H(M), f(0) = z, and α ∈ H(D).
The norm

‖νf,α‖ = sup{ |νf,α(φ)| : |φ| ≤ 1 on M }
of νf,α does not exceed

‖α‖H1 =
1
2π

∫ 2π

0

|α(eiθ)| dθ ≤ 1.

The following example shows that ‖νf,α‖ can be strictly less than ‖α‖H1 .

Example 2.1. Let M = C, α ≡ 1 and

f(ζ) = ζ
ζ + a

1 + aζ
,
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where |a| < 1. If G1(ξ) and G2(ξ) are two branches of the solution to the
equation

(1 + aζ)ξ = ζ(ζ + a),
then

1
2πi

∫
|ζ|=1

φ(f(ζ))dζ =
1

2πi

∫
|ξ|=1

φ(ξ)
(
G′

1(ξ) + G′
2(ξ)

)
dξ.

But G1(ξ) + G2(ξ) = aξ − a and, therefore,

1
2πi

∫
|ζ|=1

φ(f(ζ))dζ =
a

2πi

∫
|ξ|=1

φ(ξ)dξ.

Thus, ‖νf,α‖ = |a| < 1. In particular, if a = 0 then νf,1 = 0 = ν0,1.

Thus, this example shows that the mapping (f,α) → νf,α is not an injection
and the support of νf,α need not to coincide with f(T) although suppνf,α

always belongs to f(T).
However, if f ∈ H(M) and there is a set E ⊂ T of full measure such that f

is an injection on E, then, evidently, suppνf,α = f(T) and ‖νf,α‖ = ‖α‖H1 .
Clearly, the set of such f is dense in H(M).

Another example of measures generated by analytic disks f ∈ H(M) are
measures

μf (φ) =
1
2π

∫ 2π

0

φ(f(eiθ))dθ.

We denote by J(z,M) the set of all such measures with f(0) = z.
The following result was proved in [P1] and [R]. There PSH(M) stands for

the set of all plurisubharmonic functions on M .

Theorem 2.2. If φ is an upper semicontinuous function on M , then its
envelope

EMφ(z) = inf{μ(φ) : μ ∈ J(z,M)}
is plurisubharmonic on M and coincides with

sup{v(z) : v ∈ PSH(M), v ≤ φ}
for every z ∈ M .

Now we assume that M is a relatively compact domain in a complex mani-
fold N . We denote by K(z,M) the weak-∗ closure of K(z,M) in C∗(M) and
by J(z,M) the weak-∗ closure of J(z,M) in C∗(M). Let us remind that a
Jensen measure on M with barycenters at z ∈ M is a probability measure μ
with compact support on M such that φ(z) ≤ μ(φ) for all φ ∈ PSH(M). The
following result was obtained in [BS] in the case when M is a domain in C

n.

Theorem 2.3. Suppose that M is a relatively compact domain in a complex
manifold N . Then the set J(z,M) is convex and the set of all Jensen measures
on M is a subset of J(z,M).
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Proof. To show that the set J(z,M) is convex it suffices to show that
for any μf , μg ∈ J(z,M) and any a, 0 ≤ a ≤ 1, the measure aμf + (1 − a)μg

belongs to J(z,M).
If N is a Stein manifold, then we denote by F an imbedding of N into C

m.
Let f̃ = F ◦ f and g̃ = F ◦ g. By [GR, Theorem 8.C.8] there are a neighbor-
hood W of f̃(D) ∪ g̃(D) in C

m and a holomorphic retraction P of W onto
F (N). By [P2, Lemma 2.2], there is a sequence {pj } ⊂ H(W ) such that the
measures μpj converge weak-∗ to aμf̃ + (1 − a)μg̃ . Moreover, the sets pj(D)
lie in any neighborhood of f̃(D) ∪ g̃(D) when j is sufficiently large. Therefore,
if h̃j = P ◦ pj then aμf̃ + (1 − a)μg̃ is the weak-∗ limit of μh̃j

. Consequently,
the measure aμf + (1 − a)μg is the weak-∗ limit of μhj , where hj = F −1 ◦ f̃ ,
and, therefore, belongs to J(z,M).

In the general case, since f, g ∈ H(M), there is r > 1 such that f and g are
defined on the closure of the disk Dr of radius r centered at the origin. Let
M ′

r = M × Dr and let f̃(ζ) = (f(ζ), ζ) and g̃(ζ) = (g(ζ), ζ) be the mappings
of Dr into M ′

r. Then the set f̃(Dr) ∪ g̃(Dr) is a complex subvariety in M ′
r

and, by Siu’s theorem in [S], has a Stein neighborhood W . By the previous
paragraph, there is a sequence {h̃j } ⊂ H(W ) such that the measures μh̃j

converge weak-∗ to aμf̃ + (1 − a)μg̃ . If h̃j(ζ) = (hj(ζ), pj(ζ)), hj(ζ) ∈ M and
pj(ζ) ∈ Dr, then aμf + (1 − a)μg is the weak-∗ limit of μhj .

Thus, the set J(z,M) is convex. Let us show that the set of all Jensen
measures on M is a subset of the set J(z,M). If not, there is a Jensen
measure ν with barycenter at z ∈ M which does not belong to J(z,M). Then
we can find a continuous function φ ∈ C(M) such that

ν(φ) < inf{μ(φ) : μ ∈ J(z,M)} = inf{μ(φ) : μ ∈ J(z,M)}.

Note that the function v(w) = EMφ(w) ≤ φ(w) and is plurisubharmonic on M .
Hence,

ν(v) ≤ ν(φ) < v(z).

So we got a contradiction and ν ∈ J(z,M). �

We will denote by A(M) ⊂ C(M) the uniform algebra of functions continu-
ous on M and holomorphic on M . Clearly, K(z,M) ⊂ A⊥(M) while J(z,M)
consists of positive representing measures for A(M) at z.

3. G∗- and P ∗-transforms

Suppose that M is a relatively compact domain in a complex manifold N .
Let M ′ = M × D. Consider a continuous linear operator G : C(M) → C(M ′)
defined as Gφ(z, ζ) = ζφ(z). Note that the range ranG of G is closed in
C(M ′), kerG = {0} and ‖G‖ = 1.
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Additionally, we consider a continuous linear operator P : C(M ′) → C(M)
defined as

Pψ(z) =
1

2πi

∫ 2π

0

ψ(z, eiθ)e−iθ dθ.

Clearly, ranP = C(M), ‖P ‖ = 1, PGφ = φ and ψ − GPψ ∈ kerP . Thus,
C(M ′) = ranG ⊕ kerP with the decomposition of ψ ∈ C(M ′) given by the
formula

ψ = GPψ + (ψ − GPψ).

The G∗-transform is the adjoint of G mapping C∗(M ′) into C∗(M) and is
uniquely defined by the formula

(3.1) G∗μ(φ) = μ(Gφ)

for φ ∈ C(M) and μ ∈ C∗(M ′). Clearly, kerG∗ = (ranG)⊥ and, since kerG =
{0} and ranG∗ is weak-∗ closed, ranG∗ = C∗(M).

The P ∗-transform is the adjoint of P mapping C∗(M) into C∗(M ′) and is
uniquely defined by the formula

(3.2) P ∗ν(ψ) = ν(Pψ)

for ψ ∈ C(M ′) and ν ∈ C∗(M). Clearly, kerP ∗ = {0} and, since ranP ∗ is
weak-∗ closed, ranP ∗ = (kerP )⊥. Moreover, G∗P ∗ν = ν.

It follows that

C∗(M ′) = (ranG)⊥ ⊕ (kerP )⊥ = kerG∗ ⊕ ranP ∗

with the decomposition of μ ∈ C∗(M ′) given by the formula

μ = (μ − P ∗G∗μ) + P ∗G∗μ.

By the definition of P ∗ if ν ∈ C∗(M), ‖ν‖ = 1 and |ν(φ)| = 1 for φ ∈ C(M)
with ‖φ‖ = 1, then |P ∗ν(ψ)| = 1 for ψ(z, ζ) = ζφ(z). Thus, P ∗ imbeds C∗(M)
isometrically into C∗(M ′).

Proposition 3.1. For z ∈ M , the G∗-transform maps J((z,0),M ′) onto
K(z,M) and J((z,0),M ′) onto K(z,M).

Proof. Suppose that ν = νf,α ∈ K(z,M), where f ∈ H(M) and α ∈ H(D).
Then the mapping g : D → M ′, g(ζ) = (f(ζ), ζα(ζ)) is in H(M ′). If φ ∈ C(M)
and φ̃ = Gφ, then

μg(φ̃) =
1

2πi

∫
|ζ|=1

φ̃(g(ζ))
ζ

dζ =
1

2πi

∫
|ζ|=1

φ(f(ζ))α(ζ)dζ = νf,α(φ).

Thus, νf,α = G∗μg . Hence, G∗ maps J((z,0),M ′) onto K(z,M).
Now suppose that ν ∈ K(z,M) and measures νj ∈ K(z,M) converge weak-∗

to ν. Take measures μj ∈ J((z,0),M ′) such that G∗μj = νj . Since the unit
ball in C∗(M ′) is compact, we can take a subsequence μjk

converging weak-∗
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to a measure μ ∈ J((z,0),M ′). Then G∗μ = ν and we see that G∗ maps
J((z,0),M ′) onto K(z,M). �

Theorem 3.2. The weak-∗ closure K(z,M) of K(z,M) in the dual space
C∗(M) is convex and balanced.

Proof. The convexity follows from the convexity of the set J((z,0),M ′)
and the last statement of the previous proposition.

If a ∈ D, then νf,aα = aνf,α. Thus, the set K(z,M) and, consequently,
K(z,M) are balanced. �

4. The algebra A(M) and the space S(M)

Suppose that M is a relatively compact domain in a complex manifold N .
Let us define an operator L on the C(M) by

Lφ(z) = inf{Reν(φ) : ν ∈ K(z,M)}
for any point z ∈ M .

Proposition 4.1. The operator L is a continuous mapping of C(M) into
the cone of non-positive plurisubharmonic functions equipped with the uniform
norm and it has the following properties:

(1) −‖φ‖ ≤ Lφ ≤ 0;
(2) L(αφ) = |α| Lφ when α ∈ C;
(3) L(φ1 + φ2) ≥ L(φ1) + L(φ2);
(4) Lφ(z0) = 0 for some z0 ∈ M if and only if φ ∈ A(M).

Proof. By Proposition 3.1 for every ν ∈ K(z,M), there is a measure μ ∈
J((z,0),M ′) such that G∗μ = ν. In view of (3.1),

Reν(φ) = ReG∗μ(φ) = Reμ(Gφ) = μ(ReGφ).

Since G∗(J((z,0),M ′)) = K(z,M) we see that

Lφ(z) = EM ′ ReGφ(z,0)

for every z ∈ M . By Theorem 2.2, Lφ is plurisubharmonic on M . The conti-
nuity of L is evident.

Since the set K(z,M) is balanced and lies in the unit ball of C∗(M), (1)
follows. Properties (2) and (3) are evident.

In (4), the part “if” is evident. To show “only if,” we note that since Lφ is
plurisubharmonic and nonpositive it follows from the maximum principle that
Lφ(z) ≡ 0 on M . By Morera’s Theorem, φ is holomorphic on every complex
line and, consequently, holomorphic on M . �

We denote by C(z,M) the real positive cone over K(z,M) and let C(z,M)
be its weak-∗ closure in C∗(M). Since K(z,M) is convex and balanced, the set
C(z,M) is a weak-∗ closed complex linear subspace of C∗(M). The following
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theorem and its corollaries describes the space A⊥(M) in terms of analytic
disks.

Theorem 4.2. Suppose that M is a relatively compact domain in a complex
manifold N and z0 ∈ M . Then

A⊥(M) = C(z0,M).

Proof. If a function φ ∈ A(M), then μ(φ) = 0 for every μ ∈ K(z0,M).
Therefore, μ(φ) = 0 for every μ ∈ C(z0,M). Thus, C(z0,M) ⊂ A⊥(M).

If μ ∈ A⊥(M) and μ /∈ C(z0,M), then we take a function φ ∈ C(M) such
that μ(φ) = 1 while ν(φ) = 0 for all ν ∈ C(z0,M). By property (4) of Propo-
sition 4.1, φ ∈ A(M). Thus, μ(φ) = 0 and this contradiction proves the theo-
rem. �

As an immediate corollary of this theorem, we see that to check whether
is holomorphic or not it suffices to test it on the set K(z0,M) for only one
point z0 ∈ M .

Corollary 4.3. Suppose that M is a relatively compact domain in a com-
plex manifold N and z0 ∈ M . Then a continuous function φ ∈ A(M) if and
only if μ(φ) = 0 for every μ ∈ K(z0,M).

In its turn, the result above produces a version of F. and M. Riesz Theorem.

Corollary 4.4. A continuous function φ ∈ A(M) if and only if there
exists a point z0 ∈ M so that∫

|ζ|=1

φ(f(ζ))ζk dζ = 0

for every integer k ≥ 0 and every mapping f ∈ H(M) with f(0) = z0.

Proof. If α ∈ H(D), then α(ζ) =
∑∞

k=0 akζk. The result is then a direct
consequence of Corollary 4.3. �

To understand how operators G∗ and P ∗ work on the space A⊥(M), we
introduce the space S(M ′) which consists of all continuous complex-valued
functions u(z, ζ) on M ′ such that the function

Pu(z) =
1
2π

∫ 2π

0

u(z, eiθ)e−iθ dθ

is holomorphic on M . Clearly, Pu ∈ A(M) and S(M ′) is closed in C(M ′).
The following theorem shows the relationship between spaces A⊥(M) and

S⊥(M ′).

Theorem 4.5. The space P ∗(A⊥(M)) = S⊥(M ′) while G∗(S⊥(M ′)) =
A⊥(M). Moreover, P ∗G∗μ = μ when μ ∈ S⊥(M ′).
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Proof. If u ∈ S(M ′) then the function Pu ∈ A(M). Hence, if ν ∈ A⊥(M)
then P ∗ν(u) = ν(Pu) = 0 and P ∗(A⊥(M)) ⊂ S⊥(M ′).

If ν ∈ S⊥(M ′) and not in P ∗(A⊥(M)), then there is u ∈ C(M ′) such that

ν(u) < 0 ≤ μ(u) for all μ = P ∗μ1, μ1 ∈ A⊥(M).

This tells us that P ∗μ1(u) = 0 for all μ1 ∈ A⊥(M). But P ∗μ1(u) = μ1(Pu)
and, therefore, Pu ∈ A(M) and u ∈ S(M ′). Hence, ν(u) = 0 and we get a
contradiction. Thus, P ∗(A⊥(M)) = S⊥(M ′).

Now if μ ∈ S⊥(M ′) and φ ∈ A(M), then Gφ ∈ S(M ′) and, therefore,
G∗μ(φ) = 0. Thus G∗(S⊥(M ′)) ⊂ A⊥(M). But if ν ∈ A⊥(M), then P ∗ν ∈
S⊥(M ′). Since G∗P ∗ν = ν we see that G∗(S⊥(M ′)) = A⊥(M).

If μ ∈ S⊥(M ′), then there is ν ∈ A⊥(M) such that P ∗ν = μ. Hence,

P ∗G∗μ = P ∗G∗P ∗ν = P ∗ν = μ. �

5. The space of pluriharmonic functions

Another space closely related to complex analysis is the space h(M) of all
continuous complex-valued functions u on M such that Reu and Imu are
pluriharmonic on M . As we show below, the annihilators to this space also
can described in terms of Jensen measures.

We will need a lemma.

Lemma 5.1. A real valued function φ ∈ C(M) is pluriharmonic if and only
if EMφ(z0) + EM (−φ)(z0) = 0 for some point z0 ∈ M .

Proof. If φ is pluriharmonic, then EMφ ≡ φ and

EMφ(z0) + EM (−φ)(z0) ≡ 0.

By the properties of envelopes, EMφ ≤ φ on M . Hence, EMφ + EM (−φ) ≤
φ − φ = 0 and for any φ ∈ C(M) the function E = EMφ+ EM (−φ) is plurisub-
harmonic and nonpositive on M . So if E(z0) = 0 for some point z0 ∈ M , then
E ≡ 0. Consequently, EMφ = φ and EM (−φ) = −φ. Thus, both φ and −φ are
plurisubharmonic and this implies that φ is pluriharmonic. �

Now we can describe the space h⊥(M) in terms of Jensen measures. If z
is any point in M , let

L(z,M) = {a(μ − ν) : a ∈ R, μ, ν ∈ J(z,M)}

and let L(z,M) be its weak-∗ closure.

Theorem 5.2. The space h⊥(M) = L(z,M) ⊕ iL(z,M) for every z ∈ M .

Proof. Clearly, L(z,M) ⊕ iL(z,M) ⊂ h⊥(M). To show the reverse inclu-
sion, we note that if λ ∈ h⊥(M) then both its real and imaginary parts are in
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h⊥(M). So we may assume that λ is real. If λ /∈ L(z,M), then there exists a
real function φ ∈ C(M) such that

λ(φ) < inf
{
a
(
μ(φ) − ν(φ)

)
, a ∈ R, μ, ν ∈ J(z,M)

}
.

It follows that μ(φ) − ν(φ) = 0 for every μ, ν ∈ J(z,M). Hence, EMφ(z) +
EM (−φ)(z) = 0 and by Lemma 5.1 the function φ ∈ h(M). But then λ(φ) = 0
and, by contradiction, λ ∈ L(z,M). �

The following theorem describes the actions of P ∗ and G∗ on annihilators
A⊥(M)) and h⊥(M ′).

Theorem 5.3. The space P ∗(A⊥(M)) ⊂ h⊥(M ′) while G∗(h⊥(M ′)) =
A⊥(M).

Proof. If u = u1 + iu2 ∈ h(M ′), then u is harmonic in ζ. Therefore,

Pu(z) =
1
2π

∫ 2π

0

u(z, eiθ)e−iθ dθ =
1

2πi

∫ 2π

0

u(z, eiθ)dζ =
∂u

∂ζ
(z,0).

Since u is pluriharmonic, Pu ∈ A(M) and we see that h(M ′) ⊂ S(M ′). By
Theorem 4.5 P ∗(A⊥(M)) ⊂ h⊥(M ′).

By the same theorem, A⊥(M) ⊂ G∗(h⊥(M ′)). Now if μ ∈ h⊥(M ′) and φ ∈
A(M), then Gφ ∈ h(M ′) and, therefore, G∗μ(φ) = 0. Thus, G∗(h⊥(M ′)) ⊂
A⊥(M). �

6. Mergelyan property

Suppose that we assign to any relatively compact domain M in a complex
manifold N a uniformly closed subspace X(M) ⊂ C(M) such that the restric-
tions of functions from X(M1) to M2 belong to X(M2) when M2 ⊂ M1. Let
us define Xo(M) as the uniform closure of the union of the restrictions to M of
the spaces X(V ), where V runs over all domains containing M in its interior.
We also let X(M) be the space of all functions in C(M) whose restrictions
to M belong to X(M). We say that a relatively compact domain M has
the Mergelyan property with respect to the spaces X(M) if X(M) = Xo(M)
or, equivalently, X⊥(M) = X⊥

o (M). Clearly, Xo(M) ⊂ X(M) and X⊥(M) ⊂
X⊥

o (M).
Let us fix a relatively compact domain W in N . If the closure of a domain

V ⊂ N belongs to W , then there is a natural isometric imbedding of C∗(V )
into C∗(W ). In the sequel, we will identify C∗(V ) with its imbedding into
C∗(W ). It is easy to see that operators G∗ and P ∗ defined for W map,
respectively, C∗(V ′) into C∗(V ) and C∗(V ) into C∗(V ′). Therefore, in the
future we need not to specify for which domain operators G∗ and P ∗ are
defined.
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Let h0
o(M

′) be the space of all pluriharmonic functions u(z, ζ) on M ′

such that the function u(z,0) = 0 on M . The following theorem relates the
Mergelyan property for different function spaces.

Theorem 6.1. Let M be a relatively compact domain in a complex mani-
fold N . Consider the following Mergelyan properties of function spaces:

(1) Ao(M) = A(M);
(2) So(M ′) = S(M ′);
(3) ho(M ′) = h(M ′);
(4) h0

o(M ′) = h0(M ′).
Then (1) ⇔ (2), (3) ⇒ (1), and (1) ⇒ (4).

Proof. Suppose that M is the intersection of a decreasing sequence of open
sets {Vj } lying in 1/j-neighborhoods of M . First, we show that (1) ⇒ (2).
By Theorem 4.5, P ∗(A⊥(V j)) = S⊥(V j). Hence,

S⊥(M) ⊂ S⊥
o (M) =

∞⋂
j=1

S⊥(V j) =
∞⋂

j=1

P ∗(A⊥(V j)).

If μ ∈
⋂∞

j=1 P ∗(A⊥(V j)), then for all j we can find νj ∈ A⊥(V j) such that
μ = P ∗νj . Since P ∗ is an isometry, ‖νj ‖ = ‖μ‖. Hence, there is a sub-
sequence νjk

weak-∗ converging to ν. Since the spaces A⊥(V j) are closed
and A⊥(V j) ⊂ A⊥(V k) when j > k, we see that ν ∈

⋂∞
j=1 A⊥(V j) = A⊥

o (M)
and P ∗ν = μ. Hence,

⋂∞
j=1 P ∗(A⊥(V j)) ⊂ P ∗(A⊥

o (M)) = S⊥(M) and, conse-
quently, So(M ′) = S(M ′).

The proof that (2) ⇒ (1) follows the same lines. We use the second part
of Theorem 4.5 stating that G∗(S⊥(M ′)) = A⊥(M) and the fact that G∗ is
an isometry on S⊥(M ′).

Let us show that (3) ⇒ (1). Clearly, Ao(M) ⊂ A(M). Suppose that there
is φ ∈ A(M) which does not belong to Ao(M). Since Ao(M) is a complex
linear space, by the complex version of the Hahn–Banach theorem there is
ν ∈ C∗(M) such that ν ∈ A⊥

o (M) and ν(φ) �= 0. Consequently, ν ∈ A⊥(V ) for
every relatively compact set V ⊂ N containing M .

By Lemma 5.3, P ∗ν ∈ h⊥(V ′) and, consequently, P ∗ν ∈ h⊥
o (M ′). Since

the last space is equal to h⊥(M ′), we see that P ∗ν ∈ h⊥(M ′) and, again by
Lemma 5.3, ν = G∗P ∗ν ∈ A⊥(M). Hence, ν(φ) = 0 and we got a contradic-
tion.

Now we show that (1) ⇒ (4). Let u(z, ζ), z ∈ M and ζ ∈ D, be a function
in h0(M ′). Fix ε > 0 and find numbers r < s < 1 and the function u1(z, ζ) =
u(z, rζ) on the closure M ′

s of M ′
s = M × D1/s such that ‖u − u1‖M ′ < ε.

Letting ζ = α + iβ, α,β ∈ R, we define the function v on M ′
r as

v1(z, ζ) =
∫ ζ

0

(
− ∂u1

∂β
dα +

∂u1

∂α
dβ

)
.
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As the path of integration, we can take the segment [0, ζ]. Clearly, v1 is
continuous on M ′

s, real analytic on M ′
s, v1(z,0) = 0 and for every z ∈ M ′ the

function v1(z, ζ) is the harmonic conjugate of u1(z, ζ). Thus, the function
f(z, ζ) = u1(z, ζ) + iv1(z, ζ) is continuous on M ′

s and holomorphic in ζ, so we
can write

f(z, ζ) =
∞∑

j=0

aj(z)ζj and u1(z, ζ) =
1
2

∞∑
j=0

(
aj(z)ζj + aj(z)ζ

j)
.

The coefficients

aj(z) =
1

2πi

∫
|ζ|=1

f(z, ζ)
ζj+1

dζ =
1

2j!
∂ju1

∂ζj
(z,0)

are continuous on M and, by pluriharmonicity of u1, holomorphic on M when
j ≥ 1. Note that a0(z) = f(z,0) = u(z,0) = 0 on M .

If A = ‖u‖M
′ , then ‖aj(z)‖M ≤ Ar−j . This implies that the series

1
2

∞∑
j=0

(
aj(z)ζj + aj(z)ζ

j)

converges to u1 uniformly on M
′
s. Therefore, we can find k such that∣∣∣∣∣u1(z, ζ) − 1

2

k∑
j=0

(
aj(z)ζj + aj(z)ζ

j)∣∣∣∣∣ < ε

on M
′
s. We let b0 = a0 ≡ 0 and for every 1 ≤ j ≤ k we can find a neighbor-

hood Vj of M and a function bj ∈ A(V j) such that∣∣∣∣∣
1
2

k∑
j=0

(
bj(z)ζj + bj(z)ζ

j) − 1
2

k∑
j=0

(
aj(z)ζj + aj(z)ζ

j)∣∣∣∣∣ < ε

on M
′
s. If

u2(z, ζ) =
1
2

k∑
j=0

(
bj(z)ζj + bj(z)ζ

j)

and V =
⋂k

j=1 Vj , then u2 ∈ h0(V ′) and ‖u2 − u‖M ′ < 3ε. Hence, h0
o(M ′) =

h0(M ′). �
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