LORENTZ HYPERSURFACES IN E_{1}^{4} SATISFYING $\Delta \vec{H}=\alpha \vec{H}$

A. ARVANITOYEORGOS, G. KAIMAKAMIS AND M. MAGID

Abstract

A hypersurface M_{1}^{3} in the four-dimensional pseudoEuclidean space E_{1}^{4} is called a Lorentz hypersurface if its normal vector is space-like. We show that if the mean curvature vector field of M_{1}^{3} satisfies the equation $\Delta \vec{H}=\alpha \vec{H}$ (α a constant), then M_{1}^{3} has constant mean curvature. This equation is a natural generalization of the biharmonic submanifold equation $\Delta \vec{H}=\overrightarrow{0}$.

1. Introduction

Let $x: M_{r}^{n} \rightarrow E_{s}^{m}$ be an isometric immersion of an n-dimensional connected submanifold M_{r}^{n} of a pseudo-Euclidean space E_{s}^{m}. We denote by \vec{H}, Δ the mean curvature vector field and the Laplace operator of M_{r}^{n} respectively, with respect to the induced Riemannian metric. A submanifold of E_{s}^{m} is said to have proper mean curvature vector field if it satisfies the equation

$$
\begin{equation*}
\Delta \vec{H}=\alpha \vec{H} \quad(\alpha \text { constant }) \tag{1}
\end{equation*}
$$

If $\alpha=0$ the above equation reduces to $\Delta \vec{H}=\overrightarrow{0}$, and the submanifold is called biharmonic. Biharmonic submanifolds have been studied by several authors. A well known conjecture of Chen [5] states that the only biharmonic submanifolds of Euclidean spaces are the minimal submanifolds, that is when $H=0$.

Equation (1) was first appeared in [3] where surfaces in E^{3} satisfying (1) were classified. In [4], it was shown that a submanifold M of a Euclidean space satisfies (1) if and only if M is biharmonic or of 1-type or a null 2-type. Hypersurfaces in E^{4} satisfying (1) with the additional condition of conformal flatness were classified by Garray in [14]. In [10], Defever proved that every hypersurface of E^{4} satisfying (1) has constant mean curvature. Other

[^0]results about submanifolds satisfying (1) have been obtained by Chen ([8], [6]), Ekmekci and Yaz [11], and Inoguchi ([15], [16]).

The study of equation (1) for submanifolds in pseudo-Euclidean spaces was originated by Ferrández and Lucas in [12] and [13]. Among other results, they showed that if the minimal polynomial of the shape operator of a hypersurface $M_{r}^{n-1}(r=0,1)$ in E_{1}^{n} is at most of degree two, then M_{r}^{n-1} has constant mean curvature. Also, in [7] various classification theorems for submanifolds in a Minkowski space-time were obtained. In a recent work, the first two authors and Defever [2] proved that if $M_{r}^{3}(r=0,1,2,3)$ is a nondegenerate hypersurface of the pseudo-Euclidean space E_{s}^{4} satisfying equation (1) and the shape operator is diagonal, then M_{r}^{3} has constant mean curvature.

Even though Chen's conjecture is not true in general for submanifolds in pseudo-Euclidean spaces, there is evidence (see e.g., the main result in [1] and references therein) that the conjecture is in fact true for hypersurfaces in pseudo-Euclidean spaces. It would be reasonable to believe that submanifolds satisfying equation (1) must have constant mean curvature. Towards this direction, in the present article we consider Lorentz hypersurfaces in E_{1}^{4} whose shape operator is not diagonal and we prove the following theorem.

ThEOREM. Let M_{1}^{3} be a nondegenerate Lorentz hypersurface of the 4-dimensional pseudo-Euclidean space E_{1}^{4} satisfying $\Delta \vec{H}=\alpha \vec{H}$. Then M_{1}^{3} has constant mean curvature.

The headlines of the proof are as follows: we use [9] to express equation $\Delta \vec{H}=\alpha \vec{H}$ as a system of equations

$$
\begin{gathered}
S(\nabla H)=-\varepsilon \frac{3 H}{2}(\nabla H), \\
\Delta H+\varepsilon H \operatorname{tr} S^{2}=\alpha H
\end{gathered}
$$

According to Petrov [19] and Magid [17] the shape operator of a Lorentz hypersurface M_{1}^{3} in E_{1}^{4} can be put in four possible canonical forms. We prove that for each nondiagonal canonical form of the shape operator, the mean curvature of M_{1}^{3} is constant (cf. Propositions 1, 2, 3, and 4). We remark that Propositions 2 and 3 in particular show that M_{1}^{3} is minimal.

2. Preliminaries

Lorentz hypersurfaces in E_{1}^{4}. Let M_{1}^{3} be a Lorentz hypersurface of the pseudo-Euclidean space E_{1}^{4}. Let $\vec{\xi}$ denote a unit normal vector field with $\langle\vec{\xi}, \vec{\xi}\rangle=1$. Denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections of M_{1}^{3} and E_{1}^{4} respectively. For any vector fields X, Y tangent to M_{1}^{3}, the Gauss formula is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \vec{\xi}, \tag{2}
\end{equation*}
$$

where h is the scalar-valued second fundamental form. If we denote by S the shape operator of M_{1}^{3} associated to $\vec{\xi}$, then the Weingarten formula is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} \vec{\xi}=-S(X) \tag{3}
\end{equation*}
$$

where $\langle S(X), Y\rangle=h(X, Y)$. If $H=\frac{1}{3} \operatorname{tr} S$, then the mean curvature vector $\vec{H}=H \vec{\xi}$ is a well defined normal vector field to M_{1}^{3} in E_{1}^{4}. The Codazzi equation is given by

$$
\begin{equation*}
\left(\nabla_{X} S\right) Y=\left(\nabla_{Y} S\right) X \tag{4}
\end{equation*}
$$

and the Gauss equation by (cf. [18])

$$
\begin{equation*}
R(X, Y) Z=\langle S(Y), Z\rangle S(X)-\langle S(X), Z\rangle S(Y) \tag{5}
\end{equation*}
$$

We assume that the mean curvature vector field satisfies the equation

$$
\begin{equation*}
\Delta \vec{H}=\alpha \vec{H} \tag{6}
\end{equation*}
$$

Condition (6) is equivalent to (cf. [9])

$$
\begin{equation*}
\Delta \vec{H}=2 S(\nabla H)+3 H(\nabla H)+\left\{\Delta H+H \operatorname{tr} S^{2}\right\} \vec{\xi}=\alpha \vec{H} \tag{7}
\end{equation*}
$$

By comparing the vertical and horizontal parts of (7), this is equivalent to the conditions

$$
\begin{gather*}
S(\nabla H)=-\frac{3 H}{2}(\nabla H), \tag{8}\\
\Delta H+H \operatorname{tr} S^{2}=\alpha H \tag{9}
\end{gather*}
$$

where the Laplace operator Δ acting on scalar-valued function f is given by (e.g., [9])

$$
\begin{equation*}
\Delta f=-\sum_{i=1}^{3} \epsilon_{i}\left(e_{i} e_{i} f-\nabla_{e_{i}} e_{i} f\right) \tag{10}
\end{equation*}
$$

Here, $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a local orthonormal frame of $T_{p} M_{1}^{3}$ with $\left\langle e_{i}, e_{i}\right\rangle=\epsilon_{i}= \pm 1$.
The shape operator of a hypersurface in E_{1}^{4}. Consider the real 4 -dimensional vector space \mathbb{R}^{4} with the standard basis $\left\{e_{i}, i=1, \ldots, 4\right\}$. Let $\langle\cdot, \cdot\rangle$ denote the indefinite inner product on \mathbb{R}^{4} whose matrix with respect to the standard basis is diag $(-1,1,1,1)$. This is called the Lorentz metric on \mathbb{R}^{4}. The space \mathbb{R}^{4} with this metric is called the 4-dimensional pseudo-Euclidean space, and is denoted by E_{1}^{4}.

A vector $X \in E_{1}^{4}$ is called time-like, space-like, or light-like according to whether $\langle X, X\rangle$ is negative, positive, or zero, respectively. A nondegenerate hypersurface $M_{r}^{3}(r=0,1)$ of the pseudo-Euclidean space E_{1}^{4} can itself be endowed with a Riemannian or a Lorentzian metric structure, according to whether the metric induced on M_{r}^{3} from the Lorentzian metric on E_{1}^{4} is
(positive) definite or indefinite. In the former case, a normal vector to M_{r}^{3} is time-like, and in the latter case a normal vector to M_{r}^{3} is space-like.

The shape operator of a Riemannian submanifold is always diagonalizable, but this is not the case for the shape operator of a Lorentzian submanifold. It is known [19, pp. 50-55] that a symmetric endomorphism of a vector space with a Lorentzian inner product can be put into four possible canonical forms. In particular, the matrix representation G of the induced metric on M_{1}^{3} is of Lorentz type, so the shape operator S of M_{1}^{3} can be put into one of the following four forms with respect to frames $\left\{e_{1}, e_{2}, e_{3}\right\}$ at $T_{p} M_{1}^{3}[17]$:

$$
\begin{array}{ll}
S=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \quad G=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \tag{I}\\
S=\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
1 & \lambda & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \quad G=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
S=\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 1 \\
1 & 0 & \lambda
\end{array}\right), \quad G=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
S=\left(\begin{array}{ccc}
\mu & -\nu & 0 \\
\nu & \mu & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), & G=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \nu \neq 0
\end{array}
$$

The matrices G for cases (I) and (IV) are with respect to an orthonormal basis of $T_{p} M_{1}^{3}$, whereas for cases (II) and (III) are with respect to a pseudoorthonormal basis. This is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M_{1}^{3}$ satisfying $\left\langle e_{1}, e_{1}\right\rangle=$ $\left\langle e_{2}, e_{2}\right\rangle=\left\langle e_{1}, e_{3}\right\rangle=\left\langle e_{2}, e_{3}\right\rangle=0$, and $\left\langle e_{1}, e_{2}\right\rangle=\left\langle e_{3}, e_{3}\right\rangle=1$. In [2], the first two authors and Defever proved that every nondegenerate hypersurface M_{r}^{3} $(r=0,1,2,3)$ in $E_{s}^{4}(s=0, \ldots, 4)$ with shape operator of type (I) satisfying (6), has constant mean curvature. In the present work, we study the same problem, where the shape operator has one of the forms (II), (III), and (IV).

3. Proof of the main theorem

In what follows, we assume constant multiplicity and algebraic type for each shape operator. Let M_{1}^{3} be a Lorentz hypersurface in E_{1}^{4} satisfying condition (6), or equivalently relations (8) and (9). We will consider each case for the shape operator S separately.

The shape operator S has the canonical form (II). Suppose that H is not constant.

Since H is not constant $\nabla H \neq \overrightarrow{0}$. As the shape operator has the canonical form (II) (with respect to a pseudo-orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M_{1}^{3}$),
then $S\left(e_{1}\right)=\lambda e_{1}+e_{2}, S\left(e_{2}\right)=\lambda e_{2}$, and $S\left(e_{3}\right)=\lambda_{3} e_{3}$. Therefore, by using (8), we conclude that ∇H can be considered either in the direction of e_{3}, or in the direction of e_{2}. In the first case, ∇H is space-like (it cannot be time-like as $\left\langle e_{3}, e_{3}\right\rangle=1$), and $\lambda_{3}=-\frac{3 H}{2}$. In the second case, ∇H is light-like, and $\lambda=-\frac{3 H}{2}$.

Proposition 1. Let M_{1}^{3} be a Lorentz hypersurface of the pseudo-Euclidean space E_{1}^{4} satisfying (6) with shape operator of type (II), and ∇H be space-like. Then M_{1}^{3} has constant mean curvature.

Proof. We assume that H is not constant and we will end up to a contradiction. Since $\nabla H \neq \overrightarrow{0}$, the vectorial equation (8) shows that ∇H is an eigenvector of S with corresponding eigevalue $-\frac{3 H}{2}$.

We write $\nabla_{e_{i}} e_{j}=\sum_{k=1}^{3} \omega_{i j}^{k} e_{k}$, we take into account the action of S on the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, and use the Codazzi equations (4). Then the following relations

$$
\begin{array}{lll}
\left\langle\left(\nabla_{e_{1}} S\right) e_{2}, e_{1}\right\rangle=\left\langle\left(\nabla_{e_{2}} S\right) e_{1}, e_{1}\right\rangle, & \left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{2}, e_{3}\right\rangle, \\
\left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{1}, e_{3}\right\rangle, & & \left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{2}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{2}, e_{2}\right\rangle, \\
\left\langle\left(\nabla_{e_{1}} S\right) e_{2}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{2}} S\right) e_{1}, e_{3}\right\rangle, & & \left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{2}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{1}, e_{2}\right\rangle, \\
\left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{1}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{2}, e_{1}\right\rangle & &
\end{array}
$$

imply that $\omega_{21}^{1}=\omega_{22}^{2}, \omega_{32}^{3}=\omega_{31}^{3}=\omega_{23}^{1}=0, \omega_{12}^{3}=\omega_{21}^{3}, e_{3}(\lambda)=\left(\lambda_{3}-\lambda\right) \omega_{13}^{1}$, $e_{3}(\lambda)=\left(\lambda_{3}-\lambda\right) \omega_{23}^{2}$. From the last two equations we obtain that $\omega_{13}^{1}=\omega_{23}^{2}$, as from $\operatorname{tr} S=3 H=2 \lambda+\lambda_{3}$, it follows that $\lambda=\frac{3 H}{4} \neq \lambda_{3}$.

Further, the conditions

$$
\nabla_{e_{p}}\left\langle e_{1}, e_{1}\right\rangle=\nabla_{e_{p}}\left\langle e_{2}, e_{2}\right\rangle=\nabla_{e_{p}}\left\langle e_{3}, e_{3}\right\rangle=\nabla_{e_{p}}\left\langle e_{1}, e_{3}\right\rangle=\nabla_{e_{p}}\left\langle e_{2}, e_{3}\right\rangle=0
$$

for $p=1,2,3$ imply that $\omega_{p 1}^{2}=\omega_{p 2}^{1}=\omega_{p 3}^{3}=0$, and $\omega_{p 1}^{3}=-\omega_{p 3}^{2}, \omega_{p 2}^{3}=-\omega_{p 3}^{1}$. As a consequence, we also obtain that $\omega_{33}^{1}=\omega_{33}^{2}=\omega_{22}^{3}=0$. Therefore, the covariant derivatives $\nabla_{e_{i}} e_{j}$ simplify to the following:

$$
\begin{aligned}
& \nabla_{e_{1}} e_{1}=\omega_{11}^{1} e_{1}, \quad \nabla_{e_{1}} e_{2}=\omega_{12}^{2} e_{2}+\omega_{12}^{3} e_{3}, \quad \nabla_{e_{1}} e_{3}=\omega_{13}^{1} e_{1}+\omega_{13}^{2} e_{2}, \\
& \nabla_{e_{2}} e_{1}=\omega_{21}^{3} e_{3}, \quad \nabla_{e_{2}} e_{2}=0, \quad \nabla_{e_{2}} e_{3}=\omega_{23}^{2} e_{2}, \\
& \nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{3}} e_{2}=\omega_{32}^{2} e_{2}, \quad \nabla_{e_{3}} e_{3}=0 .
\end{aligned}
$$

Next, we construct an orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ from the pseudoorthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
X_{1}=\frac{e_{1}+e_{2}}{\sqrt{2}}, \quad X_{2}=\frac{e_{1}-e_{2}}{\sqrt{2}}, \quad X_{3}=e_{3}
$$

Then the shape operator S with respect to this new basis takes the form

$$
S=\left(\begin{array}{ccc}
\lambda+\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & \lambda-\frac{1}{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

Note that X_{3} is still in the direction of ∇H, and that $\lambda_{3}=-\frac{3 H}{2}$. Therefore, since $\nabla(H)=X_{1}(H) X_{1}+X_{2}(H) X_{2}+X_{3}(H) X_{3}$, then

$$
\begin{equation*}
X_{1}(H)=X_{2}(H)=0, \quad X_{3}(H) \neq 0 \tag{11}
\end{equation*}
$$

Since M_{1}^{3} is a Lorentz hypersurface, $\operatorname{tr} S=3 H, \lambda=\frac{9 H}{4}$, and $\operatorname{tr} S^{2}=\frac{99 H^{2}}{8}$. By expressing the Laplace operator (10) in terms of the basis $\left\{X_{1}, X_{2}, X_{3}\right\}$, equation (9) reduces to

$$
\begin{gathered}
-\left(X_{1} X_{1}(H)-\nabla_{X_{1}} X_{1}(H)\right)+\left(X_{2} X_{2}(H)-\nabla_{X_{2}} X_{2}(H)\right) \\
-\left(X_{3} X_{3}(H)-\nabla_{X_{3}} X_{3}(H)\right)+H\left(\frac{99 H^{2}}{8}\right)=\alpha H,
\end{gathered}
$$

which by use of (11) becomes

$$
\begin{equation*}
\nabla_{X_{1}} X_{1}(H)-\nabla_{X_{2}} X_{2}(H)-e_{3} e_{3}(H)+\frac{99 H^{3}}{8}=\alpha H \tag{12}
\end{equation*}
$$

On the other hand, an easy computation shows that

$$
\nabla_{X_{1}} X_{1}=\frac{1}{2}\left[\omega_{11}^{1} e_{1}+\omega_{11}^{3} e_{3}+\omega_{12}^{2} e_{2}+\omega_{12}^{3} e_{3}+\omega_{21}^{3} e_{3}\right]
$$

and similarly for $\nabla_{X_{2}} X_{2}$, thus obtaining

$$
\begin{aligned}
\nabla_{X_{1}} X_{1}(H) & =\frac{1}{2}\left[\omega_{11}^{3}+\omega_{12}^{3}+\omega_{21}^{3}\right] e_{3}(H) \quad \text { and } \\
\nabla_{X_{2}} X_{2}(H) & =\frac{1}{2}\left[\omega_{11}^{3}-\omega_{12}^{3}-\omega_{21}^{3}\right] e_{3}(H)
\end{aligned}
$$

Hence, equation (12) simplifies to

$$
\begin{equation*}
e_{3} e_{3}(H)-2 \omega_{12}^{3} e_{3}(H)-\frac{99 H^{3}}{8}=\alpha H \tag{13}
\end{equation*}
$$

Substituting $\lambda=\frac{9 H}{4}$ into $e_{3}(\lambda)=\left(\lambda_{3}-\lambda\right) \omega_{13}^{1}$, we obtain

$$
\begin{equation*}
e_{3}(H)=-\frac{5 H}{3} \omega_{13}^{1}=\frac{5 H}{3} \omega_{12}^{3} . \tag{14}
\end{equation*}
$$

We evaluate Gauss equation (5) for $\left\langle R\left(e_{3}, e_{1}\right) e_{2}, e_{3}\right\rangle$ and equate the left-hand side by using the definition of the curvature tensor to obtain

$$
\begin{equation*}
e_{3}\left(\omega_{12}^{3}\right)=\left(\omega_{12}^{3}\right)^{2}-\frac{27 H^{2}}{8} \tag{15}
\end{equation*}
$$

Applying e_{3} on both sides of equation (14) and using (15) we get

$$
e_{3} e_{3}(H)=\frac{40 H}{9}\left(\omega_{12}^{3}\right)^{2}-\frac{45 H^{3}}{8}
$$

Substituting this equation to (13) and by use of (14), we obtain

$$
\begin{equation*}
\frac{10}{9}\left(\omega_{12}^{3}\right)^{2}-9 H^{2}=\alpha \tag{16}
\end{equation*}
$$

Acting now with e_{3} on (16) and using expressions (14) and (15) we simultaneously obtain that

$$
\frac{20}{9}\left(\omega_{12}^{3}\right)^{2}-\frac{225 H^{2}}{6}=0
$$

Therefore, H must be constant.
Proposition 2. Let M_{1}^{3} be a Lorentz hypersurface of the pseudo-Euclidean space E_{1}^{4} with shape operator of type (II) satisfying (6), and ∇H be light-like. Then M_{1}^{3} is minimal.

Proof. By hypothesis ∇H is along the vector e_{2}, and $\lambda=-\frac{3 H}{2}$. Since $\operatorname{tr} S=3 H$ then $\lambda_{3}=6 H$. As the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ is pseudo-orthonormal, it follows that $\nabla(H)=e_{2}(H) e_{1}+e_{1}(H) e_{2}+e_{3}(H) e_{3}$. Therefore,

$$
\begin{equation*}
e_{2}(H)=e_{3}(H)=0, \quad e_{1}(H) \neq 0 \tag{17}
\end{equation*}
$$

By writing $\nabla_{e_{i}} e_{j}=\sum_{k=1}^{3} \omega_{i j}^{k} e_{k}$, we obtain that

$$
\begin{aligned}
0= & \nabla_{e_{i}}\left\langle e_{j}, e_{k}\right\rangle=\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle+\left\langle e_{j}, \nabla_{e_{i}} e_{k}\right\rangle \\
= & \omega_{i j}^{1}\left\langle e_{1}, e_{k}\right\rangle+\omega_{i j}^{2}\left\langle e_{2}, e_{k}\right\rangle+\omega_{i j}^{3}\left\langle e_{3}, e_{k}\right\rangle \\
& +\omega_{i k}^{1}\left\langle e_{j}, e_{1}\right\rangle+\omega_{i k}^{2}\left\langle e_{j}, e_{2}\right\rangle+\omega_{i k}^{3}\left\langle e_{j}, e_{3}\right\rangle .
\end{aligned}
$$

By assigning i, j, k any values from $\{1,2,3\}$, certain of the $\omega_{i j}^{k}$ vanish, and others satisfy simple relations. In particular we obtain:

$$
\begin{array}{ll}
\nabla_{e_{1}} e_{3}=-\omega_{12}^{3} e_{1}+\omega_{13}^{2} e_{2}, & \nabla_{e_{3}} e_{1}=\omega_{31}^{1} e_{1}+\omega_{31}^{3} e_{3} \\
\nabla_{e_{2}} e_{3}=-\omega_{22}^{3} e_{1}-\omega_{21}^{3} e_{2}, & \nabla_{e_{3}} e_{2}=-\omega_{31}^{1} e_{2}+\omega_{32}^{3} e_{3} \tag{19}
\end{array}
$$

Using relations (17) we get that $\left[e_{2}, e_{3}\right](H)=e_{2} e_{3}(H)-e_{3} e_{2}(H)=0$. Also, since $\left[e_{2}, e_{3}\right](H)=\nabla_{e_{2}} e_{3}(H)-\nabla_{e_{3}} e_{2}(H)$ it follows that $\omega_{22}^{3}=0$, so relations (19) simplify to

$$
\begin{equation*}
\nabla_{e_{2}} e_{3}=-\omega_{21}^{3} e_{2}, \quad \nabla_{e_{3}} e_{2}=-\omega_{31}^{1} e_{2}+\omega_{32}^{3} e_{3} \tag{20}
\end{equation*}
$$

We use the Codazzi equations to obtain that

$$
\left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{1}, e_{3}\right\rangle, \quad\left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{2}, e_{3}\right\rangle
$$

which, by using (18) and (20), imply that

$$
\begin{align*}
& e_{1}\left(\lambda_{3}\right)=\omega_{32}^{3} \quad \text { and } \tag{21}\\
& e_{2}\left(\lambda_{3}\right)=\left(\lambda-\lambda_{3}\right) \omega_{32}^{3} \tag{22}
\end{align*}
$$

respectively. Using (17) and that $\lambda_{3}=6 H$, relation (22) implies that ($\lambda-$ $\left.\lambda_{3}\right) \omega_{32}^{3}=0$. If $\omega_{32}^{3}=0$, then from (21) it follows that $e_{1}\left(\lambda_{3}\right)=0$, which contradicts (17). If $\lambda=\lambda_{3}$, then $-\frac{3 H}{2}=6 H$, i.e. $H=0$.

The shape operator S has the canonical form (III). Suppose that H is not constant.

Then $\nabla H \neq \overrightarrow{0}$, and the vectorial equation (8) shows that ∇H is an eigenvector of S with corresponding eigenvalue $-\frac{3 H}{2}$. Since the shape operator has the canonical form (III) (with respect to a pseudo-orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$), then $S\left(e_{1}\right)=\lambda e_{1}+e_{3}, S\left(e_{2}\right)=\lambda e_{2}$, and $S\left(e_{3}\right)=e_{2}+\lambda e_{3}$ (with respect to a pseudo-orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M_{1}^{3}$). Hence, ∇H is in the direction of e_{2}, i.e., it is light-like, and $\lambda=-\frac{3 H}{2}$. We will prove the following:

Proposition 3. Let M_{1}^{3} be a Lorentz hypersurface of the pseudo-Euclidean space E_{1}^{4} satisfying (6), with shape operator of type (III) and ∇H be light-like. Then M_{1}^{3} is minimal.

Proof. The shape operator S, with respect to the orthonormal basis $\left\{X_{1}\right.$, $\left.X_{2}, X_{3}\right\}$ of $T_{p} M_{1}^{3}$ considered in Proposition 1, takes the form

$$
S=\left(\begin{array}{ccc}
\lambda & 0 & \frac{1}{\sqrt{2}} \\
0 & \lambda & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \lambda
\end{array}\right) .
$$

Since $\operatorname{tr} S=3 H$, it follows that $3 \lambda=-\frac{9 H}{2}=3 H$, so $H=0$.
The shape operator S has the canonical form (IV). Let H be nonconstant.

Since the shape operator, with respect to an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M_{1}^{3}$, has the canonical form (IV), then $S\left(e_{1}\right)=\mu e_{1}+\nu e_{2}, S\left(e_{2}\right)=-\nu e_{1}+$ μe_{2}, and $S\left(e_{3}\right)=\lambda_{3} e_{3}$. This means that ∇H is in the direction of e_{3}, i.e., it is space-like.

The following proposition is proved along the same lines as Proposition 1.
Proposition 4. Let M_{1}^{3} be a Lorentz hypersurface of the pseudo-Euclidean space E_{1}^{4}, satisfying (6), with shape operator of type (IV) and ∇H be spacelike. Then M_{1}^{3} has constant mean curvature.

Proof. We assume that H is not constant and we will end up to a contradiction. Then $\nabla H \neq \overrightarrow{0}$ and the vectorial equation (8) shows that ∇H is an eigenvector of S with corresponding eigenvalue $-\frac{3 H}{2}$. Then $\lambda_{3}=-\frac{3 H}{2}$, and

$$
e_{1}(H)=e_{2}(H)=0, \quad e_{3}(H) \neq 0
$$

From the equation $\operatorname{tr} S=3 H$, it follows that $\mu=\frac{9 H}{4}$. Next, we try to obtain simplified expressions for $\nabla_{e_{i}} e_{j}=\sum_{k=1}^{3} \omega_{i j}^{k} e_{k}$. We apply the Codazzi equations (4) for

$$
\begin{array}{lll}
\left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{1}\right\rangle, & \left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{2}\right\rangle, & \left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{2}\right\rangle, \\
\left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{3}\right\rangle, & \left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{3}\right\rangle &
\end{array}
$$

and obtain that

$$
\begin{gathered}
e_{3}(H)=-\frac{5 H}{3} \omega_{13}^{1}, \quad e_{3}(H)=-\frac{5 H}{3} \omega_{23}^{2}, \quad e_{3}(\nu)=-\nu \omega_{13}^{1}, \\
\frac{15 H}{4} \omega_{31}^{3}+\nu \omega_{32}^{3}=0, \quad \frac{15 H}{4} \omega_{32}^{3}-\nu \omega_{31}^{3}=0,
\end{gathered}
$$

respectively. Therefore, $\omega_{13}^{1}=\omega_{23}^{2}$, and since H and ν are not zero, $\omega_{31}^{3}=$ $\omega_{32}^{3}=0$. Taking into account the condition $\omega_{i j}^{k}=-\epsilon_{j} \epsilon_{k} \omega_{i k}^{j}$, the previous relations give $\omega_{33}^{1}=\omega_{33}^{2}=0$. Finally, since $\left[e_{1}, e_{2}\right](H)=0$, it follows that $\nabla_{e_{1}} e_{2}(H)-\nabla_{e_{2}} e_{1}(H)=0$, thus $\omega_{12}^{3}=\omega_{21}^{3}=0$.

Next, we use Gauss equation (5) and the definition of the curvature tensor for $\left\langle R\left(e_{1}, e_{3}\right) e_{1}, e_{3}\right\rangle$ and $\left\langle R\left(e_{3}, e_{2}\right) e_{3}, e_{2}\right\rangle$ to obtain

$$
\begin{equation*}
e_{3}\left(\omega_{11}^{3}\right)=-\left(\omega_{13}^{1}\right)^{2}+\frac{27 H^{2}}{8} \quad \text { and } \quad e_{3}\left(\omega_{23}^{2}\right)=-\left(\omega_{23}^{2}\right)^{2}+\frac{27 H^{2}}{8} \tag{23}
\end{equation*}
$$

Hence, in view of (10), and taking into account the relations $\omega_{11}^{3}=-\epsilon_{1} \epsilon_{3} \omega_{13}^{1}=$ $\omega_{13}^{1}, \omega_{22}^{3}=-\epsilon_{2} \epsilon_{3} \omega_{23}^{2}=-\omega_{23}^{2}$, and $\omega_{13}^{1}=\omega_{23}^{2}$, equation (9) reduces to

$$
\begin{equation*}
e_{3} e_{3}(H)+2 \omega_{13}^{1} e_{3}(H)-H\left(\frac{99 H^{2}}{8}-2 \nu^{2}\right)=\alpha H \tag{24}
\end{equation*}
$$

Applying e_{3} on both sides of equation $e_{3}(H)=-\frac{5 H}{3} \omega_{13}^{1}$, and using (23) we get

$$
e_{3} e_{3}(H)=\frac{40 H}{9}\left(\omega_{13}^{1}\right)^{2}-\frac{45 H^{3}}{8}
$$

so equation (24) becomes

$$
\begin{equation*}
\frac{10}{9}\left(\omega_{13}^{1}\right)^{2}+2 \nu^{2}-18 H^{2}=\alpha \tag{25}
\end{equation*}
$$

Acting with e_{3} on (25), we obtain

$$
\frac{20}{9}\left(\omega_{13}^{1}\right)^{2}+4 \nu^{2}-\frac{135 H^{2}}{2}=0
$$

Then the two last equations imply that H must be constant which is a contradiction.

The theorem stated in the Introduction now follows from Propositions 1, 2,3 , and 4 .

References

[1] A. Arvanitoyeorgos, F. Defever, G. Kaimakamis and B. J. Papantoniou, Biharmonic Lorentz hypersurfaces in E_{1}^{4}, Pacific J. Math. 229 (2007), 293-306. MR 2276512
[2] A. Arvanitoyeorgos, F. Defever and G. Kaimakamis, Hypersurfaces in E_{s}^{4} with proper mean curvature vector, J. Math. Soc. Japan 59 (2007), 797-809. MR 2344828
[3] B.-Y. Chen, Null two-type surfaces in E^{3} are circular cylinders, Kodai Math. J. 11 (1988), 295-299. MR 0949135
[4] B.-Y. Chen, Null two-type surfaces in Euclidean space, Proceedings of the symposium in honor of Cheng-Sung Hsu and Kung-Sing Shih: Algebra, analysis, and geometry (National Taiwan Univ. 1988), World Scientific, Publ. Teaneck, NJ, 1988, pp. 1-18. MR 1119072
[5] B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 19 (1991), 169-188. MR 1143504
[6] B.-Y. Chen, Submanifolds of Euclinean spaces satisfying $\Delta H=A H$, Tamkang J. Math. 25 (1994), 71-81. MR 1277622
[7] B.-Y. Chen, Some classification theorems for submanifolds in Minkowski space-time, Arch. Math. (Basel) 62 (1994), 177-182. MR 1255641
[8] B.-Y. Chen, Submanifolds in De Sitter space-time satisfying $\Delta \vec{H}=\lambda \vec{H}$, Israel J. Math. 91 (1995), 373-391. MR 1348323
[9] B.-Y. Chen and S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Memoirs Fac. Sci. Kyushu Univ. A 45 (1991), 323-347. MR 1133117
[10] F. Defever, Hypersurfaces of E^{4} satisfying $\Delta \vec{H}=\lambda \vec{H}$, Michigan Math. J. 44 (1997), 355-363. MR 1460420
[11] N. Ekmekci and N. Yaz, Biharmonic general helices in contact and Sasakian manifolds, Tensor (N.S.) 65 (2004), 103-108. MR 2104451
[12] A. Ferrández and P. Lucas, On surfaces in the 3-dimensional Lorentz-Minkowski space, Pacific J. Math. 152 (1992), 93-100. MR 1139974
[13] A. Ferrández and P. Lucas, Classifying hypersurfaces in the Lorentz-Minkowski space with a characteristic eigenvector, Tokyo J. Math. 15 (1992), 451-459. MR 1197112
[14] O. J. Garray, A classification of certain 3-dimensional conformally flat Euclidean hypersurfaces, Pacific J. Math. 162 (1994), 13-25. MR 1247141
[15] J. Inoguchi, Submanifolds with harmonic mean curvature vector field in contact 3manifolds, Colloq. Math. 100 (2004), 163-179. MR 2107514
[16] J. Inoguchi, Biminimal submanifolds in contact 3-manifolds, Balkan J. Geom. Appl. 12 (2007), 56-67. MR 2321968
[17] M. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), 165198. MR 0783023
[18] B. O'Neil, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983. MR 0719023
[19] A. Z. Petrov, Einstein spaces, Pergamon Press, Oxford, 1969. MR 0244912
A. Arvanitoyeorgos, Department of Mathematics, University of Patras, GR26500 Rion, Greece

E-mail address: arvanito@math.upatras.gr
G. Kaimakamis, Hellenic Army Academy, GR-16673 Vari, Attica, Greece

E-mail address: gmiamis@gmail.com
M. Magid, Department of Mathematics, Wellesley College, MA 02481, USA

E-mail address: mmagid@wellesley.edu

[^0]: Received October 16, 2008; received in final form February 24, 2009.
 The first two authors were supported in part by the C. Carathéodory Grant \# C. 161 2007-10, University of Patras.

 2000 Mathematics Subject Classification. Primary 53C40. Secondary 53A07, 53C50.

