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ARGUMENT OF BOUNDED ANALYTIC FUNCTIONS AND
FROSTMAN’S TYPE CONDITIONS

IGOR CHYZHYKOV

Abstract. We describe the growth of the naturally defined ar-
gument of a bounded analytic function in the unit disk in terms

of the complete measure introduced by A. Grishin. As a conse-
quence, we characterize the local behavior of a logarithm of an

analytic function. We also find necessary and sufficient conditions

for closeness of log f(z), f ∈ H∞, and the local concentration of
the zeros of f .

1. Introduction

One of the basic theorems in complex analysis is the Argument princi-
ple, which states that if f(z) is a meromorphic function inside and on some
closed contour γ, with f having no zeros or poles on γ, then the increase of
Arg f(z) along γ divided over 2π is equal to N − P , where N and P denote
respectively, the number of zeros and poles of f(z) inside the contour γ. It
seems reasonable to ask what can be said if the number of zeros (poles) of
f is infinite. Obviously, the contour should contain a singular point and the
increase of Arg f(z) along γ need not be bounded in this case. Theorem 2 of
this paper can be considered as a generalization of the Argument principle for
bounded analytic functions in the unit disk D = {z ∈ C : |z| < 1}. We compare
the growth of the naturally defined argument of a bounded analytic function
F with the distribution of its complete measure in the sense of Grishin ([11],
[8]).

Let us introduce some notation. We write D(ζ, ρ) = {ξ ∈ C : |ξ − ζ| < ρ}
The symbols C(·) and K(·) stand for some positive constants depending on
values in the parentheses, not necessarily the same in each occurrence. Let
H∞ be the class of bounded analytic functions in D. It is well known ([13],

Received March 23, 2008; received in final form March 6, 2009.

2000 Mathematics Subject Classification. 30D50.

515

c©2010 University of Illinois

http://www.ams.org/msc/


516 I. CHYZHYKOV

[6]) that f ∈ H∞, |f(z)| < C, z ∈ D, C > 0, can be represented in the form

(1) f(z) = CzpB̃(z)g(z),

where p is nonnegative integer, B̃ is the Blaschke product constructed by the
zeros of f ,

(2) B̃(z) =
∞∏

n=1

an(an − z)
|an|(1 − zan)

≡
∞∏

n=1

b(z, an)
|an| , an �= 0,

∑
n

(1 − |an|) < ∞,

and gψ is an analytic function without zeros of the form

(3) gψ(z) = exp
{

− 1
2π

∫ π

−π

eit + z

eit − z
dψ∗(t) + iC ′

}
,

where ψ∗ is a nondecreasing function, and C ′ is a real constant.
We shall also consider the product

(4) B(z) =
∞∏

n=1

b(z, an)

which differs from B̃(z) by a constant factor, provided that the Blaschke
condition (2) holds. B(z) converges almost everywhere to a finite limit B(eiθ)
as z tends to eiθ nontangentially; moreover, |B̃(eiθ)| = 1.

For a fixed θ0, the following theorem of Frostman ([6], [9]) gives necessary
and sufficient conditions for existence of the radial limit of B̃(z).

Theorem A. Necessary and sufficient that

(5) lim
r↑1

f(reiθ0) = L

and |L| = 1 for f = B̃, and every subproduct of B̃(z), is that

(6)
∞∑

k=1

1 − |ak |
|eiθ0 − ak | < ∞.

If we drop the condition |L| = 1, then the theorem holds for B instead of B̃
as well.

Theorem A was generalized and complemented by many authors ([2], [1],
[5]). Usually one uses the condition

(7)
∞∑

k=1

1 − |ak |
|eiθ0 − ak |1−γ

< ∞

with γ ≤ 0 instead of (6). We note that if (7) holds with γ ≤ 0 and |an − eiθ0 | <
1, then there is only a finite number of zeros an in any Stolz angle with the
vertex eiθ0 where the Stolz angle with the vertex ζ is defined by

Sσ(ζ) = {ζ ∈ D : |1 − zζ̄| ≤ σ(1 − |z|)}, σ ≥ 1,
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provided that (7) is valid. We are interested in the case when (6) fails to hold,
but (7) hold, when γ ∈ (0,1]. The limit cases γ = 1 and γ = 0 correspond
to the Blaschke condition and the Frostman condition, respectively. In this
situation, the zeros of B can be accumulated on the radius ending at eiθ0 ,
which is impossible when γ ≤ 0. Thus, argB(z) should be defined carefully.
If we want to obtain lower estimates for |B(z)|, z → eiθ0 , z ∈ D, we must
exclude exceptional sets including the zero set.

Relations between conditions on the zeros of a Blaschke product B and
the membership of argB(eiθ) in Lp spaces, 0 < p ≤ ∞, were investigated in
[19]. Criteria for boundedness of pth integral means, 1 ≤ p < ∞, of log |B|
and logB were established in [18].

Since the proof of the necessity of Theorem A is based on estimates of the
argument, one may ask whether it is possible to describe the zero distribution
of a Blaschke product in terms of the behavior of argB(z). A simple example
shows that it is not sufficient to know the radial behavior of the argument.

Let (an) be an arbitrary Blaschke sequence with nonreal elements. We
define c2n−1 = an, c2n = ān. Then

B(r) =
∞∏

n=1

b(r, cn) =
∞∏

n=1

|an|2|an − r|2
|1 − ran|2 , 0 ≤ r < 1.

Thus,

argB(r) def=
∞∑

n=1

arg b(r, cn) ≡ 0, 0 ≤ r < 1.

But a situation is quite different if we consider the behavior of argB(z)
in a Stolz angle Sσ(ζ), ζ ∈ ∂D, 1 < σ < +∞, Sσ = Sσ(1). Then we are able
to describe the zero distribution, and even the distribution of the so-called
complete measure in the sense of Grishin ([11], [8]).

Let SH∞(D) be the class of subharmonic functions in D bounded from
above. In particular, log |f | ∈ SH∞(D) if f ∈ H∞. Every function u ∈
SH∞(D) which is harmonic in a neighborhood of the origin can be repre-
sented in the form (cf. [14, Chapter 3.7])

(8) u(z) =
∫

D

log
|b(z, ζ)|

|ζ| dμu(ζ) − 1
2π

∫
∂D

1 − |z|2
|ζ − z|2 dψ(ζ),

where μu is the Riesz measure of u [14], and ψ is a Borel measure on the unit
circle. A complete measure λu of u in the sense of Grishin is defined ([11],
[8]) by the boundary measure and the Riesz measure of u(z). But, since [6]

lim
r↑1

∫ θ2

θ1

∫
D

log
|b(reiθ, ζ)|

|ζ| dμu(ζ)dθ = 0, −π ≤ θ1 < θ2 ≤ π,

i.e., the boundary values of the first integral in (8) do not contribute to the
boundary measure, we can define λu of a Borel set M ⊂ D such that M ∩ ∂D
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is measurable with respect to the Lebesgue measure on ∂D by

(9) λu(M) =
∫

D∩M

(1 − |ζ|)dμu(ζ) + ψ(M ∩ ∂D).

The measure λ = λu has the following properties:
(1) λ is finite on D;
(2) λ is nonnegative;
(3) λ is a zero measure outside D;
(4) dλ|∂D(ζ) = dψ(ζ);
(5) dλ|D(ζ) = (1 − |ζ|)dμu(ζ).
If u = log |f |, f ∈ H∞, then we shall write λf instead of λlog |f |. If B̃ is a

Blaschke product of form (2), then λB̃(M) =
∑

an ∈M (1 − |an|).
We shall say that g is a divisor of f ∈ H∞ if g ∈ H∞ and there exists

an h ∈ H∞ such that f = gh. It is easy to see, that in this case we have
λg(M) + λh(M) = λf (M) for an arbitrary Borel subset M of D such that
M ∩ ∂D is measurable.

The following generalization of Frostman’s result on bounded functions is
valid.

Theorem B (Lemma 3, [1]). Let F ∈ H∞, and λF ({ζ}) = 0 for some
ζ ∈ ∂D. The following are equivalent.

(1) ∫
D

dλF (ξ)
|ζ − ξ| < ∞.

(2) Every divisor of F has a radial limit at ζ.

2. Main results and examples

Without loss of generality, we can consider the local asymptotic behavior in
a neighborhood of ζ = 1 (θ0 = 0). Let A(z, ξ) = 1− |ξ|2

1−zξ̄
, argw be the principal

branch of Argw.

Lemma 1. Let ξ ∈ D, z ∈ D \ {ξ}. Then | arg b(z, ξ)| ≤ π min{|A(z, ξ)|,1}.

Consider the product B(z) defined by (4). We make radial cuts ln = {ζ ∈
D : ζ = τan, τ ≥ 1}. The region D

∗ = D \
⋃∞

n=1 ln contains no zeros of B(z).
Due to Lemma 1, we define (cf. [19]) a continuous branch

logB(z) def=
∞∑

n=1

log b(z, an), z ∈ D
∗,

argB(z) def= � logB(z). In particular, we have logB(0) = 0 and arg(B1B2) =
argB1 + argB2, where B1, B2 are Blaschke products. Later, in the proof of
Lemma 1, we also define argB(z) on the cuts except zeros. But the resulting
function will not be continuous there.



ARGUMENT OF ANALYTIC FUNCTIONS AND FROSTMAN’S CONDITIONS 519

In order to formulate our results, we need some information on fractional
derivatives [7, Chapter IX], [21, Chapter 8]. For h ∈ L(0, a) (integrable in the
sense of Lebesgue on (0, a)), the fractional integral of Riemann–Liouville hα

of order α > 0 is defined by the formula ([12], [7], [21])

hα(r) = D−αh(r) =
1

Γ(α)

∫ r

0

(r − x)α−1h(x)dx, r ∈ (0, a),

D0h(r) ≡ h(r), Dαh(r) =
dp

drp

{
D−(p−α)h(r)

}
, α ∈ (p − 1, p], p ∈ N,

where Γ(α) is the Gamma function. The function hα is continuous for α ≥ 1,
and coincides with a primary function of the correspondent order when α ∈ N.
We note that for α < 0 the operator Dα is associative and commutative as a
function of α. When writing D−αf(z), we always mean that the operator is
taken on the variable r = |z|.

Let S∗
σ(ζ) = Sσ(ζ) ∩ D(ζ, 1

2 ). The following theorem yields a necessary and
sufficient condition for the local growth of arg f in terms of the generalized
Frostman’s condition for the complete measure in the sense of Grishin of a
bounded analytic function in the unit disk.

Theorem 2. Let F be a bounded analytic function in D, 0 ≤ γ < 1, ζ0 ∈ ∂D.
In order that for every divisor f of F and every σ > 1 there exist a constant
K = K(γ,σ,F ) > 0 such that

(10) sup
z∈S∗

σ(ζ0)

|D−γ arg f(z)| < K,

it is necessary and sufficient that

(11)
∫

D

dλF (ζ)
|ζ0 − ζ|1−γ

< ∞.

Remark 3. Since (10) must hold for every divisor f of F , (10) is equivalent
to

(12) sup
z∈S∗

σ(ζ0)

D−γ | arg f(z)| < K

for every divisor f and every σ > 1. In fact, we shall prove that (10) ⇒ (11) ⇒
(12). Since it is evident that (12) implies (10), this will prove Theorem 2.

Remark 4. As we shall see, in order that (11) hold it is sufficient that (10)
holds for a finite number of divisors of a special form. Moreover, it is enough
to require that

lim
z→ζ0,z∈Γj

|D−γ arg f(z)| < +∞,

for two particular segments Γj ending at ζ0, Γj ⊂ D ∪ {ζ0}, j ∈ {1,2}.
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Corollary 5. Let B be a Blaschke product defined by (4), 0 ≤ γ < 1,
ζ0 ∈ ∂D. In order that for every subproduct B∗ of B and every σ > 1 there
exist a constant K = K(γ,σ,B) > 0 such that

(13) sup
z∈S∗

σ(ζ0)

|D−γ argB∗(z)| < K,

it is necessary and sufficient that

(14)
∞∑

k=1

1 − |ak |
|ζ0 − ak |1−γ

< ∞.

Corollary 6. Let F ∈ H∞, 0 ≤ γ < 1. If (11) holds, then for every divisor
f of F the function arg f(r) is bounded if γ = 0, and belongs to the convergence
class of order γ if γ ∈ (0,1), i.e.∫ 1

0

(1 − r)γ−1| arg f(r)| dr < +∞.

Proof. In fact, if 0 < γ < 1, then

sup
0<r<1

D−γ | arg f(r)| = sup
0<r<1

1
Γ(γ)

∫ r

0

(r − x)γ−1| arg f(x)| dx

≥ sup
0<r<1

1
Γ(γ)

∫ r

0

(1 − x)γ−1| arg f(x)| dx

=
1

Γ(γ)

∫ 1

0

(1 − x)γ−1| arg f(x)| dx.

The case γ = 0 follows from Theorem A. �

Since for any σ > 1 we have D ⊂
⋃

|ζ|=1 S∗
σ(ζ) ∪ D(0, 1

2 ), from Theorem 2
we get the following corollary.

Corollary 7. Let F be a bounded analytic function in D, 0 ≤ γ < 1, and
ζ0 ∈ ∂D. Then for

sup
z∈D

|D−γ arg f(z)| < ∞

to hold, it is necessary and sufficient that

sup
ζ0∈∂D

∫
D

dλF (ζ)
|ζ0 − ζ|1−γ

< ∞.

Example 8. The analytic function

F (z) = exp
{

− 1 + z

1 − z

}
, z ∈ D,

shows that the condition λF ({ζ}) = 0 in Theorem B is essential. In fact, we
have λF (ζ) = δ(ζ − 1) where δ(ζ − 1) is the unit mass supported at ζ = 1. The
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function F has the nontangential limit 0 as z → 1, z ∈ D, but

(15)
∫

D

dλF (ξ)
|ξ − 1|1−γ

= ∞, γ < 1.

We have

argF (reiϕ) = �
{

− 1 + reiϕ

1 − reiϕ

}
= − 2r sinϕ

|1 − reiϕ|2 .

It is clear that argF (reiβ(r−1)) → +∞ as r ↑ 1 for any positive constant β.
Theorem 2 yields that D−γ argF (z) is unbounded for any γ < 1, consequently

argF (z) �= O

(
1

(1 − |z|)γ

)
, z → 1, z ∈ Sσ, σ > 1, γ < 1.

The last relation follows from the fact that h(r) = O((1 − r)−γ) (r ↑ 1) implies
D−γ1h(r) = O(1) (r ↑ 1) provided γ < γ1 < 1 (cf. Lemma 14 and the lemma
from [4]).

Example 9. Let α ∈ [0,1),

ψ∗(t) =

{
t1−α, t ∈ [0, π],
−|t|1−α, t ∈ [−π,0].

Consider the function g(z) = gψ(z) defined by (3), where C ′ = 0. Then g
is analytic, bounded and has no zeros in D. In this case, λg |D is the zero
measure, and dλg(eit) = dψ(t), t ∈ [−π,π]. We have∫

D

dλg(ζ)
|ζ − 1|1−γ

=
∫ π

−π

dψ∗(t)
|eit − 1|1−γ

= 2(1 − α)
∫ π

0

dt

tα|eit − 1|1−γ
.(16)

Since |eit − 1| ∼ t as t ↓ 0 the integral from (16) is convergent if and only if
the integral

∫ π

0
t−1−α+γ dt is convergent.

Thus, if γ > α we have

D−γ arg gψ(z) = O(1), z → 1, z ∈ Sσ, σ > 1.

In the limit case γ = α = 0, one can show that

arg g(r) � log
1

1 − r
, r ↑ 1.

Now we consider the local behavior of the logarithm of a bounded function.
Following Linden [17], we introduce characteristics of concentration of zeros.
Let nz(h) be the number of zeros of an analytic function f in D(z,h(1 − |z|)),

Nz(h) =
∑

|an −z|≤h(1− |z|)
ln

h(1 − |z|)
|z − an| =

∫ (1− |z|)h

0

nz(s)
s

ds.

These quantities are usually used for characterizing the local behavior of the
modulus of an analytic function ([15], [16]).
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Theorem 10. Let F ∈ H∞, 0 ≤ γ < 1, 0 < h < 1, and ζ0 ∈ ∂D. In order
that for every divisor f of F and every σ > 1, there exist a constant K =
K(γ,σ,F ) > 0 such that

(17) sup
z∈S∗

σ(ζ0)

∣∣D−γ
(
log f(z) + Nz(h)

)∣∣ < K,

it is necessary and sufficient that

(18)
∫

D

dλF (ζ)
|ζ0 − ζ|1−γ

< ∞.

Corollary 11. Let B be a Blaschke product defined by (2), 0 ≤ γ < 1,
ζ0 ∈ ∂D, 0 < h < 1. In order that for every subproduct B∗ of B and every
σ > 1, there exist a constant K = K(γ,σ,B) > 0 such that

sup
z∈S∗(ζ0)

∣∣D−γ
(
logB(z) + Nz(h)

)∣∣ < K

it is necessary and sufficient that
∞∑

k=1

1 − |ak |
|ζ0 − ak |1−γ

< ∞.

Statements of such type can be used for obtaining estimates for the mini-
mum modulus of analytic and subharmonic functions ([15], [16], [17]), but we
omit this topic here.

If F has no zeros, we easily obtain the following corollary.

Corollary 12. Let g ∈ H∞ be of the form (3), 0 ≤ γ < 1, ζ0 ∈ ∂D. In
order that for every divisor g∗ of g and every σ > 1, there exist a constant
K = K(γ,σ, g) > 0 such that

sup
z∈S∗

σ(ζ0)

|D−γ log g∗(z)| < K,

it is necessary and sufficient that

(19)
∫

∂D

dψ(ζ)
|ζ0 − ζ|1−γ

< ∞,

where ψ is the Stieltjes measure generated by ψ∗.

Let ψ and χ be Borel measures on ∂D. We shall write that χ ≺ ψ if
χ(M) ≤ ψ(M) for an arbitrary Borel set M ⊂ ∂D. Note that gχ is a divisor
of gψ if and only if χ ≺ ψ.

Applying Corollary 12 and Theorem 2 to the function gψ(z) = exp{hψ(z)}
of form (3), we obtain the following theorem.

Theorem 13. Let

(20) hψ(z) =
∫ π

−π

eit + z

eit − z
dψ∗(t),
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where ψ∗ is a monotone function on [−π,π]. Let 0 ≤ γ < 1, and ζ0 ∈ ∂D.
Let ψ be the Stieltjes measure generated by ψ∗. The following conditions are
equivalent:

(1) For every Borel measure χ on ∂D such that χ ≺ ψ and every σ > 1,
there exists a constant K = K(γ,σ,ψ) > 0 such that

sup
z∈S∗

σ(ζ0)

|D−γhχ(z)| < K.

(2) For every Borel measure χ on ∂D such that χ ≺ ψ and every σ > 1,
there exists a constant K = K(γ,σ,ψ) > 0 such that

sup
z∈S∗

σ(ζ0)

|D−γ �hχ(z)| < K.

(3) Condition (19) holds.

3. Proof of Theorem 2

We may assume that ζ0 = 1. We restrict ourself to the case 0 < γ < 1. Let
f be a divisor of F , and f of form (1). First, we consider argB(z), and start
with proof of Lemma 1.

Proof of Lemma 1. We consider the triangle with the vertices A = zξ̄, B =
|ξ|2, C = 1; AB = 1 − |ξ|2, BC = | |ξ|2 − zξ̄|, AC = |1 − ξ̄z|. The quantity

ϕξ = arg b(z, ξ) = arg
|ξ|2 − zξ̄

1 − zξ̄

is the value of the angle between the vectors �AB and �AC . The cut {ζ =
τξ : 1 ≤ τ ≤ 1

|ζ| } corresponds to BC. Thus, |ϕξ | < π if zξ̄ /∈ BC. For zξ̄ ∈
BC, i.e., for z laying on the cut, we define by the semicontinuity ϕξ

def= −π.
Therefore, arg b(z, ξ) is defined in D \ {ξ} but, obviously, not continuous on
the cut.

Let Dξ be the disk constructed on AB as on the diameter. We consider
two cases.

If C = zξ̄ ∈ Dξ , then π/2 < |ϕξ | ≤ π and |zξ̄ − 1| ≤ 1 − |ξ|2, i.e., |A(z, ξ)| ≥ 1.
Therefore, | arg b(z, ξ)| ≤ π = min{π, |A(z, ξ)| } as required.

If zξ̄ /∈ Dξ , then |ϕξ | ≤ π/2. Thus, ϕξ = arcsin 
b(z,ξ)
|b(z,ξ)| . Since

�b(z, ξ) = −�A(z, ξ) = �(z̄ξ)
1 − |ξ|2

|1 − ξ̄z|2 ,

we have

|ϕξ | =
∣∣∣∣arcsin

�(z̄ξ)
| |ξ|2 − zξ̄|

1 − |ξ|2
|1 − zξ̄|

∣∣∣∣(21)

≤ arcsinmin
{

1,
1 − |ξ|2

|1 − zξ̄|

}
≤ π

2
min{1, |A(z, ξ)| }. �
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Lemma 14. Let 0 ≤ γ < α < ∞. Then there exists a constant C(γ,α) > 0
such that

(22) D−γ 1
|1 − rζ|α ≤ C(γ,α)

|1 − rζ|α−γ
, ζ ∈ D,0 < r < 1.

Proof. Let arg ζ = θ. Then

(23) |1 − xζ| ≥ |1 − rζ| cos(θ/2), 0 ≤ x ≤ r < 1.

In fact, geometric arguments yield that if |rζ| ≤ cosθ, then |1 − xζ| ≥ |1 − rζ|.
Otherwise, cosθ < |rζ| < 1, and we deduce

|1 − xζ| ≥ |1 − eiθ cosθ| = |1 − eiθ | cos(θ/2) ≥ |1 − rζ| cos(θ/2)

as required.
Without loss of generality, we may assume that

|θ| ≤ π/4,
1
2

< r < 1, 2|1 − rζ| < r.

Using (23), we obtain

D−γ 1
|1 − rζ|α

=
1

Γ(γ)

∫ r

0

(r − x)γ−1

|1 − xζ|α dx

=
1

Γ(γ)

(∫ r−2|1−rζ|

0

+
∫ r

r−2|1−rζ|

)
(r − x)γ−1

|1 − xζ|α dx

≤ 1
Γ(γ)

(∫ r−2|1−rζ|

0

(r − x)γ−1

(1 − x|ζ|)α
dx +

∫ r

r−2|1−rζ|

(r − x)γ−1

|1 − rζ|α cosα θ
2

dx

)

≤ 1
Γ(γ)

(∫ r−2|1−rζ|

0

dx

(1 − x|ζ|)1−γ+α
− (r − x)γ

γ|1 − rζ|α cosα θ
2

∣∣∣∣
r

r−2|1−ζr|

)

=
1

Γ(γ)

(
1

(α − γ)|ζ|
1

(1 − x|ζ|)α−γ

∣∣∣∣
r−2|1−rζ|

0

+
2γ

γ cosα θ/2|1 − rζ|α−γ

)

≤ 1
Γ(γ)

(
2

α − γ

1
(1 − r + 2|1 − rζ| |ζ|)α−γ

+
2γ+α/2+1

γ|1 − rζ|α−γ

)
≤ C(γ,α)

|1 − rζ|α−γ
.

The lemma is proved. �

In order to finish the proof of the sufficiency, we need the following lemma
([10, Lemma 1]).

Lemma B. Given σ ≥ 1, there exists a constant C(σ) > 0 such that

|1 − ζ| ≤ C(σ)|1 − z̄ζ|, ζ ∈ D, z ∈ Sσ.
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By Lemma 1, we have

| argB(z)| ≤ π

∞∑
n=1

1 − |an|2
|1 − zān|2 ≤ C(F )

1 − r
.

Using Lemmas 1, 14, B and (11), we obtain for z ∈ Sσ

D−γ | argB(z)| ≤
∞∑

n=1

D−γ | arg b(z, an)|(24)

≤ π

∞∑
n=1

D−γ 1 − |an|2
|1 − zān| ≤ πC(γ)

∞∑
n=1

1 − |an|2
|1 − zān|1−γ

≤ πC(γ,σ)
∞∑

n=1

1 − |an|2
|1 − an|1−γ

< C(γ,σ,F ) < +∞.

We now consider arg g(z). In view of (3), we have (z = reiϕ)

(25) arg g(z) = �
{

− 1
2π

∫ π

−π

eit + z

eit − z
dψ∗(t)

}
= − 1

2π

∫ π

−π

r sin(ϕ − t)
|eit − z|2 dψ∗(t).

Using Lemmas 14 and B for z ∈ Sσ , we deduce

D−γ | arg g(z)| =
∣∣∣∣ 1
Γ(γ)

∫ r

0

(r − x)γ−1 dx

∫ π

−π

x sin(ϕ − t)
|eit − xeiϕ|2 dψ∗(t)

∣∣∣∣
≤

∫ π

−π

| sin(ϕ − t)|
Γ(γ)

dψ∗(t)
∫ r

0

(r − x)γ−1

|eit − xeiϕ|2 dx

≤ C(γ)
∫ π

−π

| sin(ϕ − t)|
|eit − reiϕ|2−γ

dψ∗(t)

≤ C(γ)
∫ π

−π

1
|eit − reiϕ|1−γ

dψ∗(t)

≤ C(γ,σ)
∫ π

−π

1
|eit − 1|1−γ

dψ∗(t).

The sufficiency is proved.
Necessity. First, we consider the subproduct B∗ of B constructed by the

zeros an satisfying �an ≥ 0, |1 − an| ≤ 1
3 . We denote such an by a∗

n.
Let z = reiϕ satisfy arg(1 − z) = π/4, ζ ∈ [0, z], ζ = ρ. In particular, �ζ < 0.

Then

�(a∗
nζ̄) = −�ζ�a∗

n + �a∗
n�ζ ≥ 0,

and consequently (see (21))

arg b(ζ, a∗
n) ≥ arcsin

�(ζ̄a∗
n)(1 − |a∗

n|2)
| |a∗

n|2 − ζā∗
n| |1 − ā∗

nζ| ≥ 0.
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By our assumption,

C ≥ D−γ argB∗(z) =
∑

n

D−γ arg b(z, a∗
n)(26)

≥
∑

n

∫ r

0

(r − t)γ−1 arcsin
�(te−iϕa∗

n)(1 − |a∗
n|2)

| |a∗
n|2 − teiϕā∗

n| |1 − ā∗
nte−iϕ| dt.

For every a∗
n satisfying 1 − |a∗

n| ≥ 2(1 − r) and ζ ∈ [0, z] such that

|1 − a∗
n| ≤ r − ρ ≤ 2|1 − a∗

n|

we have

ρ ≥ r − 2|1 − a∗
n| ≥ r − 2

3
>

1
4
, r ↑ 1.

Thus,

| �ζ| ≥ | �z|/4 ≥ (1 − r)/4.

Hence,

�(a∗
nζ̄) ≥ −�ζ�a∗

n ≥ �a∗
n

4
(1 − r).(27)

Similarly,

�(a∗
nζ̄) ≥ �ζ�a∗

n ≥ �z

2
|1 − a∗

n|, a∗
n /∈ S2.(28)

Further,

|a∗
n − ζ| ≤ |1 − a∗

n| + 2
∣∣1 − |ζ|

∣∣ = |1 − a∗
n| + 2(r − |ζ| + 1 − r)(29)

≤ |1 − a∗
n| + 2

(
2 +

1
2

)
|1 − a∗

n| = 6|1 − a∗
n|,

|1 − ā∗
nζ| ≤ |1 − ā∗

n| + |ā∗
n − ā∗

nζ| ≤ 6|1 − a∗
n|.(30)

Thus, for a∗
n ∈ S2 using (27), (29), and (30) we have∫ r

0

(r − t)γ−1 arcsin
�(ā∗

nteiϕ)(1 − |a∗
n|2)

| |a∗
n|2 − teiϕā∗

n| |1 − ā∗
nteiϕ| dt(31)

≥
∫ r

0

(r − t)γ−1�a∗
n(1 − t)(1 − |a∗

n|2)
144|1 − a∗

n|2|a∗
n| dt

≥ C(γ)
∫ r− |1−a∗

n |

r−2|1−a∗
n |

(r − t)γ �a∗
n

|a∗
n|(1 − |a∗

n|) dt

≥ C(γ)
1

1 − |a∗
n|

∫ r− |1−a∗
n |

r−2|1−a∗
n |

(r − t)γ dt

≥ C(γ)(1 − |a∗
n|)γ .
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If a∗
n ∈ D \ S2, then using (28)–(30) we obtain∫ r

0

(r − t)γ−1 arcsin
�(ā∗

nteiϕ)(1 − |a∗
n|2)

| |a∗
n|2 − teiϕā∗

n| |1 − ā∗
nteiϕ| dt(32)

≥
∫ r

0

(r − t)γ−1�z|1 − a∗
n|(1 − |a∗

n|2)
72|1 − a∗

n|2|a∗
n| dt

≥ C(γ)
∫ r− |1−a∗

n |

r−2|1−a∗
n |

(r − t)γ−1�z|1 − |a∗
n| |

|a∗
n| |1 − a∗

n| dt

≥ C
1 − |a∗

n|
|1 − a∗

n|

∫ r− |1−a∗
n |

r−2|1−a∗
n |

(r − t)γ−1 dt ≥ C
1 − |a∗

n|
|1 − a∗

n|1−γ
.

Hence,

C > D−γ argB∗(z) =
∑

n

D−γ arg b(z, a∗
n) > C

∑
|a∗

n |≤1−2(1−r)

1 − |a∗
n|

|1 − a∗
n|1−γ

.

Since the constants C are independent of r, tending r ↑ 1 we get the statement
of the necessity for argB∗, and consequently for argB.

Now, we have to estimate Dγ(arg gψ) from below. Let ψ1 be the restricted
function of ψ∗ on [0, π/2]. Let arg(1 − z) = π

4 . Then

D−γ �gψ1(z) =
1

Γ(γ)

∫ π

−π

∫ r

0

(r − ρ)γ−1 sin(t − ϕ)
|ρeiϕ − eit|2 dρdψ1(t)

=
1

Γ(γ)

∫ π/2

0

sin(t − ϕ)dψ∗(t)
∫ r

0

(r − ρ)γ−1

|ρeiϕ − eit|2 dρ.

In order to estimate the inner integral, we may assume that r > 2|z − eit|
without loss of generality. For |z − eit| ≤ r − ρ ≤ 2|z − eit|, we have

|ρeiϕ − eit| ≤ |z − ρeiϕ| + |z − eit|
≤

(
1 + o(1)

)
|r − ρ| + |z − eit| ≤ 4|z − eit|, r ↑ 1.

Moreover, since arg z ∼ r − 1, we have t − ϕ ≥ (1+ o(1))(1 − r) as r ↑ 1. Then,

|z − eit| =
∣∣r − ei(t−ϕ)

∣∣ ≤ 1 − r + 1 − cos(ϕ − t) + sin(ϕ − t)

≤
(
1 + o(1)

)
sin(1 − r) + 2sin2 t − ϕ

2
+ sin(t − ϕ)

≤
(
4 + o(1)

)
sin(t − ϕ), r ↑ 1.

Using the latter estimates, we deduce

C ≥ D−γ �g(z)

≥ 1
Γ(γ)

∫ π/2

0

sin(t − ϕ)dψ∗(t)
∫ r− |z−eit |

r−2|z−eit |

(r − ρ)γ−1

|ρeiϕ − eit|2 dρ
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≥
∫ π/2

0

sin(t − ϕ)
16|z − eit|2 dψ∗(t)

∫ r− |z−eit |

r−2|z−eit |
(r − ρ)γ−1 dρ

≥ C(γ)
∫ π/2

0

sin(t − ϕ)|z − eit|γ
|z − eit|2 dψ∗(t) ≥ C(γ)

∫ π/2

0

dψ∗(t)
|z − eit|1−γ

.

Tending r to 1 and using Fatou’s lemma, we conclude that

C ≥ C(γ)
∫ π/2

0

dψ∗(t)
|1 − eit|1−γ

.

Similarly, it can be shown that
∫ 0

−π/2
dψ(t)

|1−eit |1−γ < C, and consequently,

∫ π

−π

dψ(t)
|1 − eit|1−γ

< C.

Theorem 2 is proved.

4. Proof of Theorem 10 and final remarks

Proof of Theorem 10. The necessity of the theorem follows from Theo-
rem 2.

Sufficiency. Let f be a divisor of F . Without loss of generality, we may
assume that f = Bg, where B and g are defined as above. Let L(z,h, f) =
log f(z) + Nz(h). We have

�L(z,h, f)(33)

= �L(z,h,B) − 1
2π

∫ π

−π

� eit + z

eit − z
dψ∗(t)

=
∑

|an −z|≤h(1−r)

ln
∣∣∣∣anh(1 − r)

1 − zān

∣∣∣∣ +
∑

|an −z|>h(1−r)

ln
∣∣∣∣an(z − an)

1 − zān

∣∣∣∣
− 1

2π

∫ π

−π

1 − r2

|eit − z|2 dψ∗(t) ≤ 0.

Let us estimate �L(z,h, f) from the below. For |an − z| ≤ h(1 − r), we
have

|1 − zān| =
∣∣1 − |z|2 + z(z − an)

∣∣ ≤ 1 − r2 + rh(1 − r) ≤ (2 + h)(1 − r),

and

(34) |an| ≥ r − h(1 − r) ≥ 1 − h

2
, r ≥ 1

2
.
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Hence, ∑
|an −z|≤h(1−r)

ln
∣∣∣∣anh(1 − r)

1 − zān

∣∣∣∣(35)

≥
∑

|an −z|≤h(1−r)

ln
|an|h
2 + h

≥ −C(h)
∑

|an −z|≤h(1−r)

|A(z, an)|, r ≥ 1
2
,

because C1 ≤ |A(z, an)| ≤ C2 if |an − z| ≤ h(1 − r).
On the other hand, (see [20, p. 13])

(36)
∑

|A(z,an)|< 1
2

− ln |b(z, an)| ≤ 2
∑

|A(z,an)|< 1
2

|A(z, an)|.

It is known that a pseudohyperbolic disk D(z, s) = {ζ : | z−ζ
1−zζ̄

| < s} is the
disk D(z∗, ρz(s)), where

z∗ =
(1 − s2)z
1 − s2|z|2 , ρz(s) =

(1 − |z|2)s
1 − s2|z|2 .

We are going to prove that

(37) D
(

z,
h

2 + h

)
⊂ D

(
z, (1 − |z|)h

)
.

It is sufficient to show that |z∗ − z| + ρz(s) ≤ h(1 − |z|) for s ≤ h/(2 + h). We
have (|z| = r)

|z∗ − z| + ρz(s) =
(1 − r2)(rs2 + s)

1 − s2r2
≤ 2(1 − r)s

1 − s
.

Thus, we arrive to the inequality 2s ≤ h(1 − s), which is equivalent to −1 ≤
s ≤ h

2+h . Inclusion (37) is proved. Therefore, for an /∈ D(z,h(1 − r)) we have

− ln |b(z, an)| ≤ ln
2 + h

h|ān| .

Hence, using (34)∑
|A(z,an)|≥ 1

2

|an −z|>h(1−r)

− ln |b(z, an)| ≤ 2
∑

|A(z,an)|≥ 1
2

|an −z|>h(1−r)

ln
2 + h

|ān|h(38)

≤ 4 ln
4 + 2h

h(1 − h)

∑
|A(z,an)|≥ 1

2

|an −z|>h(1−r)

|A(z, an)|.
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It follows from (33)–(39) that

�L(z,h,B) ≥ −C(h)
∑

n

|A(z, an)|.

Hence, as in the proof of the sufficiency of Theorem 2 (see (26)) we deduce
for z ∈ Sσ

(39) D−γ �L(z,h,B) ≥ −C(h,γ)
∑

n

1 − |an|2
|1 − ānz|1−γ

≥ −C(h,γ,σ,B).

Further,
1
2π

∫ π

−π

1 − r2

|eit − z|2 dψ∗(t) ≤ 1
2π

∫ π

−π

dψ∗(t)
|eit − z| .

Applying Lemma 2 for z laying in the Stolz angle Sσ , we obtain

D−γ

∣∣∣∣
∫ π

−π

1 − r2

|eit − z|2 dψ∗(t)
∣∣∣∣ ≤

∫ π

−π

D−γ

(
1

|eit − z|

)
dψ∗(t)(40)

≤ C(γ)
∫ π

−π

dψ∗(t)
|eit − z|1−γ

≤ C(γ,σ)
∫ π

−π

dψ(t)
|eit − 1|1−γ

< ∞.

Together with (39) this yields D−γ �L(z,h, f) ≥ −C. And, in view of (33) we,
finally, have |D−γ �L(z,h,F )| ≤ C.

It remains to apply Theorem 2. Theorem 10 is proved. �

Remark 15. Frostman type condition (11) can be rewritten in terms of the
modulus of continuity of the complete measure. Let λF (ζ, τ) def= λF (D(ζ, τ)).
Then (11) is equivalent to∫ 2

0

dλF (ζ0, τ)
τ1−γ

< +∞ or
∫ 2

0

dω(τ ; ζ0, λF )
τ1−γ

< +∞,

where ω(τ ; ζ0, λF ) is the modulus of continuity of the measure λF at the
point ζ0.

From this point of view, it is interesting to compare Theorem 13 with
results from [4], where necessary and sufficient conditions for growth of the
maximum modulus and the maximum of the real part of hψ is established
in terms of the modulus of continuity of the function ψ∗. Similar results for
Lp-metrics are obtained in [3].
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