LOCALLY COMPLETE INTERSECTION STANLEY-REISNER IDEALS

NAOKI TERAI AND KEN-ICHI YOSHIDA

Abstract

In this paper, we prove that the Stanley-Reisner ideal of any connected simplicial complex of dimension ≥ 2 that is locally complete intersection is a complete intersection ideal.

As an application, we show that the Stanley-Reisner ideal whose powers are Buchsbaum is a complete intersection ideal.

Introduction

By a simplicial complex Δ on a vertex set $V=[n]=\{1,2, \ldots, n\}$, we mean that Δ is a nonvoid family of subsets of V such that (i) $\{v\} \in \Delta$ for every $v \in V$, and (ii) $F \in \Delta, G \subseteq F$ imply $G \in \Delta$. Let $S=K\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial ring over a field K. The Stanley-Reisner ideal of Δ, denoted by I_{Δ}, is the ideal of S generated by all squarefree monomials $X_{i_{1}} \cdots X_{i_{p}}$ such that $1 \leq i_{1}<\cdots<i_{p} \leq n$ and $\left\{i_{1}, \ldots, i_{p}\right\} \notin \Delta$. The Stanley-Reisner ring of Δ over K is the K-algebra $K[\Delta]=S / I_{\Delta}$. Any squarefree monomial ideal I with $I \subseteq\left(X_{1}, \ldots, X_{n}\right)^{2}$ is a Stanley-Reisner ideal I_{Δ} for some simplicial complex Δ on $V=[n]$.

An element $F \in \Delta$ is called a face of Δ. A maximal face of Δ with respect to inclusion is called a facet of Δ. The dimension of Δ, denoted by $\operatorname{dim} \Delta$, is the maximum of the dimensions $\operatorname{dim} F=\sharp(F)-1$, where F runs through all faces F of Δ and $\sharp(F)$ denotes the cardinality of F. Note that the Krull dimension of $K[\Delta]$ is equal to $\operatorname{dim} \Delta+1$. A simplicial complex is called pure if all facets have the same dimension. See [1], [6] for more information on Stanley-Reisner rings.

A homogeneous ideal I in $S=K\left[X_{1}, \ldots, X_{n}\right]$ is said to be a locally complete intersection ideal if I_{P} is a complete intersection ideal (that is, generated by a regular sequence) for any prime $P \in \operatorname{Proj}(S / I)$. A simplicial complex Δ on V is said to be a locally complete intersection complex if $I_{\operatorname{link}_{\Delta}(\{v\})}$ is a

Received December 17, 2008; received in final form February 9, 2009.
2000 Mathematics Subject Classification. Primary 13F55. Secondary 13H10.
complete intersection ideal for every $v \in V$. Then Δ is a locally complete intersection complex if and only if I_{Δ} is a locally complete intersection ideal. Note that a locally complete intersection ideal I is called a generalized complete intersection ideal in the sense of Goto-Takayama (see [3]) if $I=I_{\Delta}$ is the Stanley-Reisner ideal for some pure simplicial complex Δ.

In Section 1, we consider the structure of simplicial complexes which are locally complete intersection. This is the main purpose of the paper. One can easily see that if a Stanley-Reisner ideal I is a complete intersection ideal, then it can be written as

$$
I=\left(X_{11} \cdots X_{1 q_{1}}, \ldots, X_{c 1} \cdots X_{c q_{c}}\right)
$$

where $c \geq 0$ and q_{i} is a positive integer with $q_{i} \geq 2$ for $i=1, \ldots, c$ and all $X_{i j}$ are distinct variables.

A complete intersection simplicial complex Δ is connected if $\operatorname{dim} \Delta \geq 1$, and it is a locally complete intersection complex. When $\operatorname{dim} \Delta \geq 2$, the converse is also true, which is a main result in this paper.

Theorem 1 (See also Theorems 1.5, 1.15). Let Δ be a connected simplicial complex with $\operatorname{dim} \Delta \geq 2$ (resp. $\operatorname{dim} \Delta=1$). If it is a locally complete intersection complex, then it is a complete intersection complex (resp. an n-gon for $n \geq 3$ or an n-pointed path for some $n \geq 2$).

Let Δ be a connected simplicial complex on V with $\operatorname{dim} \Delta \geq 2$. Our main theorem says that if $\operatorname{link}_{\Delta}(\{x\})$ is a complete intersection complex for every vertex $x \in V$ then so is Δ. If we also assume Serre's condition $\left(S_{2}\right)$, then we can obtain a stronger result. That is, when $K[\Delta]$ satisfies $\left(S_{2}\right), \Delta$ is a complete intersection complex if and only if $\operatorname{link}_{\Delta}(F)$ is a complete intersection complex for any face $F \in \Delta$ with $\operatorname{dim}^{\operatorname{link}}{ }_{\Delta} F=1$; see Corollary 1.10 for more details.

In Section 2, we discuss Buchsbaumness for powers of Stanley-Reisner ideals. Let us explain our motivation briefly. Let A be a Cohen-Macaulay local ring. If I is a complete intersection ideal of A, then A / I^{ℓ} is CohenMacaulay for every $\ell \geq 1$ because $I^{\ell} / I^{\ell+1}$ is a free A / I-module. In [2], Cowsik and Nori proved the converse. That is, if I is a generically complete intersection ideal (i.e., I_{P} is a complete intersection ideal for all minimal prime divisors P of I) and A / I^{ℓ} is Cohen-Macaulay for all (sufficiently large) $\ell \geq 1$, then I is a complete intersection ideal. Note that one can apply this result to Stanley-Reisner ideals: I_{Δ} is a complete intersection ideal if and only if $S / I_{\Delta}^{\ell+1}$ is Cohen-Macaulay for every $\ell \geq 1$.

A standard graded ring $A=S / I$ with homogeneous maximal ideal \mathfrak{m} is said to be Buchsbaum (resp. (FLC)) if the canonical map

$$
H^{i}(\mathfrak{m}, A) \rightarrow H_{\mathfrak{m}}^{i}(A)=\underset{\longrightarrow}{\lim \operatorname{Ext}_{S}^{i}\left(S / \mathfrak{m}^{\ell}, A\right)}
$$

is surjective (resp. if $H_{\mathfrak{m}}^{i}(A)$ has finite length) for all $i<\operatorname{dim} A$, where $H^{i}(\mathfrak{m}, A)$ (resp. $\left.H_{\mathfrak{m}}^{i}(A)\right)$ denotes the i th Koszul cohomology module (resp.
i th local cohomology module); see [8, Chapter I, Theorem 2.15]. Then we have the following implications:

Complete intersection \Longrightarrow Locally complete intersection
$\Downarrow \quad \Downarrow$ if pure
Cohen-Macaulay $\quad \Longrightarrow \quad$ Buchsbaum $\quad \Longrightarrow$ (FLC).
Goto and Takayama [3] proved that I_{Δ} is a pure locally complete intersection ideal if and only if $S / I_{\Delta}^{\ell+1}$ is (FLC) for every $\ell \geq 1$ as an analogue of Cowsik-Nori theorem.

Let S be a polynomial ring and I a squarefree monomial ideal of S. Then S / I is Buchsbaum if and only if it is (FLC); see e.g., [6, p. 73, Theorem 8.1]. But a similar statement is no longer true for nonsquarefree monomial ideals. The following is a natural question.

Question 2. When is S / I_{Δ}^{ℓ} Buchsbaum for every $\ell \geq 1$?
As an application of our main theorem and the lower bound formula on the multiplicity of Buchsbaum homogeneous K-algebras in [4], we can prove the following theorem.

Theorem 3. Put $S=K\left[X_{1}, \ldots, X_{n}\right]$. Let Δ be a simplicial complex on $V=[n]$. Then the following conditions are equivalent:
(1) I_{Δ} is generated by a regular sequence;
(2) S / I_{Δ}^{ℓ} is Cohen-Macaulay for all $\ell \geq 1$;
(3) S / I_{Δ}^{ℓ} is Buchsbaum for all $\ell \geq 1$;
$(3)^{\prime} \sharp\left\{\ell \in \mathbb{Z}_{\geq 1}: S / I_{\Delta}^{\ell}\right.$ is Buchsbaum $\}=\infty$.
We do not know whether a similar statement is true for general homogeneous ideals.

1. Connected complexes which are locally complete intersection

Throughout this paper, let Δ be a simplicial complex on V. For a face F of Δ and $W \subseteq V$, we put

$$
\begin{aligned}
\operatorname{link}_{\Delta}(F) & =\{G \in \Delta: G \cup F \in \Delta, F \cap G=\emptyset\} \\
\Delta_{W} & =\{G \in \Delta: G \subseteq W\}
\end{aligned}
$$

These complexes are the link of F, and, the restriction to W of Δ, respectively.
Let \mathcal{H} be a subset of 2^{V}. The minimum simplicial complex $\Gamma \subseteq 2^{V}$ which contains \mathcal{H} as a subset, denoted by $\langle\mathcal{H}\rangle$, is said to be the simplicial complex spanned by \mathcal{H} on V.

Suppose that $V=V_{1} \cup \cdots \cup V_{r}$ is a disjoint union. Let Δ_{i} be a simplicial complex on V_{i} for each $i=1, \ldots, r$. Then $\Delta=\Delta_{1} \cup \cdots \cup \Delta_{r}$ is a simplicial
complex on V. We call Δ "a disjoint union of Δ_{i} 's" by abuse of language although $\Delta_{i} \cap \Delta_{j}=\{\emptyset\}$ for $i \neq j$.

A simplicial complex Δ is a complete intersection complex if the StanleyReisner ideal I_{Δ} is generated by a regular sequence. Now, let us define the notion of locally complete intersection for complexes.

Definition 1.1. A simplicial complex Δ on V is said to be a locally complete intersection complex if $I_{\text {link }_{\Delta}(\{v\})}$ is a complete intersection ideal for all vertex $v \in V$.

A simplicial complex Δ is a locally complete intersection complex if and only if its Stanley-Reisner ideal I_{Δ} is a locally complete intersection ideal.

Lemma 1.2. For a Stanley-Reisner ideal $I=I_{\Delta}$, the following conditions are equivalent:
(1) Δ is a locally complete intersection complex;
(2) $K[\Delta]_{X_{i}}$ is a complete intersection ring for all $i \in V$;
(3) I_{P} is a complete intersection ideal for all prime $P \in \operatorname{Proj}\left(S / I_{\Delta}\right)$.

Proof. The equivalence of (1) and (2) immediately follows from the fact that

$$
K\left[\operatorname{link}_{\Delta}(\{i\})\right]\left[X_{i}, X_{i}^{-1}\right] \cong K[\Delta]_{X_{i}}
$$

$(2) \Longrightarrow(3)$ is clear. In order to show the converse, we suppose that $K[\Delta]_{X_{1}}$ is not a complete intersection ring. Without loss of generality, we may assume that

$$
\left\{X_{i}: 2 \leq i \leq m\right\}=\left\{X_{i}: i \in \operatorname{link}_{\Delta}(\{1\})\right\}
$$

Since $X_{1} X_{j} \in I_{\Delta}$ for $m+1 \leq j \leq n$, one has that $X_{j} \in I_{\Delta} S_{X_{1}}$. If we put $P=$ $\left(X_{2}, \ldots, X_{m}\right)$, then we can easily see that $I_{\Delta} S_{P}$ is not a complete intersection ideal by assumption. Hence, we obtain $(3) \Longrightarrow(2)$.

Corollary 1.3. If Δ is a connected locally complete intersection complex, then it is pure.

Proof. Suppose that Δ is not pure. Since Δ is connected, there exist a vertex $i \in V$ and facets F_{1}, F_{2} such that $i \in F_{1} \cap F_{2}$ and $\sharp\left(F_{1}\right)<\sharp\left(F_{2}\right)$. This implies that $\operatorname{link}_{\Delta}(\{i\})$ is not pure. This contradicts the assumption that $\operatorname{link}_{\Delta}(\{i\})$ is Cohen-Macaulay. Hence, Δ must be pure.

REMARK 1.4. A pure locally complete intersection complex is called a generalized complete intersection complex in [3].

The main purpose of this section is to prove the following theorem.
ThEOREM 1.5. Let Δ be a connected simplicial complex on V with $\operatorname{dim} \Delta \geq 2$. If Δ is a locally complete intersection complex, then it is a complete intersection complex.

Let Δ be a connected complex of dimension $d-1$. Suppose that Δ is a locally complete intersection complex, but not a complete intersection complex. Note that Δ is pure and thus a generalized complete intersection complex. Let $G\left(I_{\Delta}\right)=\left\{m_{1}, \ldots, m_{\mu}\right\}$ denote the minimal set of monomial generators of I_{Δ}. Then $\mu \geq 2$ and $\operatorname{deg} m_{i} \geq 2$ for every $i=1,2, \ldots, \mu$, and that there exist i, j $(1 \leq i<j \leq n)$ such that $\operatorname{gcd}\left(m_{i}, m_{j}\right) \neq 1$.

LEMMA 1.6. In the above notation, we may assume that $\operatorname{deg} m_{i}=$ $\operatorname{deg} m_{j}=2$.

Proof. Take $m_{j}, m_{k}(j \neq k)$ such that $\operatorname{gcd}\left(m_{j}, m_{k}\right) \neq 1$. If $\operatorname{deg} m_{j}=$ $\operatorname{deg} m_{k}=2$, then there is nothing to prove.

Now suppose that $\operatorname{deg} m_{k} \geq 3$. By [3, Lemmas 3.4, 3.5], we may assume that $\operatorname{deg} m_{j}=2$ and $\operatorname{gcd}\left(m_{j}, m_{k}\right)=X_{p}$. Write $m_{k}=X_{p} X_{i_{1}} \cdots X_{i_{r}}$ and $m_{j}=$ $X_{p} X_{q}$. Then [3, Lemma 3.6] implies that $X_{i_{1}} X_{q} \in G\left(I_{\Delta}\right)$. Set $m_{i}=X_{i_{1}} X_{q} \in$ I_{Δ}. Then $\operatorname{deg} m_{i}=\operatorname{deg} m_{j}=2$ and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=X_{q} \neq 1$, as required.

The following lemma is simple but important. We use the following convention in this section: the vertices x, y, z etc. correspond to the indeterminates X, Y, Z etc., respectively.

Lemma 1.7. Let x_{1}, x_{2}, y be distinct vertices such that $X_{1} Y, X_{2} Y \in I_{\Delta}$. For any $z \in V \backslash\left\{x_{1}, x_{2}, y\right\}$, at lease one of monomials $X_{1} Z, X_{2} Z$ and $Y Z$ belongs to I_{Δ}.

Proof. Note that $K\left[\operatorname{link}_{\Delta}(\{z\})\right.$ is obtained from $K[\Delta]$ by setting $Z=1$. Then the assertion follows from the fact that $K\left[\operatorname{link}_{\Delta}(\{z\})\right]$ is a complete intersection ring.

In what follows, we prove Theorem 1.5. In order to do that, let Δ be a connected simplicial complex of dimension $d-1 \geq 1$. Moreover, assume that Δ is a locally complete intersection complex and that there exist vertices x_{1}, x_{2}, y such that $X_{1} Y, X_{2} Y \in I_{\Delta}$ (we assign a variable X_{i} for a vertex x_{i}). Then we must show that $\operatorname{dim} \Delta(=d-1)=1$. Let us begin with proving the following key lemma.

Lemma 1.8. Under the above notation, there exist some integers $k, \ell \geq 2$ such that
(1) $V=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}\right\}$;
(2) $X_{1} Y_{1}, \ldots, X_{k} Y_{1} \in I_{\Delta}$;
(3) $\sharp\left\{i: 1 \leq i \leq k, X_{i} Y_{j} \notin I_{\Delta}\right\} \leq 1$ holds for each $j=2, \ldots, \ell$.

Proof. By assumption, there exist vertices $x_{1}, x_{2}, y_{1} \in V$ such that $X_{1} Y_{1}$, $X_{2} Y_{1} \in I_{\Delta}$. Thus, one can write $V=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}\right\}$ such that

$$
\begin{aligned}
& X_{1} Y_{1}, X_{2} Y_{1}, \ldots, X_{k} Y_{1} \in I_{\Delta} \\
& Y_{1} Y_{2}, Y_{1} Y_{3}, \ldots, Y_{1} Y_{\ell} \notin I_{\Delta} .
\end{aligned}
$$

If $\ell=1$, then $\Delta=\Delta_{\left\{y_{1}\right\}} \cup \Delta_{\left\{x_{1}, \ldots, x_{k}\right\}}$ is a disjoint union since $\left\{y_{1}, x_{i}\right\} \notin \Delta$ for all i. This contradicts the connectedness of Δ. Hence, $\ell \geq 2$. Thus, it is enough to show (3) in this notation.

Now, suppose that there exists an integer j with $2 \leq j \leq \ell$ such that

$$
\sharp\left\{i: 1 \leq i \leq k, X_{i} Y_{j} \notin I_{\Delta}\right\} \geq 2
$$

When $k=2$, we have $X_{1} Y_{j}, X_{2} Y_{j} \notin I_{\Delta}$. On the other hand, as $X_{1} Y_{1}$, $X_{2} Y_{1} \in I_{\Delta}$ and $Y_{j} \neq X_{1}, X_{2}, Y_{1}$, we obtain that at least one of $X_{1} Y_{j}, X_{2} Y_{j}$, $Y_{1} Y_{j}$ belongs to I_{Δ}. It is impossible. So we may assume that $k \geq 3$ and $X_{k-1} Y_{j}, X_{k} Y_{j} \notin I_{\Delta}$. Then $\left\{x_{k-1}\right\},\left\{x_{k}\right\}$ and $\left\{y_{1}\right\}$ belong to $\operatorname{link}_{\Delta}\left(\left\{y_{j}\right\}\right)$, and $X_{k-1} Y_{1}, X_{k} Y_{1}$ form part of the minimal system of generators of $I_{\operatorname{link}_{\Delta}\left(\left\{y_{j}\right\}\right)}$. This contradicts the assumption that $\operatorname{link}_{\Delta}\left(\left\{y_{j}\right\}\right)$ is a complete intersection complex.

In what follows, we fix the notation as in Lemma 1.8. First, we suppose that there exists an i_{0} with $1 \leq i_{0} \leq k$ such that

$$
\sharp\left\{j: 1 \leq j \leq \ell, X_{i_{0}} Y_{j} \notin I_{\Delta}\right\}=1
$$

In this case, we may assume that $X_{1} Y_{2} \notin I_{\Delta}$ and $X_{1} Y_{j} \in I_{\Delta}$ for all $3 \leq j \leq \ell$ without loss of generality. Note that $X_{2} Y_{2}, \ldots, X_{k} Y_{2} \in I_{\Delta}$ by Lemma 1.8. We claim that $\left\{x_{1}, y_{2}\right\}$ is a facet of Δ. As $X_{i} Y_{2} \in I_{\Delta}$ for each $i=2, \ldots, k$, it follows that $\left\{x_{1}, y_{2}, x_{i}\right\} \notin \Delta$. Similarly, $\left\{x_{1}, y_{2}, y_{j}\right\} \notin \Delta$ since $X_{1} Y_{j} \in I_{\Delta}$ for $j=1$ or $3 \leq j \leq \ell$. Hence $\left\{x_{1}, y_{2}\right\}$ is a facet of Δ, and $\operatorname{dim} \Delta=1$ because Δ is pure.

By the observation as above, we may assume that for every i with $1 \leq i \leq k$,

$$
\sharp\left\{j: 1 \leq j \leq \ell, X_{i} Y_{j} \notin I_{\Delta}\right\} \geq 2
$$

or $X_{i} Y_{j} \in I_{\Delta}$ holds for all $j=1, \ldots, \ell$.
Now, suppose that there exist j_{1}, j_{2} with $1 \leq j_{1}<j_{2} \leq \ell$ such that $X_{i} Y_{j_{1}}$, $X_{i} Y_{j_{2}} \notin I_{\Delta}$. Then $X_{r} Y_{j_{1}}, X_{r} Y_{j_{2}} \in I_{\Delta}$ for all $r \neq i$ by Lemma 1.8. It follows that $X_{r} X_{i} \in I_{\Delta}$ from Lemma 1.7. Then we can relabel x_{i} (say $y_{\ell+1}$). Repeating this procedure, we can get one of the following cases:
Case 1: $V=\left\{x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right\}$ such that $X_{i} Y_{j} \in I_{\Delta}$ for all i, j with $1 \leq$ $i \leq r, 1 \leq j \leq s$.
Case 2: $V=\left\{x_{1}, x_{2}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{p}, w_{1}, \ldots, w_{q}\right\}$ such that

$$
\left\{\begin{array}{lll}
X_{1} Y_{j} \in I_{\Delta}, & X_{2} Y_{j} \in I_{\Delta} & (j=1, \ldots, m), \\
X_{1} Z_{j} \notin I_{\Delta}, & X_{2} Z_{j} \in I_{\Delta} & (j=1, \ldots, p), \\
X_{1} W_{j} \in I_{\Delta}, & X_{2} W_{j} \notin I_{\Delta} & (j=1, \ldots, q),
\end{array}\right.
$$

holds for some $m \geq 1, p, q \geq 2$.
If Case 1 occurs, then $\Delta=\Delta_{\left\{x_{1}, \ldots, x_{r}\right\}} \cup \Delta_{\left\{y_{1}, \ldots, y_{s}\right\}}$ is a disjoint union. This contradicts the assumption. Thus, Case 2 must occur. If $\left\{x_{1}, x_{2}\right\} \in \Delta$, then it is a facet and so $\operatorname{dim} \Delta=1$. Hence, we may assume that $\left\{x_{1}, x_{2}\right\} \notin \Delta$. However, since Δ is connected, there exists a path between x_{1} and x_{2}.

Cases (2-a): the case where $\left\{z_{1}, w_{k}\right\} \in \Delta$ for some k with $1 \leq k \leq q$.
We may assume that $\left\{z_{1}, w_{1}\right\} \in \Delta$. Now suppose that $\operatorname{dim} \Delta \geq 2$. Then since $\left\{z_{1}, w_{1}\right\}$ is not a facet, there exists a vertex $u \in V \backslash\left\{x_{1}, x_{2}\right\}$ such that $\left\{z_{1}, w_{1}, u\right\} \in \Delta$. If $u=z_{j}(2 \leq j \leq p)$ (resp. $u=y_{i}(1 \leq i \leq m)$), then $G\left(I_{\operatorname{link}_{\Delta}\left(\left\{w_{1}\right\}\right)}\right)$ contains $X_{2} Z_{1}$ and $X_{2} Z_{j}$ (resp. $\left.X_{2} Y_{i}\right)$; see Figure 1. It is impossible since $\operatorname{link}_{\Delta}\left(\left\{w_{1}\right\}\right)$ is a complete intersection complex. When $u=w_{k}$, we can obtain a contradiction by a similar argument as above. Therefore, $\operatorname{dim} \Delta=1$.
Cases (2-b): the case where $\left\{z_{j}, w_{k}\right\} \notin \Delta$ for all j, k.
Then we may assume that (i) $\left\{z_{1}, y_{1}\right\} \in \Delta$ and (ii) $\left\{y_{1}, y_{2}\right\} \in \Delta$ or $\left\{y_{1}, w_{1}\right\} \in$ Δ. Now suppose that $\operatorname{dim} \Delta \geq 2$. Then since $\left\{z_{1}, y_{1}\right\}$ is not a facet, we have

$$
\left\{z_{1}, y_{1}, y_{i}\right\} \in \Delta, \quad\left\{z_{1}, y_{1}, w_{k}\right\} \in \Delta \quad \text { or } \quad\left\{z_{1}, y_{1}, z_{j}\right\} \in \Delta
$$

When $\left\{z_{1}, y_{1}, y_{i}\right\} \in \Delta$, we obtain that $X_{1} Y_{1}, X_{1} Y_{i} \in G\left(I_{\operatorname{link}_{\Delta}\left(\left\{z_{1}\right\}\right)}\right)$. This is a contradiction. When $\left\{z_{1}, y_{1}, w_{k}\right\} \in \Delta$, we can obtain a contradiction by a similar argument as in Case (2-a). Thus, it is enough to consider the case $\left\{z_{1}, y_{1}, z_{j}\right\} \in \Delta$.

First, we suppose that $\left\{y_{1}, y_{2}\right\} \in \Delta$ (see Figure 2).
Then $\operatorname{link}_{\Delta}\left(\left\{y_{1}\right\}\right)$ contains $\left\{z_{1}, z_{j}\right\}$ and $\left\{y_{2}\right\}$. Since $\operatorname{link}_{\Delta}\left(\left\{y_{1}\right\}\right)$ is also connected, we can find vertices z_{α}, y_{β} such that $\left\{z_{\alpha}, y_{\beta}\right\} \in \operatorname{link}_{\Delta}\left(\left\{y_{1}\right\}\right)$. In particular, $\left\{z_{\alpha}, y_{\beta}, y_{1}\right\} \in \Delta$. This yields a contradiction because $X_{1} Y_{1}, X_{1} Y_{\beta}$ are contained in $G\left(I_{\operatorname{link}_{\Delta}\left(\left\{z_{\alpha}\right\}\right)}\right)$.

Next, suppose that $\left\{y_{1}, w_{1}\right\} \in \Delta$ (see Figure 3).
Then $\operatorname{link}_{\Delta}\left(\left\{y_{1}\right\}\right)$ contains $\left\{z_{1}, z_{j}\right\}$ and $\left\{w_{1}\right\}$. Since $\operatorname{link}_{\Delta}\left(\left\{y_{1}\right\}\right)$ is also connected, we can also find vertices z_{α}, y_{β} such that $\left\{z_{\alpha}, y_{\beta}\right\} \in \operatorname{link}_{\Delta}\left(\left\{y_{1}\right\}\right)$ (notice that $\left\{z_{j}, w_{k}\right\} \notin \Delta$). In particular, $\left\{z_{\alpha}, y_{1}, y_{\beta}\right\} \in \Delta$. This yields a contradiction because $X_{1} Y_{1}, X_{1} Y_{\beta}$ are contained in $G\left(I_{\operatorname{link}_{\Delta}\left(\left\{z_{\alpha}\right\}\right)}\right)$.

Figure 1. The case $\left\{z_{1}, z_{j}, w_{1}\right\} \in \Delta$ in Case (2-a).

Figure 2. The case $\left\{z_{1}, y_{1}, z_{j}\right\},\left\{y_{1}, y_{2}\right\} \in \Delta$ in Case (2-b).

Figure 3. The case $\left\{z_{1}, y_{1}, z_{j}\right\},\left\{y_{1}, w_{1}\right\} \in \Delta$ in Case (2-b).
Therefore, we have $\operatorname{dim} \Delta=1$. So, we have finished the proof of Theorem 1.5.

An arbitrary Noetherian ring R is said to satisfy Serre's condition $\left(S_{2}\right)$ if $\operatorname{depth} R_{P} \geq \min \left\{\operatorname{dim} R_{P}, 2\right\}$ for every prime P of R. A Stanley-Reisner ring $K[\Delta]$ satisfies $\left(S_{2}\right)$ if and only if Δ is pure and $\operatorname{link}_{\Delta}(F)$ is connected for every face F with $\operatorname{dim}^{\operatorname{link}}{ }_{\Delta}(F) \geq 1$; see e.g., [10, p. 454]. In particular, if $K[\Delta]$ satisfies $\left(S_{2}\right)$, then Δ is pure and connected if $\operatorname{dim} \Delta \geq 1$.

Let Δ be a connected simplicial complex on V with $\operatorname{dim} \Delta \geq 2$. Our main theorem says that if $\operatorname{link}_{\Delta}(\{x\})$ is a complete intersection complex for every $x \in V$ then so is Δ itself. Thus, it is natural to ask the following question:

Question 1.9. Does there exist a proper subset $W \subseteq V$ for which "link ${ }_{\Delta}(\{x\})$ is a complete intersection complex for all $x \in W$ " implies that Δ is a complete intersection complex?

The following corollary gives an answer to the above question in the $\left(S_{2}\right)$ case.

Corollary 1.10. Let Δ be a simplicial complex with $\operatorname{dim} \Delta \geq 2$. Assume that $K[\Delta]$ satisfies $\left(S_{2}\right)$. Then the following conditions are equivalent:
(1) $K[\Delta]$ is a complete intersection ring;
(2) For any face F with $\operatorname{dim}_{\operatorname{link}}^{\Delta}(F)=1, \operatorname{link}_{\Delta}(F)$ is a complete intersection complex;
(3) There exists $W \subseteq V$ such that $\operatorname{dim} \Delta_{V \backslash W} \leq \operatorname{dim} \Delta-3$ which satisfies the following condition:

$$
{ }^{\operatorname{link}_{\Delta}}(\{x\}) \text { is a complete intersection complex for all } x \in W . "
$$

Proof. Note that Δ is pure. Put $d=\operatorname{dim} \Delta+1$.
$(1) \Longrightarrow(3)$: It is enough to put $W=V$.
$(3) \Longrightarrow(2)$: Let $W \subseteq V$ be a subset that satisfies the condition (3). Let F be a face with $\operatorname{dim}_{\operatorname{link}}^{\Delta}(F)=1$. Since Δ is pure, $\sharp(F)=d-1-$ $\operatorname{dim}_{\operatorname{link}}^{\Delta}(F)=d-2$. As $\operatorname{dim} \Delta_{V \backslash W} \leq d-4, F$ is not contained in $V \backslash W$. Thus, there exists a vertex $i \in F$ such that $i \in W$. Then since $\operatorname{link}_{\Delta}(\{i\})$ is a complete intersection complex by assumption, $\operatorname{link}_{\Delta}(F)$ is also a complete intersection complex, as required.
$(2) \Longrightarrow(1)$: We use an induction on $d \geq 3$. First, suppose that $d=3$. Then for each $i \in V$, since $\operatorname{dim}_{\operatorname{link}}^{\Delta}(\{i\})=1, \operatorname{link}_{\Delta}(\{i\})$ is a complete intersection
complex by the assumption (2). Hence, $K[\Delta]$ is a complete intersection ring by Theorem 1.5.

Next, suppose that $d \geq 4$. Let $i \in V$. Since $K[\Delta]$ satisfies $\left(S_{2}\right)$, we have that $\Gamma=\operatorname{link}_{\Delta}(\{i\})$ is connected and $\operatorname{dim} \Gamma=d-2 \geq 2$. Moreover, for any face G in Γ with $\operatorname{dim}_{\operatorname{link}}^{\Gamma}(G)=1, \operatorname{link}_{\Gamma}(G)=\operatorname{link}_{\Delta}(G \cup\{i\})$ is a complete intersection complex by assumption. Hence, by the induction hypothesis, $K\left[\operatorname{link}_{\Delta}(\{i\})\right]$ is a complete intersection ring. Therefore, $K[\Delta]$ is a complete intersection ring by Theorem 1.5 again.

To complete the proof of Theorem 1, we must consider the case $\operatorname{dim} \Delta=1$. In this case, there exist connected locally complete intersection complexes which are not complete intersection.

Let Δ be a one-dimensional simplicial complex on $V=[n] . \Delta$ is said to be the n-gon for $n \geq 3$ (resp. the n-pointed path for $n \geq 2$) if Δ is pure and its facets consist of $\{i, i+1\}(i=1,2 \ldots, n-1)$ and $\{n, 1\}$ (resp. its facets consists of $\{i, i+1\}(i=1,2 \ldots, n-1))$ after suitable change of variables.

Proposition 1.11. Let Δ be a 1-dimensional connected complex. Then the following conditions are equivalent:
(1) Δ is a locally complete intersection complex;
(2) Δ is locally Gorenstein (i.e., $K\left[\operatorname{link}_{\Delta}(\{i\})\right]$ is Gorenstein for every $\left.i \in V\right)$;
(3) Δ is isomorphic to either one of the following:
(a) the n-gon for $n \geq 3$;
(b) the n-pointed path for $n \geq 2$.

Proof. Note that $(1) \Longrightarrow(2)$ is clear.
Suppose that Δ is a locally Gorenstein. Then since $\operatorname{link}_{\Delta}(\{i\})$ is a zerodimensional Gorenstein complex, it consists of at most two points. Such a complex is isomorphic to either one of the n-gon ($n \geq 3$) or the n-pointed path ($n \geq 2$).

Conversely, if Δ is isomorphic to either n-gon or n-pointed path, then $\operatorname{link}_{\Delta}(\{i\})$ is a complete intersection complex. Hence, Δ is locally complete intersection.

REMARK 1.12. Let Δ be a connected simplicial complex on $V=[n]$ of $\operatorname{dim} \Delta=1$. Then Δ is a locally complete intersection complex but not a complete intersection complex if and only if it is isomorphic to the n-gon for some $n \geq 5$ or the n-pointed path for some $n \geq 4$.

Example 1.13. Let K be a field. The Stanley-Reisner ring of the 4-pointed path Δ_{1} is $K\left[X_{1}, X_{2}, X_{3}, X_{4}\right] /\left(X_{1} X_{3}, X_{1} X_{4}, X_{2} X_{4}\right)$. The Stanley-Reisner ring of the 5-gon Δ_{2} is $K\left[X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right] /\left(X_{1} X_{3}, X_{1} X_{4}, X_{2} X_{4}, X_{2} X_{5}\right.$, $X_{3} X_{5}$).

REmark 1.14. When $\operatorname{dim} \Delta \geq 2$, there are many examples of locally Gorenstein complexes which are not locally complete intersection complexes.

In the last of this section, we give a structure theorem for locally complete intersection complexes.

Theorem 1.15. Let Δ be a simplicial complex on V such that $V \neq \emptyset$. Then Δ is a locally complete intersection complex if and only if it is a finitely many disjoint union of the following connected complexes:
(a) a complete intersection complex Γ with $\operatorname{dim} \Gamma \geq 2$;
(b) m-gon $(m \geq 3)$;
(c) m^{\prime}-pointed path $\left(m^{\prime} \geq 2\right)$;
(d) a point.

When this is the case, $K[\Delta]$ is Cohen-Macaulay (resp. Buchsbaum) if and only if $\operatorname{dim} \Delta=0$ or Δ is connected (resp. pure).

To prove the theorem, it suffices to show the following lemma.
Lemma 1.16. Assume that $V=V_{1} \cup V_{2}$ such that $V_{1} \cap V_{2}=\emptyset$. Let Δ_{i} be a simplicial complex on V_{i} for $i=1,2$. If Δ_{1} and Δ_{2} are both locally complete intersection complexes, then so is $\Delta_{1} \cup \Delta_{2}$.

Proof. Put $\Delta=\Delta_{1} \cup \Delta_{2}$ and $V_{1}=[m]$ and $V_{2}=[n]$. If we write

$$
K\left[\Delta_{1}\right]=K\left[X_{1}, \ldots, X_{m}\right] / I_{\Delta_{1}} \quad \text { and } \quad K\left[\Delta_{2}\right]=K\left[Y_{1}, \ldots, Y_{n}\right] / I_{\Delta_{2}},
$$

then

$$
K[\Delta] \cong K\left[X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\right] /\left(I_{\Delta_{1}}, I_{\Delta_{2}},\left\{X_{i} Y_{j}\right\}_{1 \leq i \leq m, 1 \leq j \leq n}\right)
$$

Hence, $K[\Delta]_{X_{i}} \cong K\left[\Delta_{1}\right]_{X_{i}}$ and $K[\Delta]_{Y_{j}} \cong K\left[\Delta_{2}\right]_{Y_{j}}$ are complete intersection rings. Thus, Δ is also a locally complete intersection complex by Lemma 1.2.

REmARK 1.17. In the above lemma, we suppose that both Δ_{1} and Δ_{2} are generalized complete intersection complexes. Then $\Delta_{1} \cup \Delta_{2}$ is a generalized complete intersection complexes if and only if $\operatorname{dim} \Delta_{1}=\operatorname{dim} \Delta_{2}$.

EXAMPLE 1.18. Let Δ be the disjoint union of the standard $(m-1)$-simplex and the standard $(n-1)$-simplex. Then Δ is a locally complete intersection complex by Lemma 1.16. Moreover, $K[\Delta]$ is isomorphic to

$$
K\left[X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\right] /\left(X_{i} Y_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right)
$$

and it is a generalized complete intersection complex if and only if $m=n$.

2. Buchsbaumness of powers for Stanley-Reisner ideals

The Stanley-Reisner ring $K[\Delta]$ has (FLC) if and only if Δ is pure and $K\left[\operatorname{link}_{\Delta}(\{v\})\right]$ is Cohen-Macaulay for every $v \in V$. Then $H_{\mathfrak{m}}^{i}(K[\Delta])=$ $\left[H_{\mathfrak{m}}^{i}(K[\Delta])\right]_{0}$ for all $i<\operatorname{dim} K[\Delta]$ and so that $K[\Delta]$ is Buchsbaum. See [6, p. 73, Theorem 8.1].

Let $\ell \geq 2$ be an integer. Suppose that S / I_{Δ}^{ℓ} is Buchsbaum. In [5], Herzog, Takayama, and the first author showed that this condition implies that S / I_{Δ} is Buchsbaum. The converse is not true. What can we say about the structure of Δ ? This gives a motivation of our study in this section.

The main result in this section is the following theorem, which is an analogue of the Cowsik-Nori theorem in [2], and the Goto-Takayama theorem in [3].

Theorem 2.1. Put $S=K\left[X_{1}, \ldots, X_{n}\right]$. Let I_{Δ} denote the Stanley-Reisner ideal of a simplicial complex Δ on $V=[n]$. Then the following conditions are equivalent:
(1) I_{Δ} is generated by a regular sequence;
(2) S / I_{Δ}^{ℓ} is Cohen-Macaulay for all $\ell \geq 1$;
(3) S / I_{Δ}^{ℓ} is Buchsbaum for all $\ell \geq 1$;
$(3)^{\prime} \sharp\left\{\ell \in \mathbb{Z}_{\geq 1}: S / I_{\Delta}^{\ell}\right.$ is Buchsbaum $\}=\infty$.
Note that $(1) \Longleftrightarrow(2)$ is a special case of the Cowsik-Nori theorem and $(2) \Longrightarrow(3) \Longrightarrow(3)^{\prime}$ is trivial. Thus, our contribution is $(3)^{\prime} \Longrightarrow(1)$.

In what follows, we put $d=\operatorname{dim} S / I_{\Delta}, c=\operatorname{height} I_{\Delta}\left(=\operatorname{codim} I_{\Delta}\right)=n-d$. Put $q=\operatorname{indeg} I_{\Delta} \geq 2$, the initial degree of I, that is, q is the least degree of the minimal generators of I, in other words, $q=\min \left\{\sharp(F): F \in 2^{V} \backslash \Delta\right\}$. Put $e=e\left(S / I_{\Delta}\right)$, the multiplicity of I_{Δ}, which is equal to the number of facets of dimension $d-1$. Note that for any homogeneous ideal I of S, the following formula for multiplicities is known:

$$
e(S / I)=\sum_{P \in \operatorname{Assh}_{S}(S / I)} e(S / P) \cdot \lambda_{S_{P}}\left(S_{P} / I S_{P}\right)
$$

where $\operatorname{Assh}_{S}(S / I)=\left\{P \in \operatorname{Min}_{S}(S / I): \operatorname{dim} S / P=\operatorname{dim} S / I\right\}$ and $\lambda_{R}(M)$ denotes the length of an R-module M over an Artinian local ring R.

In order to prove the theorem, it suffices to show that if S / I_{Δ}^{ℓ} is Buchsbaum for infinitely many $\ell \geq 1$, then Δ is a complete intersection complex.

First, we give a formula for multiplicities of S / I_{Δ}^{ℓ} for every $\ell \geq 1$.
Lemma 2.2. Under the above notation, we have

$$
e\left(S / I_{\Delta}^{\ell}\right)=e \cdot\binom{c+\ell-1}{c}
$$

Proof. Let $P \in \operatorname{Assh}_{S}\left(S / I_{\Delta}^{\ell}\right)$. Then P is a minimal prime over I_{Δ} such that S / P is isomorphic to a polynomial ring in d variables and S_{P} is a regular
local ring of dimension c. Thus, we get

$$
e\left(S / I_{\Delta}^{\ell}\right)=\sum_{P \in \operatorname{Assh} S / I_{\Delta}} e(S / P) \cdot \lambda_{S_{P}}\left(S_{P} / I_{\Delta}^{\ell} S_{P}\right)=e \cdot\binom{c+\ell-1}{c}
$$

as required.
We recall the following theorem, which gives a lower bound on multiplicities for homogeneous Buchsbaum algebras:

Lemma 2.3 ([4, Theorem 3.2]). Assume that S / I is a homogeneous Buchsbaum K-algebra. Put $c=\operatorname{codim} I \geq 2, q=\operatorname{indeg} I \geq 2$ and $d=\operatorname{dim} S / I \geq 1$. Then

$$
e(S / I) \geq\binom{ c+q-2}{c}+\sum_{i=1}^{d-1}\binom{d-1}{i-1} \cdot \operatorname{dim}_{K} H_{\mathfrak{m}}^{i}(S / I)
$$

Applying this formula to S / I_{Δ}^{ℓ}, yields the following corollary.
Corollary 2.4. If S / I_{Δ}^{ℓ} is Buchsbaum, then

$$
e\left(S / I_{\Delta}^{\ell}\right) \geq\binom{ c+q \ell-2}{c}
$$

In particular, we have

$$
e\left(S / I_{\Delta}\right) \geq \frac{\binom{c+q \ell-2}{c}}{\binom{c+\ell-1}{c}}=\frac{(q \ell+c-2) \cdots(q \ell+1) q \ell(q \ell-1)}{(\ell+c-1) \cdots(\ell+1) \ell}
$$

In the above corollary, if we fix c, q and let ℓ tend to ∞, then the limit of the right hand side in the last inequality tends to q^{c}. Therefore, if S / I_{Δ}^{ℓ} is Buchsbaum for infinitely many $\ell \geq 1$, then $e\left(S / I_{\Delta}\right) \geq q^{c}$. For instance, if $I_{\Delta}=\left(m_{1}, \ldots, m_{c}\right)$ is a complete intersection ideal, then this inequality holds because

$$
e\left(S / I_{\Delta}\right)=\operatorname{deg} m_{1} \cdots \operatorname{deg} m_{c} \geq q^{c}
$$

However, if I is a locally complete intersection ideal but not a complete intersection ideal, then this is not true. This is a key point in the proof of Theorem 2.1. Namely we have the following proposition.

Proposition 2.5. Assume that Δ is pure and a locally complete intersection complex but not a complete intersection complex. Then

$$
e(K[\Delta])<2^{c}
$$

Proof. First, we consider the case $d=1$. Then Δ consists of n points, and so that $c=n-1, e=n$. As Δ is not a complete intersection complex, we have $n \geq 3$. Then $e=n<2^{c}=2^{n-1}$ is clear.

Next, we consider the case $d=2$. By assumption, Δ is isomorphic to the following complexes:
(a) the n-gon for $n \geq 5$;
(b) the n-pointed path for $n \geq 4$;
(c) the disjoint union of k connected complexes $\Delta_{1}, \ldots, \Delta_{k}$ for some $k \geq 2$, where each Δ_{i} is isomorphic to the m-gon for some $m \geq 3$ or the m-pointed path for $m \geq 2$.
In particular, we have $e \leq n$ and $c=n-2$. If $n \geq 5$, then $e \leq n<2^{n-2}=2^{c}$ is clear. So we may assume that $3 \leq n \leq 4$. Then Δ is isomorphic to either the 4 -pointed path or two disjoint union of the 2 -pointed paths. In any case, we have $e \leq 3<4=2^{c}$.

Finally, we consider the case $d \geq 3$. Theorem 1.5 implies that Δ is disconnected, and so that $c \geq d$. Then we consider the following three cases:
(a) the case $c=d$;
(b) the case $c=d+1$;
(c) the case $c \geq d+2$.

When $c=d, \Delta$ is a disjoint union of two ($d-1$)-simplices. Then $e=2<$ $2^{3} \leq 2^{c}$, as required. When $c=d+1, \Delta$ has just two connected components. One of components is a $(d-1)$-simplex and the other one is a pure $(d-1)$ subcomplex of the boundary complex of a d-simplex. In particular, $e \leq d+2<$ $2^{c}=2^{d+1}$.

So we may assume that $c \geq d+2$. Then Δ is a disjoint union of complete intersection complexes of dimension $d-1$ (say, $\Delta_{1}, \ldots, \Delta_{k}$) by Theorem 1.15, where $k \leq \frac{n}{d}=1+\frac{c}{d}$. Moreover, since $c \geq d+2$, we obtain that $c(d-1) \geq$ $(d+2)(d-1)>d^{2}$, and thus $d+\frac{c}{d}<c$. Hence,

$$
e(K[\Delta])=\sum_{i=1}^{k} e\left(K\left[\Delta_{i}\right]\right) \leq 2^{d} \cdot k \leq 2^{d} \cdot\left(1+\frac{c}{d}\right) \leq 2^{d} \cdot 2^{\frac{c}{d}}=2^{d+\frac{c}{d}}<2^{c},
$$

where the first inequality follows from the lemma below.
Lemma 2.6. Assume that Δ is a complete intersection complex of dimension $d-1$. Then $e(K[\Delta]) \leq 2^{d}$.

Proof. Write $I_{\Delta}=\left(m_{1}, \ldots, m_{c}\right)$, where $\operatorname{deg} m_{i}=h_{i}(i=1, \ldots, c)$. Then

$$
e(K[\Delta])=h_{1} \cdots h_{c} \leq 2^{h_{1}-1} \cdots 2^{h_{c}-1}=2^{h_{1}+\cdots+h_{c}-c} \leq 2^{n-c}=2^{d}
$$

as required.
We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1. It suffices to show that I_{Δ} is a complete intersection ideal whenever S / I_{Δ}^{ℓ} is Buchsbaum for infinitely many $\ell \geq 1$.

By assumption and the above observation, $e(K[\Delta]) \geq 2^{c}$. On the other hand, S / I_{Δ} is Buchsbaum and thus pure by [5, Theorem 2.6]. We also have that Δ is a locally complete intersection complex by the Goto-Takayama theorem.

Suppose that Δ is not a complete intersection complex. Then by Proposition 2.5, we have that $e(K[\Delta])<2^{c}$. This is a contradiction. Hence, Δ must be a complete intersection complex.

EXAMPLE 2.7. Let $\Delta=\Delta_{n}$ be the n-gon for $n \geq 5$ (or the n-pointed path for $n \geq 4$). Then S / I_{Δ}^{ℓ} is not Buchsbaum for $\ell \geq 6$.

Proof. We consider the case of n-gons only. Set $I=I_{\Delta}=\left(X_{1} X_{3}, X_{1} X_{4}, \ldots\right.$, $X_{n-2} X_{n}$). Then $e=e(S / I)=n, c=\operatorname{codim} I=n-2$ and $q=\operatorname{indeg} I=2$.

Suppose that S / I_{Δ}^{ℓ} is Buchsbaum. By Corollary 2.4,

$$
n=e(S / I) \geq \frac{(2 \ell+n-4) \cdots(2 \ell+1) 2 \ell(2 \ell-1)}{(\ell+n-3) \cdots(\ell+1) \ell}
$$

Fix $n \geq 5$ and put $f(\ell)$ to be the right-hand side of the above inequality. Then one can easily see that $f(\ell)$ is an increasing function of ℓ. Thus if $\ell \geq 6$, then

$$
1 \geq \frac{(n+8) \cdots 12 \cdot 11}{(n+3) \cdots 7 \cdot 6} \times \frac{1}{n}=\frac{(n+8)(n+7)(n+6)(n+5)(n+4)}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot n}
$$

Put $g(n)$ to be the right-hand side of the above inequality. Then since

$$
g(n+1) / g(n)=\frac{n^{2}+9 n}{n^{2}+5 n+4} \geq 1 \quad \text { and } \quad g(5)=1.02 \cdots>1
$$

we get a contradiction.
It is difficult to determine the Buchsbaumness for S / I^{ℓ}.
Example 2.8. Let $S=K\left[X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right]$ be a polynomial ring. Let $I=$ $\left(X_{1} X_{3}, X_{1} X_{4}, X_{2} X_{4}, X_{2} X_{5}, X_{3} X_{5}\right)$ be the Stanley-Reisner ideal (of height 3) of the 5 -gon. Then S / I^{2} is Cohen-Macaulay with $\operatorname{dim} S / I^{2}=2$. Indeed, Macaulay 2 yields the following minimal free resolution of S / I^{2} :

$$
0 \rightarrow S^{10}(-6) \rightarrow S^{24}(-5) \rightarrow S^{15}(-4) \rightarrow S \rightarrow S / I^{2} \rightarrow 0
$$

On the other hand, depth $S / I^{3}=0$ since $X_{1} X_{2} X_{3} X_{4} X_{5} \in I^{3}: \mathfrak{m} \backslash I^{3}$. We do not know whether S / I^{3} is Buchsbaum or not.

In the following, we give an example of the simplicial complex Δ for which S / I_{Δ}^{2} is Buchsbaum but not Cohen-Macaulay (and this implies that Δ is not a complete intersection complex). In order to do that, we use an extension of Hochster's formula describing the local cohomology of a monomial ideal; see [9]. Fix $\ell \geq 1$ and set $G\left(I_{\Delta}^{\ell}\right)=\left\{m_{1}, \ldots, m_{\mu}\right\}$. Write $m=X_{1}^{\nu_{1}(m)} \cdots X_{n}^{\nu_{n}(m)}$ for any monomial m in $S=K\left[X_{1}, \ldots, X_{n}\right]$. For a vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$, we put

$$
G_{a}=\left\{i \in V: a_{i}<0\right\} .
$$

Then we define the simplicial complex $\Delta_{\mathbf{a}}\left(I_{\Delta}^{\ell}\right) \subseteq \Delta$ by

$$
\Delta_{\mathbf{a}}\left(I_{\Delta}^{\ell}\right)=\left\{L \backslash G_{a}: G_{a} \subseteq L \in \Delta, L \text { satisfies the condition }(*)\right\}
$$

where
$(*)$ for all $m \in G\left(I_{\Delta}^{\ell}\right)$, there exists an $i \in V \backslash L$ such that $\nu_{i}(m)>a_{i}(\geq 0)$.
For a graded S-module $M, F(A, \mathbf{t})=\sum_{\mathbf{a} \in \mathbb{Z}^{n}} \operatorname{dim}_{K} A_{\mathbf{a}} \mathbf{t}^{\mathbf{a}}$ is called the HilbertPoincaré series of M. Then Hochster-Takayama formula (see [9]) says that

$$
F\left(H_{\mathfrak{m}}^{i}\left(S / I_{\Delta}^{\ell}\right), \mathbf{t}\right)=\sum_{F \in \Delta} \sum_{\substack{\mathbf{a} \in \mathbb{Z}^{n} \\ G_{a}=F, a_{i} \leq \ell-1}} \operatorname{dim}_{K} \widetilde{H}_{i-\sharp(F)-1}\left(\Delta_{\mathbf{a}}\left(I_{\Delta}^{\ell}\right) ; K\right) \mathbf{t}^{\mathbf{a}}
$$

where $\widetilde{H}_{i}(\Delta ; K)$ denotes the i th simplicial reduced homology of Δ with values in K. In particular, we have

$$
F\left(H_{\mathfrak{m}}^{1}\left(S / I_{\Delta}^{\ell}\right), \mathbf{t}\right)=\sum_{\mathbf{a} \in \mathcal{A}} \operatorname{dim}_{K} \widetilde{H}_{0}\left(\Delta_{\mathbf{a}}\left(I_{\Delta}^{\ell}\right) ; K\right) \mathbf{t}^{\mathbf{a}}+\sum_{i=1}^{n} \sum_{\mathbf{a} \in \mathcal{A}_{i}} \mathbf{t}^{\mathbf{a}}
$$

where

$$
\begin{aligned}
\mathcal{A} & =\left\{\mathbf{a} \in \mathbb{Z}^{n}: 0 \leq a_{1}, \ldots, a_{n} \leq \ell-1, \Delta_{\mathbf{a}}\left(I_{\Delta}^{\ell}\right) \text { is disconnected }\right\} \\
\mathcal{A}_{i} & =\left\{\mathbf{a} \in \mathbb{Z}^{n}: 0 \leq a_{1}, \ldots, \widehat{a_{i}} \ldots, a_{n} \leq \ell-1, \Delta_{\mathbf{a}}\left(I_{\Delta}^{\ell}\right)=\{\emptyset\}\right\}
\end{aligned}
$$

for each $i=1, \ldots, n$.
Example 2.9. Let $S=K\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ be a polynomial ring over a field K. Let $I=\left(X_{1} X_{3}, X_{1} X_{4}, X_{2} X_{4}\right)$ be the Stanley-Reisner ideal of the 4-pointed path Δ.

Then S / I^{2} is Buchsbaum but not Cohen-Macaulay. In fact, $\operatorname{dim} S / I^{2}=2$, $\operatorname{depth} S / I^{2}=1$ and $\operatorname{dim}_{K} H_{\mathfrak{m}}^{1}\left(S / I^{2}\right)=1$.

Proof. The ideal I can be considered as the edge ideal of some bipartite graph G. Thus we have $I^{2}=I^{(2)}$, the second symbolic power of I, by [7, Section 5], and so $H_{\mathfrak{m}}^{0}\left(S / I^{2}\right)=0$.

Hence, it suffices to show that $\mathfrak{m} H_{\mathfrak{m}}^{1}\left(S / I^{2}\right)=0$ and $H_{\mathfrak{m}}^{1}\left(S / I^{2}\right) \neq 0$. We first show the following claim. Put $\Delta_{\mathbf{a}}=\Delta_{\mathbf{a}}\left(I^{2}\right)$ for simplicity.
Claim 1: $\mathcal{A}=\{(1,0,0,1)\}$ and $\Delta_{(1,0,0,1)}$ is spanned by $\{\{(1,2)\},\{3,4\}\}$.
(This implies that $K t_{1} t_{4} \subseteq H_{\mathfrak{m}}^{1}\left(S / I^{2}\right)$.)
First of all, we define monomials m_{1}, \ldots, m_{6} as in Table 1:
Namely,

$$
G\left(I^{2}\right)=\left\{X_{1}^{2} X_{3}^{2}, X_{1}^{2} X_{3} X_{4}, X_{1}^{2} X_{4}^{2}, X_{1} X_{2} X_{3} X_{4}, X_{1} X_{2} X_{4}^{2}, X_{2}^{2} X_{4}^{2}\right\}
$$

Fix $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in(\mathbb{Z} \cap\{0,1\})^{4}$. As $\nu_{3}\left(m_{4}\right)=\nu_{4}\left(m_{4}\right)=1$, it follows that $\{1,2\} \in \Delta_{\mathbf{a}}$ if and only if $a_{3}=0$ or $a_{4}=0$. Similarly, $\{3,4\} \in \Delta_{\mathbf{a}}$ if and only

Table 1.

	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}
$\nu_{1}(m)$	2	2	2	1	1	0
$\nu_{2}(m)$	0	0	0	1	1	2
$\nu_{3}(m)$	2	1	0	1	0	0
$\nu_{4}(m)$	0	1	2	1	2	2

if $a_{1}=0$ or $a_{2}=0$. If $\sharp\left\{i: 1 \leq i \leq 4, a_{i}=1\right\} \geq 3$, then $\Delta_{\mathbf{a}}=\emptyset$. So, we may assume that $\sharp\left\{i: 1 \leq i \leq 4, a_{i}=1\right\} \leq 2$ and $a_{1} \geq a_{4}$.

If $\{2,3\} \notin \Delta_{\mathbf{a}}$, then $a_{1}=a_{4}=1$. That is $\mathbf{a}=(1,0,0,1)$. Indeed, $\Delta_{(1,0,0,1)}=$ $\langle\{1,2\},\{3,4\}\rangle$ is disconnected. Otherwise, $\{2,3\} \in \Delta_{\mathbf{a}}\left(I^{2}\right)$. Then $\left(a_{1}, a_{4}\right)=$ $(0,0)$ or $(1,0)$. In these cases, we have

$$
\Delta_{(0, *, *, 0)}=\Delta_{(1,0,0,0)}=\Delta_{(1,0,1,0)}=\Delta, \quad \Delta_{(1,1,0,0)}=\langle\{1,2\},\{2,3\}\rangle
$$

In particular, $\Delta_{\mathbf{a}}$ is connected in any case. Therefore, we proved Claim 1.
Next, we show the following claim.
Claim 2: $\mathcal{A}_{1}=\mathcal{A}_{2}=\mathcal{A}_{3}=\mathcal{A}_{4}=\emptyset$.
To see $\mathcal{A}_{1}=\emptyset$, let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{Z}^{4}$ such that $a_{1}<0,0 \leq a_{2}, a_{3}$, $a_{4} \leq 1$. Note that

$$
\Delta_{\mathbf{a}}\left(I^{2}\right)=\{L \backslash\{1\}:\{1\} \subseteq L \in \Delta, L \text { satisfies }(*)\}
$$

and that $\{1\} \subseteq L \in \Delta$ if and only if $L=\{1\}$ or $\{1,2\}$. By a similar argument as in the proof of the claim 1, we obtain that

$$
\{2\}=\{1,2\} \backslash\{1\} \in \Delta_{\mathbf{a}}\left(I^{2}\right) \quad \Longleftrightarrow \quad a_{3}=0 \quad \text { or } \quad a_{4}=0 .
$$

Then $\Delta_{\mathbf{a}}\left(I^{2}\right)=\{\emptyset,\{2\}\} \neq\{\emptyset\}$.
Now suppose that $a_{3}=a_{4}=1$. Then $\emptyset \notin \Delta_{\mathbf{a}}\left(I^{2}\right)$ because $m_{2}=X_{1}^{2} X_{3} X_{4} \in$ $G\left(I^{2}\right)$. This yields that $\Delta_{\mathbf{a}}\left(I^{2}\right) \neq\{\emptyset\}$. Therefore, $\mathcal{A}_{1}=\emptyset$. Similarly, one has $\mathcal{A}_{2}=\mathcal{A}_{3}=\mathcal{A}_{4}=\emptyset$.

The above two claims imply that $H_{\mathfrak{m}}^{1}\left(S / I^{2}\right) \cong K t_{1} t_{4}$, as required.
Question 2.10. Can you replace Buchsbaumness with quasi-Buchsbaumness in Theorem 2.1?

Question 2.11. Let I be a generically complete intersection homogeneous ideal of a polynomial ring S. If S / I^{ℓ} is Buchsbaum for all $\ell \geq 1$, then is I a complete intersection ideal?

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Univ. Press, 1993. MR 1251956
[2] R. C. Cowsik and M. V. Nori, On the fibers of blowing up, J. Indian Math. Soc. (N.S.) 40 (1976), 217-222. MR 0572990
[3] S. Goto and Y. Takayama, Stanley-Reisner ideals whose powers have finite length cohomologies, Proc. Amer. Math. Soc. 135 (2007), 2355-2364. MR 2302556
[4] S. Goto and K. Yoshida, Buchsbaum homogeneous algebras with minimal multiplicity, J. Pure Appl. Algebra 210 (2007), 735-749. MR 2324604
[5] J. Herzog, Y. Takayama and N. Terai, On the radical of a monomial ideal, Arch. Math. 85 (2005), 397-408. MR 2181769
[6] R. P. Stanley, Combinatorics and commutative algebra, 2nd ed., Birkhäuser, Boston, 1996. MR 1453579
[7] A. Simis, W. V. Vasconcelos and R. H. Villarreal, On the ideal theory of graphs, J. Algebra. 167 (1994), 389-416. MR 1283294
[8] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Springer, Berlin, 1986. MR 0881220
[9] Y. Takayama, Combinatorial characterization of generalized Cohen-Macaulay monomial ideals, Bull. Math. Soc. Math. Roumanie (N.S.) 48 (2005), 327-344. MR 2165349
[10] N. Terai, Alexander duality in Stanley-Reinser rings, Affine Algebraic Geometry, Osaka Univ. Press, Osaka, 2007, pp. 449-462, MR 2330484
Naoki Terai, Department of Mathematics, Faculty of Culture and Education, Saga University, Saga 840-8502, Japan

E-mail address: terai@cc.saga-u.ac.jp
Ken-ichi Yoshida, Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan

E-mail address: yoshida@math.nagoya-u.ac.jp

