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LOCALLY COMPLETE INTERSECTION
STANLEY–REISNER IDEALS

NAOKI TERAI AND KEN-ICHI YOSHIDA

Abstract. In this paper, we prove that the Stanley–Reisner ideal
of any connected simplicial complex of dimension ≥ 2 that is
locally complete intersection is a complete intersection ideal.

As an application, we show that the Stanley–Reisner ideal
whose powers are Buchsbaum is a complete intersection ideal.

Introduction

By a simplicial complex Δ on a vertex set V = [n] = {1,2, . . . , n}, we mean
that Δ is a nonvoid family of subsets of V such that (i) {v} ∈ Δ for every
v ∈ V , and (ii) F ∈ Δ, G ⊆ F imply G ∈ Δ. Let S = K[X1, . . . ,Xn] be a
polynomial ring over a field K. The Stanley–Reisner ideal of Δ, denoted
by IΔ, is the ideal of S generated by all squarefree monomials Xi1 · · · Xip

such that 1 ≤ i1 < · · · < ip ≤ n and {i1, . . . , ip} /∈ Δ. The Stanley–Reisner ring
of Δ over K is the K-algebra K[Δ] = S/IΔ. Any squarefree monomial ideal
I with I ⊆ (X1, . . . ,Xn)2 is a Stanley–Reisner ideal IΔ for some simplicial
complex Δ on V = [n].

An element F ∈ Δ is called a face of Δ. A maximal face of Δ with respect
to inclusion is called a facet of Δ. The dimension of Δ, denoted by dimΔ,
is the maximum of the dimensions dimF = �(F ) − 1, where F runs through
all faces F of Δ and �(F ) denotes the cardinality of F . Note that the Krull
dimension of K[Δ] is equal to dimΔ + 1. A simplicial complex is called pure
if all facets have the same dimension. See [1], [6] for more information on
Stanley–Reisner rings.

A homogeneous ideal I in S = K[X1, . . . ,Xn] is said to be a locally complete
intersection ideal if IP is a complete intersection ideal (that is, generated by
a regular sequence) for any prime P ∈ Proj(S/I). A simplicial complex Δ
on V is said to be a locally complete intersection complex if IlinkΔ({v}) is a
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complete intersection ideal for every v ∈ V . Then Δ is a locally complete
intersection complex if and only if IΔ is a locally complete intersection ideal.
Note that a locally complete intersection ideal I is called a generalized com-
plete intersection ideal in the sense of Goto–Takayama (see [3]) if I = IΔ is
the Stanley–Reisner ideal for some pure simplicial complex Δ.

In Section 1, we consider the structure of simplicial complexes which are
locally complete intersection. This is the main purpose of the paper. One can
easily see that if a Stanley–Reisner ideal I is a complete intersection ideal,
then it can be written as

I = (X11 · · · X1q1 , . . . ,Xc1 · · · Xcqc),

where c ≥ 0 and qi is a positive integer with qi ≥ 2 for i = 1, . . . , c and all Xij

are distinct variables.
A complete intersection simplicial complex Δ is connected if dimΔ ≥ 1, and

it is a locally complete intersection complex. When dimΔ ≥ 2, the converse
is also true, which is a main result in this paper.

Theorem 1 (See also Theorems 1.5, 1.15). Let Δ be a connected simplicial
complex with dimΔ ≥ 2 (resp. dimΔ = 1). If it is a locally complete intersec-
tion complex, then it is a complete intersection complex (resp. an n-gon for
n ≥ 3 or an n-pointed path for some n ≥ 2).

Let Δ be a connected simplicial complex on V with dimΔ ≥ 2. Our main
theorem says that if linkΔ({x}) is a complete intersection complex for every
vertex x ∈ V then so is Δ. If we also assume Serre’s condition (S2), then we
can obtain a stronger result. That is, when K[Δ] satisfies (S2), Δ is a complete
intersection complex if and only if linkΔ(F ) is a complete intersection complex
for any face F ∈ Δ with dim linkΔ F = 1; see Corollary 1.10 for more details.

In Section 2, we discuss Buchsbaumness for powers of Stanley–Reisner
ideals. Let us explain our motivation briefly. Let A be a Cohen–Macaulay
local ring. If I is a complete intersection ideal of A, then A/I� is Cohen–
Macaulay for every � ≥ 1 because I�/I�+1 is a free A/I-module. In [2], Cowsik
and Nori proved the converse. That is, if I is a generically complete inter-
section ideal (i.e., IP is a complete intersection ideal for all minimal prime
divisors P of I) and A/I� is Cohen–Macaulay for all (sufficiently large) � ≥ 1,
then I is a complete intersection ideal. Note that one can apply this result
to Stanley–Reisner ideals: IΔ is a complete intersection ideal if and only if
S/I�+1

Δ is Cohen–Macaulay for every � ≥ 1.
A standard graded ring A = S/I with homogeneous maximal ideal m is

said to be Buchsbaum (resp. (FLC)) if the canonical map

Hi(m,A) → Hi
m(A) = lim−→ Exti

S(S/m�,A)

is surjective (resp. if Hi
m(A) has finite length) for all i < dimA, where

Hi(m,A) (resp. Hi
m(A)) denotes the ith Koszul cohomology module (resp.
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ith local cohomology module); see [8, Chapter I, Theorem 2.15]. Then we
have the following implications:

Complete intersection =⇒ Locally complete intersection

⇓ ⇓ if pure

Cohen–Macaulay =⇒ Buchsbaum =⇒ (FLC).

Goto and Takayama [3] proved that IΔ is a pure locally complete inter-
section ideal if and only if S/I�+1

Δ is (FLC) for every � ≥ 1 as an analogue of
Cowsik–Nori theorem.

Let S be a polynomial ring and I a squarefree monomial ideal of S. Then
S/I is Buchsbaum if and only if it is (FLC); see e.g., [6, p. 73, Theorem 8.1].
But a similar statement is no longer true for nonsquarefree monomial ideals.
The following is a natural question.

Question 2. When is S/I�
Δ Buchsbaum for every � ≥ 1?

As an application of our main theorem and the lower bound formula on
the multiplicity of Buchsbaum homogeneous K-algebras in [4], we can prove
the following theorem.

Theorem 3. Put S = K[X1, . . . ,Xn]. Let Δ be a simplicial complex on
V = [n]. Then the following conditions are equivalent:
(1) IΔ is generated by a regular sequence;
(2) S/I�

Δ is Cohen–Macaulay for all � ≥ 1;
(3) S/I�

Δ is Buchsbaum for all � ≥ 1;
(3)′ �{� ∈ Z≥1 : S/I�

Δ is Buchsbaum} = ∞.

We do not know whether a similar statement is true for general homoge-
neous ideals.

1. Connected complexes which are locally complete intersection

Throughout this paper, let Δ be a simplicial complex on V . For a face F
of Δ and W ⊆ V , we put

linkΔ(F ) = {G ∈ Δ : G ∪ F ∈ Δ, F ∩ G = ∅},

ΔW = {G ∈ Δ : G ⊆ W }.

These complexes are the link of F , and, the restriction to W of Δ, respectively.
Let H be a subset of 2V . The minimum simplicial complex Γ ⊆ 2V which

contains H as a subset, denoted by 〈H 〉, is said to be the simplicial complex
spanned by H on V .

Suppose that V = V1 ∪ · · · ∪ Vr is a disjoint union. Let Δi be a simplicial
complex on Vi for each i = 1, . . . , r. Then Δ = Δ1 ∪ · · · ∪ Δr is a simplicial
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complex on V . We call Δ “a disjoint union of Δi’s” by abuse of language
although Δi ∩ Δj = { ∅ } for i �= j.

A simplicial complex Δ is a complete intersection complex if the Stanley–
Reisner ideal IΔ is generated by a regular sequence. Now, let us define the
notion of locally complete intersection for complexes.

Definition 1.1. A simplicial complex Δ on V is said to be a locally com-
plete intersection complex if IlinkΔ({v}) is a complete intersection ideal for all
vertex v ∈ V .

A simplicial complex Δ is a locally complete intersection complex if and
only if its Stanley–Reisner ideal IΔ is a locally complete intersection ideal.

Lemma 1.2. For a Stanley–Reisner ideal I = IΔ, the following conditions
are equivalent:
(1) Δ is a locally complete intersection complex;
(2) K[Δ]Xi is a complete intersection ring for all i ∈ V ;
(3) IP is a complete intersection ideal for all prime P ∈ Proj(S/IΔ).

Proof. The equivalence of (1) and (2) immediately follows from the fact
that

K[linkΔ({i})][Xi,X
−1
i ] ∼= K[Δ]Xi .

(2) =⇒ (3) is clear. In order to show the converse, we suppose that K[Δ]X1 is
not a complete intersection ring. Without loss of generality, we may assume
that

{Xi : 2 ≤ i ≤ m} = {Xi : i ∈ linkΔ({1})}.

Since X1Xj ∈ IΔ for m + 1 ≤ j ≤ n, one has that Xj ∈ IΔSX1 . If we put P =
(X2, . . . ,Xm), then we can easily see that IΔSP is not a complete intersection
ideal by assumption. Hence, we obtain (3) =⇒ (2). �

Corollary 1.3. If Δ is a connected locally complete intersection complex,
then it is pure.

Proof. Suppose that Δ is not pure. Since Δ is connected, there exist a
vertex i ∈ V and facets F1, F2 such that i ∈ F1 ∩ F2 and �(F1) < �(F2). This
implies that linkΔ({i}) is not pure. This contradicts the assumption that
linkΔ({i}) is Cohen–Macaulay. Hence, Δ must be pure. �

Remark 1.4. A pure locally complete intersection complex is called a
generalized complete intersection complex in [3].

The main purpose of this section is to prove the following theorem.

Theorem 1.5. Let Δ be a connected simplicial complex on V with
dimΔ ≥ 2. If Δ is a locally complete intersection complex, then it is a com-
plete intersection complex.
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Let Δ be a connected complex of dimension d − 1. Suppose that Δ is a lo-
cally complete intersection complex, but not a complete intersection complex.
Note that Δ is pure and thus a generalized complete intersection complex. Let
G(IΔ) = {m1, . . . ,mμ} denote the minimal set of monomial generators of IΔ.
Then μ ≥ 2 and degmi ≥ 2 for every i = 1,2, . . . , μ, and that there exist i, j
(1 ≤ i < j ≤ n) such that gcd(mi,mj) �= 1.

Lemma 1.6. In the above notation, we may assume that degmi =
degmj = 2.

Proof. Take mj , mk (j �= k) such that gcd(mj ,mk) �= 1. If degmj =
degmk = 2, then there is nothing to prove.

Now suppose that degmk ≥ 3. By [3, Lemmas 3.4, 3.5], we may assume
that degmj = 2 and gcd(mj ,mk) = Xp. Write mk = XpXi1 · · · Xir and mj =
XpXq . Then [3, Lemma 3.6] implies that Xi1Xq ∈ G(IΔ). Set mi = Xi1Xq ∈
IΔ. Then degmi = degmj = 2 and gcd(mi,mj) = Xq �= 1, as required. �

The following lemma is simple but important. We use the following conven-
tion in this section: the vertices x, y, z etc. correspond to the indeterminates
X , Y , Z etc., respectively.

Lemma 1.7. Let x1, x2, y be distinct vertices such that X1Y , X2Y ∈ IΔ.
For any z ∈ V \ {x1, x2, y}, at lease one of monomials X1Z, X2Z and Y Z
belongs to IΔ.

Proof. Note that K[linkΔ({z}) is obtained from K[Δ] by setting Z = 1.
Then the assertion follows from the fact that K[linkΔ({z})] is a complete
intersection ring. �

In what follows, we prove Theorem 1.5. In order to do that, let Δ be
a connected simplicial complex of dimension d − 1 ≥ 1. Moreover, assume
that Δ is a locally complete intersection complex and that there exist vertices
x1, x2, y such that X1Y , X2Y ∈ IΔ (we assign a variable Xi for a vertex xi).
Then we must show that dimΔ(= d − 1) = 1. Let us begin with proving the
following key lemma.

Lemma 1.8. Under the above notation, there exist some integers k, � ≥ 2
such that
(1) V = {x1, . . . , xk, y1, . . . , y�};
(2) X1Y1, . . . ,XkY1 ∈ IΔ;
(3) �{i : 1 ≤ i ≤ k,XiYj /∈ IΔ} ≤ 1 holds for each j = 2, . . . , �.

Proof. By assumption, there exist vertices x1, x2, y1 ∈ V such that X1Y1,
X2Y1 ∈ IΔ. Thus, one can write V = {x1, . . . , xk, y1, . . . , y�} such that

X1Y1, X2Y1, . . . , XkY1 ∈ IΔ,
Y1Y2, Y1Y3, . . . , Y1Y� /∈ IΔ.
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If � = 1, then Δ = Δ{y1} ∪ Δ{x1,...,xk } is a disjoint union since {y1, xi} /∈ Δ
for all i. This contradicts the connectedness of Δ. Hence, � ≥ 2. Thus, it is
enough to show (3) in this notation.

Now, suppose that there exists an integer j with 2 ≤ j ≤ � such that

�{i : 1 ≤ i ≤ k, XiYj /∈ IΔ} ≥ 2.

When k = 2, we have X1Yj , X2Yj /∈ IΔ. On the other hand, as X1Y1,
X2Y1 ∈ IΔ and Yj �= X1,X2, Y1, we obtain that at least one of X1Yj , X2Yj ,
Y1Yj belongs to IΔ. It is impossible. So we may assume that k ≥ 3 and
Xk−1Yj , XkYj /∈ IΔ. Then {xk−1}, {xk } and {y1} belong to linkΔ({yj }), and
Xk−1Y1, XkY1 form part of the minimal system of generators of IlinkΔ({yj }).
This contradicts the assumption that linkΔ({yj }) is a complete intersection
complex. �

In what follows, we fix the notation as in Lemma 1.8. First, we suppose
that there exists an i0 with 1 ≤ i0 ≤ k such that

�{j : 1 ≤ j ≤ �, Xi0Yj /∈ IΔ} = 1.

In this case, we may assume that X1Y2 /∈ IΔ and X1Yj ∈ IΔ for all 3 ≤ j ≤ �
without loss of generality. Note that X2Y2, . . . ,XkY2 ∈ IΔ by Lemma 1.8. We
claim that {x1, y2} is a facet of Δ. As XiY2 ∈ IΔ for each i = 2, . . . , k, it
follows that {x1, y2, xi} /∈ Δ. Similarly, {x1, y2, yj } /∈ Δ since X1Yj ∈ IΔ for
j = 1 or 3 ≤ j ≤ �. Hence {x1, y2} is a facet of Δ, and dimΔ = 1 because Δ
is pure.

By the observation as above, we may assume that for every i with 1 ≤ i ≤ k,

�{j : 1 ≤ j ≤ �,XiYj /∈ IΔ} ≥ 2

or XiYj ∈ IΔ holds for all j = 1, . . . , �.
Now, suppose that there exist j1, j2 with 1 ≤ j1 < j2 ≤ � such that XiYj1 ,

XiYj2 /∈ IΔ. Then XrYj1 , XrYj2 ∈ IΔ for all r �= i by Lemma 1.8. It fol-
lows that XrXi ∈ IΔ from Lemma 1.7. Then we can relabel xi (say y�+1).
Repeating this procedure, we can get one of the following cases:
Case 1: V = {x1, . . . , xr, y1, . . . , ys} such that XiYj ∈ IΔ for all i, j with 1 ≤

i ≤ r, 1 ≤ j ≤ s.
Case 2: V = {x1, x2, y1, . . . , ym, z1, . . . , zp,w1, . . . ,wq } such that⎧⎨

⎩
X1Yj ∈ IΔ, X2Yj ∈ IΔ (j = 1, . . . ,m),
X1Zj /∈ IΔ, X2Zj ∈ IΔ (j = 1, . . . , p),
X1Wj ∈ IΔ, X2Wj /∈ IΔ (j = 1, . . . , q),

holds for some m ≥ 1, p, q ≥ 2.
If Case 1 occurs, then Δ = Δ{x1,...,xr } ∪ Δ{y1,...,ys } is a disjoint union. This

contradicts the assumption. Thus, Case 2 must occur. If {x1, x2} ∈ Δ, then
it is a facet and so dimΔ = 1. Hence, we may assume that {x1, x2} /∈ Δ.
However, since Δ is connected, there exists a path between x1 and x2.
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Cases (2-a): the case where {z1,wk } ∈ Δ for some k with 1 ≤ k ≤ q.
We may assume that {z1,w1} ∈ Δ. Now suppose that dimΔ ≥ 2. Then

since {z1,w1} is not a facet, there exists a vertex u ∈ V \ {x1, x2} such
that {z1,w1, u} ∈ Δ. If u = zj (2 ≤ j ≤ p) (resp. u = yi (1 ≤ i ≤ m)), then
G(IlinkΔ({w1})) contains X2Z1 and X2Zj (resp. X2Yi); see Figure 1. It is im-
possible since linkΔ({w1}) is a complete intersection complex. When u = wk,
we can obtain a contradiction by a similar argument as above. Therefore,
dimΔ = 1.
Cases (2-b): the case where {zj ,wk } /∈ Δ for all j, k.

Then we may assume that (i) {z1, y1} ∈ Δ and (ii) {y1, y2} ∈ Δ or {y1,w1} ∈
Δ. Now suppose that dimΔ ≥ 2. Then since {z1, y1} is not a facet, we have

{z1, y1, yi} ∈ Δ, {z1, y1,wk } ∈ Δ or {z1, y1, zj } ∈ Δ.

When {z1, y1, yi} ∈ Δ, we obtain that X1Y1,X1Yi ∈ G(IlinkΔ({z1})). This is
a contradiction. When {z1, y1,wk } ∈ Δ, we can obtain a contradiction by a
similar argument as in Case (2-a). Thus, it is enough to consider the case
{z1, y1, zj } ∈ Δ.

First, we suppose that {y1, y2} ∈ Δ (see Figure 2).
Then linkΔ({y1}) contains {z1, zj } and {y2}. Since linkΔ({y1}) is also

connected, we can find vertices zα, yβ such that {zα, yβ } ∈ linkΔ({y1}). In
particular, {zα, yβ , y1} ∈ Δ. This yields a contradiction because X1Y1,X1Yβ

are contained in G(IlinkΔ({zα })).
Next, suppose that {y1,w1} ∈ Δ (see Figure 3).
Then linkΔ({y1}) contains {z1, zj } and {w1}. Since linkΔ({y1}) is also

connected, we can also find vertices zα, yβ such that {zα, yβ } ∈ linkΔ({y1})
(notice that {zj ,wk } /∈ Δ). In particular, {zα, y1, yβ } ∈ Δ. This yields a
contradiction because X1Y1,X1Yβ are contained in G(IlinkΔ({zα })).

Figure 1. The case {z1, zj ,w1} ∈ Δ in Case (2-a).

Figure 2. The case {z1, y1, zj }, {y1, y2} ∈ Δ in Case (2-b).
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Figure 3. The case {z1, y1, zj }, {y1,w1} ∈ Δ in Case (2-b).

Therefore, we have dimΔ = 1. So, we have finished the proof of Theo-
rem 1.5.

An arbitrary Noetherian ring R is said to satisfy Serre’s condition (S2) if
depthRP ≥ min{dimRP , 2} for every prime P of R. A Stanley–Reisner ring
K[Δ] satisfies (S2) if and only if Δ is pure and linkΔ(F ) is connected for every
face F with dim linkΔ(F ) ≥ 1; see e.g., [10, p. 454]. In particular, if K[Δ]
satisfies (S2), then Δ is pure and connected if dimΔ ≥ 1.

Let Δ be a connected simplicial complex on V with dimΔ ≥ 2. Our main
theorem says that if linkΔ({x}) is a complete intersection complex for every
x ∈ V then so is Δ itself. Thus, it is natural to ask the following question:

Question 1.9. Does there exist a proper subset W ⊆ V for which
“linkΔ({x}) is a complete intersection complex for all x ∈ W” implies that
Δ is a complete intersection complex?

The following corollary gives an answer to the above question in the (S2)
case.

Corollary 1.10. Let Δ be a simplicial complex with dimΔ ≥ 2. Assume
that K[Δ] satisfies (S2). Then the following conditions are equivalent:
(1) K[Δ] is a complete intersection ring;
(2) For any face F with dim linkΔ(F ) = 1, linkΔ(F ) is a complete intersection

complex;
(3) There exists W ⊆ V such that dimΔV \W ≤ dimΔ − 3 which satisfies the

following condition:

“linkΔ({x}) is a complete intersection complex for all x ∈ W.”

Proof. Note that Δ is pure. Put d = dimΔ + 1.
(1) =⇒ (3): It is enough to put W = V .
(3) =⇒ (2): Let W ⊆ V be a subset that satisfies the condition (3). Let

F be a face with dim linkΔ(F ) = 1. Since Δ is pure, �(F ) = d − 1 −
dim linkΔ(F ) = d − 2. As dimΔV \W ≤ d − 4, F is not contained in V \ W .
Thus, there exists a vertex i ∈ F such that i ∈ W . Then since linkΔ({i}) is
a complete intersection complex by assumption, linkΔ(F ) is also a complete
intersection complex, as required.

(2) =⇒ (1): We use an induction on d ≥ 3. First, suppose that d = 3. Then
for each i ∈ V , since dim linkΔ({i}) = 1, linkΔ({i}) is a complete intersection
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complex by the assumption (2). Hence, K[Δ] is a complete intersection ring
by Theorem 1.5.

Next, suppose that d ≥ 4. Let i ∈ V . Since K[Δ] satisfies (S2), we have
that Γ = linkΔ({i}) is connected and dimΓ = d − 2 ≥ 2. Moreover, for any
face G in Γ with dim linkΓ(G) = 1, linkΓ(G) = linkΔ(G ∪ {i}) is a complete
intersection complex by assumption. Hence, by the induction hypothesis,
K[linkΔ({i})] is a complete intersection ring. Therefore, K[Δ] is a complete
intersection ring by Theorem 1.5 again. �

To complete the proof of Theorem 1, we must consider the case dimΔ = 1.
In this case, there exist connected locally complete intersection complexes
which are not complete intersection.

Let Δ be a one-dimensional simplicial complex on V = [n]. Δ is said to
be the n-gon for n ≥ 3 (resp. the n-pointed path for n ≥ 2) if Δ is pure and
its facets consist of {i, i + 1} (i = 1,2 . . . , n − 1) and {n,1} (resp. its facets
consists of {i, i + 1} (i = 1,2 . . . , n − 1)) after suitable change of variables.

Proposition 1.11. Let Δ be a 1-dimensional connected complex. Then
the following conditions are equivalent:

(1) Δ is a locally complete intersection complex;
(2) Δ is locally Gorenstein (i.e., K[linkΔ({i})] is Gorenstein for every i ∈ V );
(3) Δ is isomorphic to either one of the following:

(a) the n-gon for n ≥ 3;
(b) the n-pointed path for n ≥ 2.

Proof. Note that (1) =⇒ (2) is clear.
Suppose that Δ is a locally Gorenstein. Then since linkΔ({i}) is a zero-

dimensional Gorenstein complex, it consists of at most two points. Such a
complex is isomorphic to either one of the n-gon (n ≥ 3) or the n-pointed
path (n ≥ 2).

Conversely, if Δ is isomorphic to either n-gon or n-pointed path, then
linkΔ({i}) is a complete intersection complex. Hence, Δ is locally complete
intersection. �

Remark 1.12. Let Δ be a connected simplicial complex on V = [n] of
dimΔ = 1. Then Δ is a locally complete intersection complex but not a
complete intersection complex if and only if it is isomorphic to the n-gon for
some n ≥ 5 or the n-pointed path for some n ≥ 4.

Example 1.13. Let K be a field. The Stanley–Reisner ring of the 4-pointed
path Δ1 is K[X1,X2,X3,X4]/(X1X3,X1X4,X2X4). The Stanley–Reisner
ring of the 5-gon Δ2 is K[X1,X2,X3,X4,X5]/(X1X3,X1X4,X2X4,X2X5,
X3X5).
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Remark 1.14. When dimΔ ≥ 2, there are many examples of locally Goren-
stein complexes which are not locally complete intersection complexes.

In the last of this section, we give a structure theorem for locally complete
intersection complexes.

Theorem 1.15. Let Δ be a simplicial complex on V such that V �= ∅. Then
Δ is a locally complete intersection complex if and only if it is a finitely many
disjoint union of the following connected complexes:
(a) a complete intersection complex Γ with dimΓ ≥ 2;
(b) m-gon (m ≥ 3);
(c) m′-pointed path (m′ ≥ 2);
(d) a point.
When this is the case, K[Δ] is Cohen–Macaulay (resp. Buchsbaum ) if and
only if dimΔ = 0 or Δ is connected (resp. pure).

To prove the theorem, it suffices to show the following lemma.

Lemma 1.16. Assume that V = V1 ∪ V2 such that V1 ∩ V2 = ∅. Let Δi be a
simplicial complex on Vi for i = 1,2. If Δ1 and Δ2 are both locally complete
intersection complexes, then so is Δ1 ∪ Δ2.

Proof. Put Δ = Δ1 ∪ Δ2 and V1 = [m] and V2 = [n]. If we write

K[Δ1] = K[X1, . . . ,Xm]/IΔ1 and K[Δ2] = K[Y1, . . . , Yn]/IΔ2 ,

then

K[Δ] ∼= K[X1, . . . ,Xm, Y1, . . . , Yn]/(IΔ1 , IΔ2 , {XiYj }1≤i≤m,1≤j≤n).

Hence, K[Δ]Xi
∼= K[Δ1]Xi and K[Δ]Yj

∼= K[Δ2]Yj are complete intersection
rings. Thus, Δ is also a locally complete intersection complex by Lemma 1.2.

�
Remark 1.17. In the above lemma, we suppose that both Δ1 and Δ2 are

generalized complete intersection complexes. Then Δ1 ∪ Δ2 is a generalized
complete intersection complexes if and only if dimΔ1 = dimΔ2.

Example 1.18. Let Δ be the disjoint union of the standard (m − 1)-simplex
and the standard (n − 1)-simplex. Then Δ is a locally complete intersection
complex by Lemma 1.16. Moreover, K[Δ] is isomorphic to

K[X1, . . . ,Xm, Y1, . . . , Yn]/(XiYj : 1 ≤ i ≤ m,1 ≤ j ≤ n)

and it is a generalized complete intersection complex if and only if m = n.
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2. Buchsbaumness of powers for Stanley–Reisner ideals

The Stanley–Reisner ring K[Δ] has (FLC) if and only if Δ is pure and
K[linkΔ({v})] is Cohen–Macaulay for every v ∈ V . Then Hi

m(K[Δ]) =
[Hi

m(K[Δ])]0 for all i < dimK[Δ] and so that K[Δ] is Buchsbaum. See [6,
p. 73, Theorem 8.1].

Let � ≥ 2 be an integer. Suppose that S/I�
Δ is Buchsbaum. In [5], Herzog,

Takayama, and the first author showed that this condition implies that S/IΔ

is Buchsbaum. The converse is not true. What can we say about the structure
of Δ? This gives a motivation of our study in this section.

The main result in this section is the following theorem, which is an ana-
logue of the Cowsik–Nori theorem in [2], and the Goto–Takayama theorem
in [3].

Theorem 2.1. Put S = K[X1, . . . ,Xn]. Let IΔ denote the Stanley–Reisner
ideal of a simplicial complex Δ on V = [n]. Then the following conditions are
equivalent:
(1) IΔ is generated by a regular sequence;
(2) S/I�

Δ is Cohen–Macaulay for all � ≥ 1;
(3) S/I�

Δ is Buchsbaum for all � ≥ 1;
(3)′ �{� ∈ Z≥1 : S/I�

Δ is Buchsbaum} = ∞.

Note that (1) ⇐⇒ (2) is a special case of the Cowsik–Nori theorem and
(2) =⇒ (3) =⇒ (3)′ is trivial. Thus, our contribution is (3)′ =⇒ (1).

In what follows, we put d = dimS/IΔ, c = height IΔ(= codim IΔ) = n − d.
Put q = indeg IΔ ≥ 2, the initial degree of I , that is, q is the least degree of
the minimal generators of I , in other words, q = min{�(F ) : F ∈ 2V \ Δ}. Put
e = e(S/IΔ), the multiplicity of IΔ, which is equal to the number of facets of
dimension d − 1. Note that for any homogeneous ideal I of S, the following
formula for multiplicities is known:

e(S/I) =
∑

P ∈AsshS(S/I)

e(S/P ) · λSP
(SP /ISP ),

where AsshS(S/I) = {P ∈ MinS(S/I) : dimS/P = dimS/I} and λR(M) de-
notes the length of an R-module M over an Artinian local ring R.

In order to prove the theorem, it suffices to show that if S/I�
Δ is Buchsbaum

for infinitely many � ≥ 1, then Δ is a complete intersection complex.
First, we give a formula for multiplicities of S/I�

Δ for every � ≥ 1.

Lemma 2.2. Under the above notation, we have

e(S/I�
Δ) = e ·

(
c + � − 1

c

)
.

Proof. Let P ∈ AsshS(S/I�
Δ). Then P is a minimal prime over IΔ such

that S/P is isomorphic to a polynomial ring in d variables and SP is a regular
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local ring of dimension c. Thus, we get

e(S/I�
Δ) =

∑
P ∈AsshS/IΔ

e(S/P ) · λSP
(SP /I�

ΔSP ) = e ·
(

c + � − 1
c

)
,

as required. �
We recall the following theorem, which gives a lower bound on multiplicities

for homogeneous Buchsbaum algebras:

Lemma 2.3 ([4, Theorem 3.2]). Assume that S/I is a homogeneous Buchs-
baum K-algebra. Put c = codim I ≥ 2, q = indeg I ≥ 2 and d = dimS/I ≥ 1.
Then

e(S/I) ≥
(

c + q − 2
c

)
+

d−1∑
i=1

(
d − 1
i − 1

)
· dimK Hi

m(S/I).

Applying this formula to S/I�
Δ, yields the following corollary.

Corollary 2.4. If S/I�
Δ is Buchsbaum, then

e(S/I�
Δ) ≥

(
c + q� − 2

c

)
.

In particular, we have

e(S/IΔ) ≥
(
c+q�−2

c

)
(
c+�−1

c

) =
(q� + c − 2) · · · (q� + 1)q�(q� − 1)

(� + c − 1) · · · (� + 1)�
.

In the above corollary, if we fix c, q and let � tend to ∞, then the limit
of the right hand side in the last inequality tends to qc. Therefore, if S/I�

Δ

is Buchsbaum for infinitely many � ≥ 1, then e(S/IΔ) ≥ qc. For instance, if
IΔ = (m1, . . . ,mc) is a complete intersection ideal, then this inequality holds
because

e(S/IΔ) = degm1 · · · degmc ≥ qc.

However, if I is a locally complete intersection ideal but not a complete in-
tersection ideal, then this is not true. This is a key point in the proof of
Theorem 2.1. Namely we have the following proposition.

Proposition 2.5. Assume that Δ is pure and a locally complete intersec-
tion complex but not a complete intersection complex. Then

e(K[Δ]) < 2c.

Proof. First, we consider the case d = 1. Then Δ consists of n points, and
so that c = n − 1, e = n. As Δ is not a complete intersection complex, we
have n ≥ 3. Then e = n < 2c = 2n−1 is clear.

Next, we consider the case d = 2. By assumption, Δ is isomorphic to the
following complexes:
(a) the n-gon for n ≥ 5;
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(b) the n-pointed path for n ≥ 4;
(c) the disjoint union of k connected complexes Δ1, . . . ,Δk for some k ≥ 2,

where each Δi is isomorphic to the m-gon for some m ≥ 3 or the m-pointed
path for m ≥ 2.

In particular, we have e ≤ n and c = n − 2. If n ≥ 5, then e ≤ n < 2n−2 = 2c

is clear. So we may assume that 3 ≤ n ≤ 4. Then Δ is isomorphic to either
the 4-pointed path or two disjoint union of the 2-pointed paths. In any case,
we have e ≤ 3 < 4 = 2c.

Finally, we consider the case d ≥ 3. Theorem 1.5 implies that Δ is discon-
nected, and so that c ≥ d. Then we consider the following three cases:
(a) the case c = d;
(b) the case c = d + 1;
(c) the case c ≥ d + 2.

When c = d, Δ is a disjoint union of two (d − 1)-simplices. Then e = 2 <
23 ≤ 2c, as required. When c = d + 1, Δ has just two connected components.
One of components is a (d − 1)-simplex and the other one is a pure (d − 1)-
subcomplex of the boundary complex of a d-simplex. In particular, e ≤ d+2 <
2c = 2d+1.

So we may assume that c ≥ d + 2. Then Δ is a disjoint union of complete
intersection complexes of dimension d − 1 (say, Δ1, . . . ,Δk) by Theorem 1.15,
where k ≤ n

d = 1 + c
d . Moreover, since c ≥ d + 2, we obtain that c(d − 1) ≥

(d + 2)(d − 1) > d2, and thus d + c
d < c. Hence,

e(K[Δ]) =
k∑

i=1

e(K[Δi]) ≤ 2d · k ≤ 2d ·
(

1 +
c

d

)
≤ 2d · 2

c
d = 2d+ c

d < 2c,

where the first inequality follows from the lemma below. �

Lemma 2.6. Assume that Δ is a complete intersection complex of dimen-
sion d − 1. Then e(K[Δ]) ≤ 2d.

Proof. Write IΔ = (m1, . . . ,mc), where degmi = hi (i = 1, . . . , c). Then

e(K[Δ]) = h1 · · · hc ≤ 2h1−1 · · · 2hc −1 = 2h1+···+hc −c ≤ 2n−c = 2d,

as required. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. It suffices to show that IΔ is a complete intersection
ideal whenever S/I�

Δ is Buchsbaum for infinitely many � ≥ 1.
By assumption and the above observation, e(K[Δ]) ≥ 2c. On the other

hand, S/IΔ is Buchsbaum and thus pure by [5, Theorem 2.6]. We also have
that Δ is a locally complete intersection complex by the Goto–Takayama
theorem.
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Suppose that Δ is not a complete intersection complex. Then by Proposi-
tion 2.5, we have that e(K[Δ]) < 2c. This is a contradiction. Hence, Δ must
be a complete intersection complex. �

Example 2.7. Let Δ = Δn be the n-gon for n ≥ 5 (or the n-pointed path
for n ≥ 4). Then S/I�

Δ is not Buchsbaum for � ≥ 6.

Proof. We consider the case of n-gons only. Set I = IΔ = (X1X3,X1X4, . . . ,
Xn−2Xn). Then e = e(S/I) = n, c = codim I = n − 2 and q = indeg I = 2.

Suppose that S/I�
Δ is Buchsbaum. By Corollary 2.4,

n = e(S/I) ≥ (2� + n − 4) · · · (2� + 1)2�(2� − 1)
(� + n − 3) · · · (� + 1)�

.

Fix n ≥ 5 and put f(�) to be the right-hand side of the above inequality. Then
one can easily see that f(�) is an increasing function of �. Thus if � ≥ 6, then

1 ≥ (n + 8) · · · 12 · 11
(n + 3) · · · 7 · 6

× 1
n

=
(n + 8)(n + 7)(n + 6)(n + 5)(n + 4)

10 · 9 · 8 · 7 · 6 · n
.

Put g(n) to be the right-hand side of the above inequality. Then since

g(n + 1)/g(n) =
n2 + 9n

n2 + 5n + 4
≥ 1 and g(5) = 1.02 · · · > 1

we get a contradiction. �

It is difficult to determine the Buchsbaumness for S/I�.

Example 2.8. Let S = K[X1,X2,X3,X4,X5] be a polynomial ring. Let I =
(X1X3,X1X4,X2X4,X2X5,X3X5) be the Stanley–Reisner ideal (of height 3)
of the 5-gon. Then S/I2 is Cohen–Macaulay with dimS/I2 = 2. Indeed,
Macaulay 2 yields the following minimal free resolution of S/I2:

0 → S10(−6) → S24(−5) → S15(−4) → S → S/I2 → 0.

On the other hand, depthS/I3 = 0 since X1X2X3X4X5 ∈ I3 : m \ I3. We do
not know whether S/I3 is Buchsbaum or not.

In the following, we give an example of the simplicial complex Δ for which
S/I2

Δ is Buchsbaum but not Cohen–Macaulay (and this implies that Δ is not
a complete intersection complex). In order to do that, we use an extension
of Hochster’s formula describing the local cohomology of a monomial ideal;
see [9]. Fix � ≥ 1 and set G(I�

Δ) = {m1, . . . ,mμ}. Write m = X
ν1(m)
1 · · · Xνn(m)

n

for any monomial m in S = K[X1, . . . ,Xn]. For a vector a = (a1, . . . , an) ∈ Z
n,

we put
Ga = {i ∈ V : ai < 0}.

Then we define the simplicial complex Δa(I�
Δ) ⊆ Δ by

Δa(I�
Δ) = {L \ Ga : Ga ⊆ L ∈ Δ, L satisfies the condition (∗)},
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where

(∗) for all m ∈ G(I�
Δ), there exists an i ∈ V \ L such that νi(m) > ai(≥ 0).

For a graded S-module M , F (A, t) =
∑

a∈Zn dimK Aata is called the Hilbert–
Poincaré series of M . Then Hochster–Takayama formula (see [9]) says that

F
(
Hi

m(S/I�
Δ), t

)
=

∑
F ∈Δ

∑
a∈Zn

Ga=F,ai ≤�−1

dimK H̃i−�(F )−1(Δa(I�
Δ);K)ta,

where H̃i(Δ;K) denotes the ith simplicial reduced homology of Δ with values
in K. In particular, we have

F
(
H1

m(S/I�
Δ), t

)
=

∑
a∈A

dimK H̃0(Δa(I�
Δ);K)ta +

n∑
i=1

∑
a∈Ai

ta,

where

A = {a ∈ Z
n : 0 ≤ a1, . . . , an ≤ � − 1,Δa(I�

Δ) is disconnected};

Ai =
{
a ∈ Z

n : 0 ≤ a1, . . . , âi . . . , an ≤ � − 1,Δa(I�
Δ) = {∅}

}
for each i = 1, . . . , n.

Example 2.9. Let S = K[X1,X2,X3,X4] be a polynomial ring over a
field K. Let I = (X1X3,X1X4,X2X4) be the Stanley–Reisner ideal of the
4-pointed path Δ.

Then S/I2 is Buchsbaum but not Cohen–Macaulay. In fact, dimS/I2 = 2,
depthS/I2 = 1 and dimK H1

m(S/I2) = 1.

Proof. The ideal I can be considered as the edge ideal of some bipartite
graph G. Thus we have I2 = I(2), the second symbolic power of I , by [7,
Section 5], and so H0

m(S/I2) = 0.

Hence, it suffices to show that mH1
m(S/I2) = 0 and H1

m(S/I2) �= 0. We first
show the following claim. Put Δa = Δa(I2) for simplicity.
Claim 1: A = {(1,0,0,1)} and Δ(1,0,0,1) is spanned by { {(1,2)}, {3,4}}.

(This implies that Kt1t4 ⊆ H1
m(S/I2).)

First of all, we define monomials m1, . . . ,m6 as in Table 1:
Namely,

G(I2) = {X2
1X2

3 ,X2
1X3X4,X

2
1X2

4 ,X1X2X3X4,X1X2X
2
4 ,X2

2X2
4 }.

Fix a = (a1, a2, a3, a4) ∈ (Z ∩ {0,1})4. As ν3(m4) = ν4(m4) = 1, it follows that
{1,2} ∈ Δa if and only if a3 = 0 or a4 = 0. Similarly, {3,4} ∈ Δa if and only
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Table 1.

m1 m2 m3 m4 m5 m6

ν1(m) 2 2 2 1 1 0
ν2(m) 0 0 0 1 1 2
ν3(m) 2 1 0 1 0 0
ν4(m) 0 1 2 1 2 2

if a1 = 0 or a2 = 0. If �{i : 1 ≤ i ≤ 4, ai = 1} ≥ 3, then Δa = ∅. So, we may
assume that �{i : 1 ≤ i ≤ 4, ai = 1} ≤ 2 and a1 ≥ a4.

If {2,3} /∈ Δa, then a1 = a4 = 1. That is a = (1,0,0,1). Indeed, Δ(1,0,0,1) =
〈{1,2}, {3,4}〉 is disconnected. Otherwise, {2,3} ∈ Δa(I2). Then (a1, a4) =
(0,0) or (1,0). In these cases, we have

Δ(0,∗,∗,0) = Δ(1,0,0,0) = Δ(1,0,1,0) = Δ, Δ(1,1,0,0) = 〈 {1,2}, {2,3}〉.
In particular, Δa is connected in any case. Therefore, we proved Claim 1.

Next, we show the following claim.
Claim 2: A1 = A2 = A3 = A4 = ∅.

To see A1 = ∅, let a = (a1, a2, a3, a4) ∈ Z
4 such that a1 < 0, 0 ≤ a2, a3,

a4 ≤ 1. Note that

Δa(I2) =
{
L \ {1} : {1} ⊆ L ∈ Δ, L satisfies (∗)

}
and that {1} ⊆ L ∈ Δ if and only if L = {1} or {1,2}. By a similar argument
as in the proof of the claim 1, we obtain that

{2} = {1,2} \ {1} ∈ Δa(I2) ⇐⇒ a3 = 0 or a4 = 0.

Then Δa(I2) = {∅, {2} } �= { ∅ }.
Now suppose that a3 = a4 = 1. Then ∅ /∈ Δa(I2) because m2 = X2

1X3X4 ∈
G(I2). This yields that Δa(I2) �= { ∅ }. Therefore, A1 = ∅. Similarly, one has
A2 = A3 = A4 = ∅.

The above two claims imply that H1
m(S/I2) ∼= Kt1t4, as required. �

Question 2.10. Can you replace Buchsbaumness with quasi-Buchsbaum-
ness in Theorem 2.1?

Question 2.11. Let I be a generically complete intersection homogeneous
ideal of a polynomial ring S. If S/I� is Buchsbaum for all � ≥ 1, then is I a
complete intersection ideal?
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