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SYZYGIES OF SEMI-REGULAR SEQUENCES

KEITH PARDUE AND BENJAMIN RICHERT

Abstract. A semi-regular sequence in S = k[x1, . . . , xn] is a se-
quence of polynomials f1, . . . , fr of degrees d1, . . . , dr which sat-
isfy a certain generic condition. Suppose that I ⊂ S is generated

by such a semi-regular sequence and let ρ be the Castelnuovo–
Mumford regularity of S/I. We show that a minimal free reso-
lution of S/I is isomorphic to the Koszul complex on f1, . . . , fr

in degrees ≤ ρ − 2. If a common numerical condition is satisfied,

then this isomorphism also holds in degree ρ − 1. Therefore, the

Betti diagram of S/I and the Betti diagram of the Koszul com-
plex always agree in rows ≤ ρ − 2; we can sometimes determine

that they also agree in row ρ − 1. We also give a partial con-
verse, that if the Betti diagram of S/I agrees with the diagram

of the Koszul complex except in possibly the last two rows, then I

can be generated by a (not necessarily minimal) semi-regular se-
quence.

1. Introduction

In this paper, we consider the free resolutions of ideals generated by semi-
regular sequences of homogeneous polynomials in a polynomial ring. Such
ideals are interesting since, in a sense to be made precise later, most sequences
of polynomials are conjectured to be semi-regular. So, on the one hand such
ideals are quite common and thus worth understanding as well as we can. On
the other hand, the conjecture that most sequences are semi-regular is a long-
standing difficult problem, and it is our hope that a better understanding of
the homological properties of semi-regular sequences may help.

The main result of this paper is a structure theorem for the minimal graded
free resolution of an ideal generated by a semi-regular sequence in a polynomial
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ring, generalizing the famous theorem that an ideal generated by a regular se-
quence is minimally resolved by a Koszul complex. We also show that among
ideals of maximal height, those generated by semi-regular sequences are char-
acterized by resolutions of this type, just as the Koszul complex characterizes
regular sequences.

Definition 1.1. Let S = k[x1, . . . , xn] and let I be a homogeneous ideal.
A nonzero form f ∈ Sd is called semi-regular on S/I if the multiplication maps

(S/I)a−d
f−→ (S/I)a are linear maps of maximal rank for all a. A sequence of

forms f1, . . . , fr in S with degrees d1, . . . , dr is called a semi-regular sequence
if fi is semi-regular on S/(f1, . . . , fi−1) for all i = 1, . . . , r.

Notice that a regular sequence is a semi-regular sequence, since all of the
multiplication maps are injective, and thus of maximal rank. Here are some
other easy examples of semi-regularity.

If S/I is Artinian and the highest degree in which S/I is nonzero is ρ,
then any nonzero form of degree greater than ρ is semi-regular on S/I . This
is because for every multiplication map either the domain or the codomain
has dimension 0, so that the multiplication map has maximal rank. A form
of degree exactly ρ is semi-regular on R/I if and only if it is not in I . In
this case, the only multiplication map for which neither the domain nor the
codomain has dimension 0 is the map from degree 0 to degree ρ. In degree 0,
R/I has dimension 1, while in degree ρ, R/I has dimension at least 1, so that
semi-regularity requires that this multiplication map be injective, which is the
case if and only if the form is not in I .

Using these examples, it is easy to make very uninteresting semi-regular
sequences that are as long as we want, so long as we may choose the degrees of
the forms. What is more interesting is that for any finite sequence d1, . . . , dr

of nonnegative integers it is a conjecture, essentially due to Fröberg, that most
sequences of forms f1, . . . , fr of degrees d1, . . . , dr are semi-regular sequences.

Precisely, consider the set of sequences {f1, . . . , fr | deg(fi) = di} = Sd1 ×
· · · × Sdr as an affine space whose coordinates describe the coefficients of the
polynomials in the sequence. Then the conjecture is the following.

Conjecture. The set of semi-regular sequences in Sd1 × · · · × Sdr is a non-
empty Zariski-open set.

Fröberg’s Conjecture [3] is actually a statement about the Hilbert series of
ideals generated by generic sequences of forms, but is equivalent to the con-
jecture above. See [6] for several equivalent conjectures. Fröberg’s conjecture
is proven in the following cases, which also imply the conjecture above. In the
list below, n is the number of variables in the polynomial ring and r is the
number of forms.
(1) r ≤ n: In this case, the conjecture is a statement about regular sequences.
(2) n ≤ 2 [3].
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(3) n = 3 [1].
(4) r = n+1 and k has characteristic 0. In this case, the sequence xd1

1 , . . . , xdn
n ,

(x1 + · · · + xn)dn+1 is a semi-regular sequence [7].

Our main results, informally stated, are:

(1) A minimal free resolution of S/I for I generated by a semi-regular se-
quence is isomorphic to the Koszul complex on the generators of I in
degrees ≤ ρ − 2. In the language of Macaulay 2, this say that the Betti di-
agram of an ideal generated by a semi-regular sequence looks like a Koszul
diagram except possibly in the last two rows.

(2) A common numerical condition on the degree sequence d1, . . . , dr im-
plies that a minimal free resolution of S/I is isomorphic to the Koszul
complex on the generators of I in degrees ≤ ρ − 1. In the language of
Macaulay 2, this says that a common numerical condition on the degree
sequence d1, . . . , dr implies that the Betti diagram of an ideal generated
by a semi-regular sequence looks like a Koszul diagram except possibly in
the last row.

(3) If S/I is Artinian and the second term in a minimal free resolution of
S/I has the same number of generators in each degree ≤ p − 2, then
I is generated by a semi-regular sequence. Restated, this says that for
S/I Artinian, if the Betti diagram of S/I looks like a Koszul diagram
except possibly in the last two rows, then I is generated by a semi-regular
sequence.

It should be noted that the results in this paper are related to work of
Migliore and Miró-Roig. In particular, in [5], they calculate the graded Betti
numbers of quotients of semi-regular almost complete intersections when the
dimension of S is 3, when the dimension of S is 4, and a numerical condition on
the degrees has been met, and when the dimension of S is even and all forms
have the same degree. They also give the graded Betti numbers of quotients
of semi-regular almost complete intersections in several other interesting and
important cases. In [4], Migliore and Miró-Roig give a proof that the Betti
diagram of an ideal generated by a semi-regular sequence looks like a Koszul
diagram except possibly in the last two rows. This is our Theorem 3.6 (see
Remark 3.7). It should be noted that the method of proof utilized by Migliore
and Miró-Roig is entirely different from that which we employ. Chandler is
also doing related work, in a more geometric setting.

We wish to offer our thanks to several people who contributed to the com-
pletion of this paper. David Moulton helped on the proof of Proposition 3.10.
We also discussed the implications of this example with Juan Migliore. Haver-
ford College graciously provided funds for housing so that we could work on
this paper together.
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Finally, we wish to dedicate the paper to Tony Geramita on the occasion
of his 65th birthday. He has been an encouragement and inspiration to both
authors.

2. Notation, background and conventions

Throughout this paper, S = k[x1, . . . , xn], with the natural grading. All
polynomials are forms (i.e., homogeneous), all S-modules (including ideals)
are graded, and all elements and homomorphisms of modules are homoge-
neous. We use k to denote the base field of S and n always denotes the
number of variables in S. The number r always denotes the number of forms
in a sequence of interest in S. Finally, m is the graded maximal ideal generated
by the variables.

If I is an ideal in S, then S/I has a minimal graded free resolution

· · · → F1 → F0 → S/I,

where the Fi are free S-modules. The i, jth graded Betti number of S/I
is βi,j(S/I) = dimk Tori(S/I,S/m)j , which is also equal to the number of
degree j basis elements of Fi. These numbers are our main object of study in
this paper.

By Hilbert’s Syzygy theorem, βi,j(S/I) = 0 for i > n. Clearly, F0 = S so
that β0,0 = 1, and β0,j = 0 for j �= 0. The minimality of the resolution implies
that βi,j(S/I) = 0 for j < i. The Castelnuovo–Mumford regularity ρ(S/I),
or simply ρ when the context is clear, is the maximum value of j such that
βi,i+j(S/I) �= 0 for some i. If S/I is Artinian, then ρ(S/I) is also equal to the
maximum value of j such that (S/I)j �= 0.

The Poincaré series is PS/I(s, t) =
∑n

i=0

∑∞
j=0 βi,js

itj , the generating series
of the graded Betti numbers. Notice that the Poincaré series is a polynomial.
We will often refer to the Betti diagram notation used in the computer algebra
package Macaulay 2. The Betti diagram of S/I is a table with ρ+1 rows and
n + 1 columns where the i, jth entry, counting from zero, is βi,i+j(S/I).

Let f1, . . . , fr be a sequence of forms of degrees d1, . . . , dr. For each integer
i ≥ 0, let Ki be the free S-module with basis κσ indexed by the order i subsets
σ ⊂ {1, . . . , r}. Let the degree of σ be

∑
h∈σ dh. The Koszul complex is defined

by
· · · → K2 → K1 → K0,

where if σ = {σ1 < σ2 < · · · < σi} has order i > 0 then the image of κσ in Ki−1

is
∑i

h=1(−1)i+hfσh
κσ−σh

. The Koszul complex is a minimal free resolution
of S/I if and only if f1, . . . , fr is a regular sequence.

In fact, it is only necessary to look at the Poincaré series, or the Betti
diagram, to see if I is generated by a regular sequence. Let K(d1, . . . , dr) =∏r

i=1(1+stdi). Then I is generated by a regular sequence of degrees d1, . . . , dr

if and only if PS/I(s, t) = K(d1, . . . , dr).
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The Hilbert series of S/I is HS/I(t) =
∑∞

i=0 dimk(S/I)it
i. The Hilbert

series and the Poincaré series are related by (1 − t)nHS/I(t) = PS/I(−1, t). In
particular, the Hilbert series of S/I where I is generated by a regular sequence
of forms of degrees d1, . . . , dr is∏r

i=1(1 − tdi)
(1 − t)n

.

Definition 2.1. Given a series
∑∞

i=0 ait
i, ai ∈ Z for all i, let |

∑∞
i=0 ait

i|
be the series

∑∞
i=0 bit

i where

bi =

{
ai if aj > 0 for all 0 ≤ j ≤ i,

0 otherwise.

The Hilbert series of S/I where I is generated by a semi-regular sequence
of forms of degrees d1, . . . , dr is∣∣∣∣

∏r
i=1(1 − tdi)
(1 − t)n

∣∣∣∣.
Fröberg’s Conjecture is that a generic sequence of forms of degrees d1, . . . , dr

has this Hilbert series. We will work do a lot of work with the coefficients
of this series, and we get stronger results when the coefficients satisfy the
following special condition.

Definition 2.2. The nonnegative integers n,d1, . . . , dr satisfy the special
numerical condition if the first nonpositive coefficient of the series∏r

i=1(1 − tdi)
(1 − t)n

is equal to 0.

3. The main theorem

In this section, we prove the structure theorem for the minimal free resolu-
tion of an ideal generated by a semi-regular sequence. We need a few lemmas
before proving the main theorem.

Definition 3.1. If M is a graded module and τ is an integer, then let
M(τ) be the submodule of M generated by the elements of M of degrees less
than or equal to τ .

Notice that given a set of minimal generators for M , the subset consisting
of those of degrees less than or equal to τ is a set of minimal generators
for M(τ). Conversely, any set of minimal generators for M(τ) is a subset of a
set of minimal generators for M .

Lemma 3.2. Let φ : M → N be a degree zero homomorphism of modules
such that φ(M) ⊆ mN . Then φ(M(τ+1)) ⊆ N(τ) for any integer τ .
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Proof. Let m be an element of M of degree less than or equal to τ + 1.
Choose a minimal system of generators for N . Then φ(m) may be written
as an S-linear combination of these generators, where the nonzero coefficients
have positive degree. Thus, the generators appearing with nonzero coefficients
are all of degree less than the degree of m, and thus of degree less than or equal
to τ . This shows that φ(m) ∈ N(τ), which is enough to prove the lemma. �

This allows us to make the following definition for complexes.

Definition 3.3. If F• is a complex of S-modules with differential δ such
that δi+1(Fi+1) ⊆ mFi, then for any integer τ let F

(τ)
• be the complex with

F
(τ)
i = (Fi)(τ+i), with differentials equal to the restriction of δ.

Lemma 3.4. Let φ : M → N be a module homomorphism inducing an iso-
morphism M(τ)

∼= N(τ). If F• → M and G• → N are minimal free resolutions
of M and of N , then any lifting of φ to a homomorphism from F• to G•
induces an isomorphism F

(τ)
• → G

(τ)
• .

Remark 3.5. We will often use Lemma 3.4 for F• and G• minimal free
resolutions of S/I and S/(I : mf), with Id = (I : f)d for d ≤ τ . In this context,
we conclude that F

(τ −1)
• ∼= G

(τ −1)
• , since

F̄• → I → 0 = · · · → F2 → F1 → I → 0

and
Ḡ• → (I : f) → 0 = · · · → G2 → G1 → (I : f) → 0

are minimal free resolutions of I and (I : f), respectively, and we can apply
the lemma to these shorter resolutions.

Proof of Lemma 3.4. We proceed by induction on the projective dimension
of M . If the M has projective dimension 0, then M is free, so that M(τ) and
N(τ) are isomorphic free modules. It follows that (G0)(τ) is isomorphic to
N(τ) so that G1 is generated in degrees greater than τ + 1. Because G• is
a minimal resolution, it follows that Gi is generated in degrees greater than
τ + i, so that the complex G

(τ)
• is simply 0 → (G0)(τ) → 0. Given a lifting of

φ, we have
0 (F0)(τ) M(τ) 0

0 (G0)(τ) N(τ) 0.

The horizontal arrows and the right-hand arrow are isomorphisms, so the left
hand arrow is as well.

Suppose that the projective dimension of M is greater than 0, let K be
the kernel of the map F0 → M , and let L be the kernel of the map G0 → N .
Any lifting of φ to a homomorphism F• → G• takes K to L, as one can
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see from an easy diagram chase. Moreover, we claim that this map induces
an isomorphism K(τ+1)

∼= L(τ+1). This is because K and L are the images
of F1 and G1. By Lemma (3.2), the image of (F1)(τ+1) and of (G1)(τ+1)

are in (F0)(τ) and (G0)(τ), respectively, and it is clear that φ induces an
isomorphism (F0)(τ)

∼= (G0)(τ) (because any set of minimal generators for
M(τ) is mapped by φ to a set of minimal generators for N(τ)). Since K has
projective dimension one less than that of M , we apply induction to this case,
proving the lemma. �

We can now prove the main theorem.

Theorem 3.6. Let I ⊂ S be an ideal generated by a semi-regular sequence
f1, . . . , fr of degrees d1, . . . , dr, let F• → S/I be a minimal free resolution of
S/I , let ρ be the Castelnuovo–Mumford regularity of S/I and let K• be the
Koszul complex on f1, . . . , fr. Then F

(ρ−2)
• ∼= K

(ρ−2)
• . Furthermore, if n >

r or the sequence n,d1, . . . , dr satisfies the special numerical condition, then
F

(ρ−1)
• ∼= K(ρ−1).

Proof. If r ≤ n, then f1, . . . , fr is a regular sequence and F• ∼= K•. So, we
may assume that r > n and proceed by induction on r.

Let Ĩ = (f1, . . . , fr−1), f = fr, d = dr, G• → S/Ĩ be a minimal free res-
olution and L• be the Koszul complex on f1, . . . , fr−1. Note that because
r − 1 ≥ n, S/Ĩ is Artinian. Let ρ̃ be the Castelnuovo–Mumford regularity of
S/Ĩ . By induction, we know that G

(ρ̃−2)
• ∼= L

(ρ̃−2)
• .

Note that we may assume d ≤ ρ̃ + 1, because otherwise I = Ĩ and we are
finished. Likewise, we may take d > 0, because d = 0 implies that I = S, which
would complete the proof.

Let ε = 1 if the special numerical condition is satisfied, and ε = 0 otherwise.
We must show that F

(ρ+ε−2)
• ∼= K

(ρ+ε−2)
• .

First, we will show that ρ̃ ≥ ρ + ε. It is clear that ρ̃ ≥ ρ because S/Ĩ is
Artinian and Ĩ ⊆ I . If ε = 1, then in

(1 − td)
∏r−1

i=1 (1 − tdi)
(1 − t)n

(1)

the coefficients of t0, . . . , tρ are all positive while the coefficient of tρ+1 is zero.
So we have to show that the coefficients of 1, t, . . . , tρ+1 in∏r−1

i=1 (1 − tdi)
(1 − t)n

(2)

are positive. Note that the coefficients of tρ+1 and tρ+1−d in (2) must be equal
(since we are assuming the coefficient of tρ+1 in (1) is zero), so it is actually
enough to show that the coefficients of 1, t, . . . , tρ in (2) are positive. Because
ρ̃ ≥ ρ, this follows immediately. We conclude that ρ̃ ≥ ρ + ε.
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Now, we show that multiplication by f from (S/Ĩ)j−d to (S/Ĩ)j is injec-
tive for all j ≤ ρ + ε. As f is semi-regular modulo Ĩ , we only need to show
that dim(S/Ĩ)j−d ≤ dim(S/Ĩ)j for j ≤ ρ + ε. If j ≤ ρ then we have a strict
inequality, since then dim(S/I)j = dim(S/Ĩ)j − dim(S/Ĩ)j−d and this number
is positive. If ε = 1, then in fact dim(S/Ĩ)ρ+1−d = dim(S/Ĩ)ρ+1 as we have
already seen.

Thus, (Ĩ : f)j = Ĩj for j ≤ ρ + ε. Consider the short exact sequence

0 → S/(Ĩ : f)(−d) → S/Ĩ → S/I → 0.

We will use this sequence to produce the minimal free resolution F• of S/I
as a summand of a mapping cone. See [2] for details about mapping cones
constructions.

Let H• → S/(Ĩ : f) be a minimal free resolution. Then it follows by Re-
mark 3.5 that G

(ρ+ε−1)
• ∼= H

(ρ+ε−1)
• . Since ρ̃ ≥ ρ + ε, we now have that

H
(ρ+ε−2)

• ∼= G
(ρ+ε−2)
• ∼= L

(ρ+ε−2)
• .

We may lift the multiplication by f map S/(Ĩ : f)(−d) → S/Ĩ to a map on
complexes φ : H•(−d) → G• in such a way that the restriction to

H(−d)(ρ+ε−2)
• → G

(ρ+ε−2)
•

is itself realized as multiplication by f via the isomorphism with

L(−d)(ρ+ε−2)
• → L

(ρ+ε−2)
• .

Let M• be the mapping cone of φ : H•(−d) → G•. Then M• is a free res-
olution of S/I , so that M• ∼= F• ⊕ T•, where T is a trivial complex. (See
Theorem 20.2 in [2]). Note also that the mapping cone of L(−d)• → L•
is the Koszul complex K•. (Using a mapping cone construction is a com-
mon method for inductively constructing a Koszul complex.) Here, Mi =
Gi ⊕ Hi−1(−d) with differential δM : (g,h) �→ (δG(g) + φ(h), −δH(h)). By
the isomorphisms above, M

(ρ+ε−2)
• ∼= K

(ρ+ε−2)
• . Since δM,i((Mi)(ρ+ε−2+i)) ⊆

m(Mi−1)(ρ+ε−2+i−1) we have that (Mi)(ρ+ε−2+i) ∩ Ti = 0, so that
(Mi)(ρ+ε−2+i) ⊆ Fi, and hence (Mi)(ρ+ε−2+i) = (Fi)(ρ+ε−2+i), which is to say
that F

(ρ+ε−2)
• ∼= M

(ρ+ε−2)
• ∼= K

(ρ+ε−2)
• as required. �

Remark 3.7. The theorem implies that the coefficient of sitj in the Poin-
caré polynomial of S/I and the coefficient of sitj in

∏r
i=1(1 + stdi) agree

whenever j ≤ ρ + ε − 2 + i, where ε = 1 if the special numerical condition is
satisfied and 0 otherwise. The i, jth entry of the Betti diagram of S/I is the
coefficient of sitj in the twisted Poincaré polynomial P̃S/I(s, t) = PS/I(s/t, t).
In terms of the twisted Poincaré polynomial, Theorem 3.6 implies that the
P̃S/I(s, t) and

∏
(1 + stdi −1) agree in t degrees less than or equal to ρ − 2 + ε,

that is that the Betti diagram of S/I and the diagram of the Koszul complex
agree in rows ≤ ρ − 2 + ε.
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Example 3.8. Suppose we let S = k[x1, x2, x3, x4], and let I = (f1, . . . , f6)
be the ideal generated by the forms

f1 = x2
2 + x3x4,

f2 = x2
1 + x2x3,

f3 = x3
3 − x2

3x4,

f4 = x2x3x4 + x3
4,

f5 = x1x2x3 + x2
3x4,

f6 = x1x
2
4.

To show that these fi form a semi-regular sequence, we only need to confirm
that HS/(f1,...,fi)(t) = |(1 − tdi)HS/(f1,...,fi−1)(t)| for all i = 1, . . . ,6. This is
easily verified with Macaulay 2. The final calculation yields

HS/I(t) =

∣∣∣∣∣
6∏

i=0

(1 − tdi)
(1 − t)4

∣∣∣∣∣ = |1 + 4t + 8t2 + 8t3 + 0t4 − 12t5 + · · · |

= 1 + 4t + 8t2 + 8t3.

Note that the Castelnuovo–Mumford regularity is ρ = 3, and the coefficient of
t4 = tρ+1 is zero, so by Theorem 3.6, P̃S/I(s, t) agrees with

6∏
i=1

(1 + stdi −1) = 1 + 2st + (4s + s2)t2 + p(s, t)t3

in t degrees ≤ 2 where p(s, t) is some polynomial in s and t. The Betti diagram
of S/I is therefore:

total: 1 6 21 24 8
0: 1 . . . .
1: . 2 . . .
2: . 4 1 . .
3: . . β2,5 β3,6 β4,7,

where β2,5, β3,6, and β4,7 have yet to be determined.
Recall that (1 − t)nHS/I(t) = PS/I(−1, t). For the twisted Poincaré series,

we have (1 − t)nHS/I(t) = P̃ (−t, t) =
∑∞

j=0

∑n
i=0(−1)iβi,jt

j , so that the alter-
nating sums along the southwest to northeast diagonals of the Betti diagram
are determined by the Hilbert series. In our particular example,

(1 + 4t + 8t2 + 8t3)(1 − t)4 = 1 − 2t2 − 4t3 + t4 + 20t5 − 24t6 + 8t7

= 1 − 2t2 − 4t3 + t4 + β2,5t
5 − β3,6t

6 + β4,7t
7,
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and we then easily complete the Betti diagram:

total: 1 6 21 24 8
0: 1 . . . .
1: . 2 . . .
2: . 4 1 . .
3: . . 20 24 8.

The proof of the following corollary is a generalization of this example.

Corollary 3.9. Let r ≥ n and let ρ be the degree of the polynomial∣∣∣∣
∏r

i=1(1 − tdi)
(1 − t)n

∣∣∣∣.
If n,d1, . . . , dr satisfy the special numerical criterion, then all ideals generated
by semi-regular sequences of degrees d1, . . . , dr have the same graded Betti
numbers.

The special numerical condition is not as rare as one might think. Indeed,
it is quite common in the almost complete intersection case—the case in which
r = n + 1. To prove this, we first need some basic properties of the Hilbert
Series of an Artinian complete intersection. The properties in the proposition
below are well known except possibly for the explicit determination of the
coefficients that attain the maximum value in the Hilbert series. We are
grateful to David Moulton for his help in finding this proof.

Proposition 3.10. Let d1, . . . , dn+1 be positive integers with d1 ≤ d2 ≤
· · · ≤ dn+1. Let Δ =

∑n+1
i=1 (di − 1), δ =

∑n
i=1(di − 1), and μ = min{δ,  Δ

2 �}.
Let

H(t) =
n+1∏
i=1

(1 + t + · · · + tdi −1) =
Δ∑

i=0

hit
i.

(Set hi = 0 for i < 0 and i > Δ.) Then
(1) hΔ−i = hi for all i.
(2) μ is the smallest nonnegative integer such that hμ ≥ hμ+1.
(3) hi = hμ for μ ≤ i ≤ Δ − μ.

Proof. (1) follows immediately from the observation that

tΔH

(
1
t

)
=

n+1∏
i=1

tdi −1

(
1 +

1
t

+ · · · +
1

tdi −1

)
= H(t).

We prove (2) and (3) together by induction. If n = 0, then H(t) = 1 + · · · +
td1−1, Δ = d1 − 1 and μ = δ = 0. In this case, (2) and (3) are trivially satisfied.

If n > 0, then set δ̃ =
∑n−1

i=1 (di − 1) and μ̃ = min{δ̃,  δ
2 �}. Let h̃i be the

coefficient of ti in the polynomial H̃(t) =
∏n

i=1(1 + t + · · · + tdi −1) with the
understanding that h̃i = 0 for i < 0 and i > δ. By induction, the h̃i are
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strictly increasing for 0 ≤ i ≤ μ̃, are constant for μ̃ ≤ i ≤ δ − μ̃ and are strictly
decreasing for δ − μ̃ ≤ i ≤ δ.

Since H(t) = (1 + t + · · · + tdn+1−1)H̃(t), we have that hi = h̃i−dn+1+1 +
· · · + h̃i for every i. In order to prove (2), we want to find out for how long
the hi are strictly increasing. To do so, we consider

hi − hi−1 = h̃i − h̃i−dn+1 = h̃δ−i − h̃i−dn+1 .

For this quantity to be positive, we first need that 0 ≤ i ≤ δ, since otherwise
h̃i = 0 and h̃i−dn+1 ≥ 0. For i in this interval, and since, of course, i − dn+1 <

i = δ − (δ − i), we have h̃δ−i − h̃i−dn+1 > 0 if and only if i − dn+1 < min{μ̃, δ − i}.
In the interesting case, when i ≥ dn+1, we have min{μ̃, δ − i} = min{ δ

2 �, δ − i}.
Thus, hi − hi−1 > 0 if and only if 0 ≤ i ≤ δ and i − dn+1 < min{ δ

2 �, δ − i}.
Note that if i ≤ δ

2 , then the latter inequality is trivial. If δ
2 < i ≤ δ, then

i − dn+1 < min{ δ
2 �, δ − i} is the same as i − dn+1 < δ − i, which is the same

as 2i < δ + dn+1, which is the same as 2i ≤ δ + dn+1 − 1 = Δ, which is the
same as i ≤  Δ

2 �. Thus, hi > hi−1 if and only if 0 ≤ i ≤ min{δ,  Δ
2 �}. So, the

smallest nonnegative i such that hi+1 ≤ hi is μ = min{δ,  Δ
2 �} as required.

To prove (3), first consider the case in which μ =  Δ
2 �. Then by (1), hΔ−μ =

hμ, but there are no other values of i strictly between μ and Δ − μ. If μ = δ <

 Δ
2 �, then dn+1 > δ. In this case, hi attains its maximum value as

∑δ
j=0 h̃j .

This is attained when δ ≤ i ≤ dn+1 − 1. But, δ = μ and dn+1 − 1 = Δ − μ as
required. �

Corollary 3.11. Let I be an ideal in S = k[x1, . . . , xn] generated by a
semi-regular sequence f1, . . . , fn+1 of degrees d1 ≤ · · · ≤ dn+1 where dn+1 ≤∑n

i=1(di − 1). Let ρ be the Castelnuovo–Mumford regularity of S/I . Then the
coefficient of tρ+1 in ∏n+1

i=1 (1 − tdi)
(1 − t)n

is 0 if and only if Δ =
∑n+1

i=1 (di − 1) is odd. When Δ is odd the graded Betti
numbers of I are completely determined by the degree sequence d1 ≤ · · · ≤ dn+1.

Note that if the hypothesis that dn+1 ≤
∑n

i=1(di − 1) fails, then fn+1 is
in the ideal generated by the regular sequence f1, . . . , fn, and thus the first n
polynomials generate I . So, this hypothesis does not exclude any interesting
cases.

Proof. Note that∏n+1
i=1 (1 − tdi)
(1 − t)n

= (1 − t)
n+1∏
i=1

(1 + t + · · · + tdi −1).

In the language of Proposition 3.10 for the polynomial H(t) =
∏n+1

i=1 (1 + t +
· · · + tdi −1), we have that ρ = μ. Since dn+1 ≤

∑n
i=1(di − 1), we have that
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 Δ
2 � ≤ δ, so that ρ =  Δ

2 �. If Δ is even, the coefficient of tρ+1 in H(t) is less
than the coefficient of tρ. If Δ is odd, then the two coefficients are equal. For∏n+1

i=1 (1 − tdi)
(1 − t)n

this means that the coefficient of tρ+1 is 0, if Δ is odd and negative if Δ is
even.

The last statement follows from the discussion following Corollary 3.11. �

Example 3.12. For a final example, we demonstrate that the open set of
generic forms f1, . . . , fr of degrees d1, . . . , dr for which the generic ideal has
minimal graded Betti numbers can be strictly smaller then the open set of
semi-regular sequences of those degrees. Let S = k[x1, . . . , x4] where k has
characteristic zero, and let I be the ideal generated by 5 generic forms of
degree 3. Let J be the ideal generated by the forms x3

1, x3
2, x3

3 x3
4, (x1 +

x2 + x3 + x4)3. By Stanley [7], we know that both I and J are generated by
semi-regular sequences, so they both have the same Hilbert series

H(t) = |1 + 4t + 10t2 + 15t3 + 15t4 + 6t5 − 6t6 + · · · |
= 1 + 4t + 10t2 + 15t3 + 15t4 + 6t5.

The Betti diagrams of S/I and S/J , however, are not equal. (Note that
although this is an almost complete intersection, Δ =

∑5
i=1(d − 1) = 10 is

even.) The Betti diagram for S/I turns out to be:

total: 1 5 16 18 6
0: 1 . . . .
1: . . . . .
2: . 5 . . .
3: . . . . .
4: . . 16 9 .
5: . . . 9 6.

In this case, most of the information in the Betti diagram of S/I is beyond the
purview of Theorem 3.6. We know, however, what the entries in the first two
columns should be, while β2,6(S/I) and β4,9(S/I) can be read off the much
used equation

HS/I(t) =
∑∞

d=0

∑n
i=0(−1)iβi,d(S/I)td

(1 − t)n
=

PS/I(−t, t)
(1 − t)n

.

The values of β2,7(S/I), β3,7(S/I), β3,8(S/I), and β4,8(S/I) cannot be deter-
mined by the methods in this paper (note that in the calculation above, the
coefficient of tρ+1 = t6 is nonzero). Migliore and Miró-Roig, however, are able
to compute the entire resolution for almost complete intersections in dimen-
sion n = 4 when

∑5
i=1 di is odd and d2 +d3 +d4 < d1 +d5 +4 (Proposition 3.15

[5]). Thus, we calculate the remaining Betti numbers using their results.
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The Betti diagram of S/J (easily produced using Macaulay 2) is

total: 1 5 17 20 7
0: 1 . . . .
1: . . . . .
2: . 5 . . .
3: . . . . .
4: . . 16 10 1
5: . . 1 10 6

and it is obviously strictly larger then the diagram of S/I .
Finally, we observe that neither Betti diagram agrees with (1 + st2)5 in t

degree 4 = ρ − 1.

4. Converse of the main theorem

In this section, we prove a converse to Theorem 3.6. In particular, let
I ⊂ S such that S/I is Artinian. Write ρ to be the Castelnuovo–Mumford
regularity of S/I . If the number of second syzygies in degrees ≤ ρ − 1 agrees
with the number of expected Koszul relations, then I can be generated by a
semi-regular sequence.

First, we need a few lemmas.

Lemma 4.1. The ideal ms can be generated by a semi-regular sequence of
monomials for all s ∈ N.

Proof. Recall from the Introduction that if S/I is Artinian of Castelnuovo–
Mumford regularity ρ, then any f of degree ρ that is not in I is semi-regular
modulo I . We use this principal to construct an ascending chain of ideals
generated by semi-regular sequences in ms. Let I0 be the ideal generated
by the regular sequence xs

1, . . . , x
s
n. For j ≥ 0, say that we have constructed

a semi-regular sequence of monomials of length n + j generating an ideal
Ij ⊆ ms. If Ij = ms, then we are done. Otherwise, choose any monomial xμ

not in Ij and of degree equal to the Castelnuovo–Mumford regularity of S/Ij .
Note that this degree is at least s. Append xμ to our sequence, and let the
new sequence generate Ij+1, a strictly larger ideal contained in ms. Since S is
Noetherian, the chain of ideals must terminate. By construction, it can only
terminate at ms. �

Remark 4.2. Note that the semi-regular sequence constructed in Lem-
ma 4.1 is far from minimal if s and n are at least 2. However, Fröberg’s
Conjecture implies that a generic sequence of forms of degree s and of length
dimSs is a semi-regular sequence that minimally generates ms. In fact, that
ms can be minimally generated by a semi-regular sequence is equivalent to
Fröberg’s Conjecture in the special case that all forms in the sequence have
degree s.
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Lemma 4.3. Let M ⊆ N be finitely generated graded S-modules such that
minimal generating sets for M and for N have the same number of elements
for each degree. Then M = N .

Proof. If the conclusion is false, then let d be the smallest degree in which
Md �= Nd. Without loss of generality, we may replace M and N by their
submodules, generated by their components of degrees less than or equal to d.
Then N is minimally generated by the minimal generators of M together with
a nonempty set of elements of Nd forming a cobasis for the subspace Md. This
contradicts that all minimal generating sets for N have the same cardinality.

�

Theorem 4.4. Let S/I be Artinian with Castelnuovo–Mumford regular-
ity ρ, and suppose that for j ≤ ρ we have that β2,j(S/I) is the coefficient of
s2tj in

ρ+1∏
e=1

(1 + ste)β1,e(S/I).

Then I can be generated by a semi-regular sequence.

Remark 4.5. In general, I may fail to be minimally generated by a semi-
regular sequence: in the construction that we give in the proof below, the semi-
regular sequence ends with a minimal generating set. Consider for example
the ideal

I = (x2
1, x1x2x3, x1x

3
2, x1x

3
3, x

4
2, x

3
2x3, x

2
2x

2
3, x2x

3
3, x

4
3) ⊂ k[x,x2, x3] = S.

The Hilbert series of S/I is 1 + 3t + 5t2 + 6t3 and its Betti diagram is

total: 1 9 14 6
0: 1 . . .
1: . 1 . .
2: . 1 1 .
3: . 7 13 6

so that the hypothesis of the theorem is satisfied. But, we know that I cannot
be minimally generated by a semi-regular sequence, for if so, then it cannot
have a non-Koszul second syzygy in degree 4 (this is a due to a result of
Migliore and Miró-Roig [4, remark 3.16]). Since I clearly has a non-Koszul
syzygy in that degree, we conclude that it cannot be minimally generated by
a semi-regular sequence.

Proof. Let f1, . . . , fr be a minimal set of generators of I of degrees d1, . . . , dr.
We first show that all syzygies of f1, . . . , fr of degree less than or equal to ρ
are generated by Koszul syzygies.

Let F• → S/I be a minimal free resolution of S/I and let K• be the Koszul
complex of f1, . . . , fr. If the map from F1 to F0 is chosen so that the basis
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elements of F1 go to the generators f1, . . . , fr, then we have a commutative
diagram

K1 K0

F1 F0

in which the vertical arrows are isomorphisms. Let Γ be the kernel of the top
row and and let Ω be the kernel of the bottom row. Then Γ ∼= Ω and Γρ

∼= Ωρ

under the isomorphism above. Furthermore, Ωρ is minimally generated by
the image of (F2)ρ. Note that the hypothesis on the graded Betti numbers
implies that (F2)ρ and (K2)ρ have the same number of basis elements of each
degree.

We claim that the image of (K2)ρ in K1 is minimally generated by the
images of the basis elements of (K2)ρ. If this is not the case, then there is some
basis element κσ whose image fσ2κσ1 − fσ1κσ2 is equal to the image of some
S-linear combination of the other basis elements

∑
ω �=σ gωκω . Comparing the

coefficients of κσ1 in the images of these two elements, we find that fσ2 =∑
j �=σ1,σ2

±g{σ1,j}fj . Thus, fσ2 is in the ideal generated by the other fj ,
contradicting that f1, . . . , fr is a minimal set of generators for I .

The image of (K2)ρ in K1 is contained in Γρ, so that the image of (K2)ρ

in F1 is contained in Ωρ. It follows immediately from the last paragraph that
the image of (K2)ρ in Ωρ is minimally generated by the images of the basis
elements. It then follows from Lemma 4.3 that (K2)ρ surjects on to Ωρ, which
is to say that all of the syzygies of f1, . . . , fr of degree less than or equal to ρ
are Koszul syzygies.

Notice that mρ+1 ⊆ I . Let g1, . . . , gN be a semi-regular sequence generat-
ing mρ+1 (such a sequence exists by Lemma 4.1). We claim that g1, . . . , gN ,
f1, . . . , fr is a semi-regular sequence. To prove this, it is enough to show that
the map(

S/
(
mρ+1 + (f1, . . . , fi−1)

))
a−di

fi−→
(
S/

(
mρ+1 + (f1, . . . , fi−1)

))
a

has maximal rank for all a.
If a < di or a ≥ ρ + 1, then multiplication by fi has maximal rank because

either the domain or the range is zero-dimensional. If di ≤ a ≤ ρ, then we will
show that the map is injective, hence, also maximum rank. If h ∈ Sa−di is such
that hfi ∈ (mρ+1 + (f1, . . . , fi−1)), then hfi ∈ (f1, . . . , fi−1) gives a syzygy of
degree ≤ a in f1, . . . , fi (note that deg(h) > 0 since fi is a minimal generator
of I). Since the only second syzygies of degree ≤ a are Koszul (because a ≤ ρ),
we conclude that h ∈ (f1, . . . , fi−1) ⊆ ((f1, . . . , fi−1) + mρ+1) as required. �

Example 4.6. In Theorem 4.4, the Artinian hypothesis is very important;
one can easily find counterexamples if it is omitted. For instance, let S =
k[x1, x2] and suppose that I = (x2

1, x1x2). Then the regularity of S/I is 1, and,
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for j ≤ 1, the coefficients of s2tj in PS/I(s, t) = 1+2st2 +s2t3 and (1+st2)2 =
1 + 2st2 + s2t4 agree; they are all zero. However, there cannot be any semi-
regular sequence generating I , because I ⊂ (x1). That is for any generating
set f1, . . . , fr, x1|f1 and x1|f2, so f1, f2 fails to be semi-regular.

Corollary 4.7. Suppose that S/I is Artinian with Castelnuovo–Mumford
regularity ρ where I is minimally generated by forms f1, . . . , fr of degrees
d1, . . . , dr, and that β2,j(S/I) agrees with the coefficients of s2tj in

ρ+1∏
e=1

(1 + ste)β1,e(S/I),

for j ≤ ρ. Let F• be a minimal resolution of S/I , and K• be the Koszul
complex on f1, . . . , fr. Then F

(ρ−2)
• ∼= K

(ρ−2)
• .

Proof. By Theorem 4.4, we can find a semi-regular sequence, g1, . . . , gN ,
f1, . . . , fr generating I such that g1, . . . , gN generate mρ+1. We can assume
that degree(gi) ≥ ρ + 1 for all i = 1, . . . ,N . By Theorem 3.6, it follows that

F
(ρ−2)

• ∼= K(g1, . . . , gN , f1, . . . , fr)
(ρ−2)
• .

But because g1, . . . , gN all have degree ≥ ρ + 1, it is clear that

K(g1, . . . , gN , f1, . . . , fr)
(ρ−2)
• ∼= K

(ρ−2)
• . �
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