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THE STRING BORDISM OF BE8 AND BE8 × BE8

THROUGH DIMENSION 14

MICHAEL A. HILL

Dedicated to the memory of Robert Stong

Abstract. We compute the low dimensional String bordism

groups Ω̃String
k BE8 and Ω̃String

k (BE8 × BE8) using a combination

of Adams spectral sequences together with comparisons to the
Spin bordism cases.

1. Introduction

In this paper, we will answer a question posed by Hisham Sati about the low
dimensional String bordism groups of spaces of particular interest to string
theorists. We specifically compute the bordism groups of K(Z,4); of BE8, the
classifying space for principal bundles for the exceptional Lie group E8; and
of their Cartesian squares. These computations have applications to various
models string theory built out of E8 bundles, many of which will be spelled
out more fully in a future paper.

This computation generalizes computations of Stong of the Spin bordism
groups of K(Z,4) and of Edwards of the Spin bordism of BE8 × BE8 [22], [11].
In particular, we see that the String bordism of K(Z,4) injects into the Spin
bordism of K(Z,4) through dimension at least 14. This means that many of
the cohomological invariants used to detect bordism classes of Spin manifolds
apply equally well here. In particular, the comparison of Adams spectral
sequences used to compute the 10th String bordism group of BE8 shows that
the Landweber–Stong invariant detects this String bordism class [18], [10].

Our main results are summarized in the following two theorems.

Theorem 1.1. Through dimension 14, we have the following reduced String
bordism groups.
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k 4 5 6 7 8 9 10 11 12 13 14
Ω̃String

k BE8 Z 0 0 0 Z Z/2 Z/2 0 Z2 0 0

The String bordism groups of BE8 × BE8 contain two copies of the String
bordism groups of BE8, together with the String bordism of the space BE8 ∧
BE8. These new groups are given in the following theorem.

Theorem 1.2. Through dimension 14, we have the following reduced String
bordism groups.

k 4 5 6 7 8 9 10 11 12 13 14
Ω̃String

k (BE8 ∧ BE8) 0 0 0 0 Z 0 Z/2 0 Z2 ⊕ Z/3 0 (Z/2)2

2. Computational reductions

2.1. Reduction to tmf and K(Z,4). Our actual computation will be of
the tmf -homology of K(Z,4). We proceed in this section to explain why this
computation is sufficient.

The σ-orientation of Ando–Hopkins–Strickland is the primary tool. This
is an E∞ ring map MString → tmf that refines the Witten genus [4], [2], [14].

Theorem 2.1. The σ-orientation is 15-connected.

Proof. We argue this locally, showing that it is true at 2, at 3, and with 6
inverted.

For p = 2, we show this is true in cohomology. Since the σ orientation is a
ring map, composition with the unit map shows that

σ∗ : Z = H0(tmf ) → H0(MString) = Z

is an isomorphism.
Computations of Stong and Bahri–Mahowald show that as a module over A,

the Steenrod algebra,

H∗(MString) = A//A(2) ⊕ M,

where A(2) is the subalgebra of the Steenrod algebra generated by Sq1, Sq2,
and Sq4, and where M is a 15-connected A-module [23], [5]. Hopkins and
Mahowald have shown that H∗(tmf ) = A//A(2) [15], so since σ∗ is an iso-
morphism on H0, we conclude that

A//A(2) = H∗(tmf ) ↪→ H∗(MString).

In particular, the smallest degree element of the cokernel is in dimension 16,
giving the result for p = 2.

The remaining cases are simpler. For p = 3, computations of Hovey and
Ravenel show that the σ-orientation is 15-connected [17]. When 6 is a unit,
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there is no torsion in the homotopy of MString , and in degrees less than 17,
there are polynomial generators in degree 8, 12, and 16. The σ-orientation
sends the generator in degree 8 to c4 and the one in degree 12 to c6. This
gives the final case. �

Bott and Samelson showed that the Postnikov section E8 → K(Z,3) is 14-
connected [7]. This implies that the Postnikov section BE8 → K(Z,4) is an
isomorphism in homotopy in degrees less than 16. In particular, we see that
if X [k] denotes the k-skeleton of X , then

K(Z,4)[15] � BE
[15]
8 .

Since the spectra tmf and MString are (−1)-connected, the inclusion of the
15-skeleton induces an isomorphism in homology through degree 14. Com-
bined with the previous theorem, we conclude the following.

Corollary 2.2. As graded rings,

t̃mf kK(Z,4) ∼= Ω̃String
k BE8

for k < 15, where the isomorphism is the composite of the Postnikov section
with the σ-orientation.

This is a substantial simplification, since tmf -homology at all primes is
computable using the Adams spectral sequence.

2.2. Forms of the Adams spectral sequence. Hopkins and Mahowald
have shown that H∗(tmf ) = A//A(2), where A(2) is the subalgebra of the
Steenrod algebra generated by Sq1, Sq2, and Sq4. Standard change-of-rings
arguments then show the following.

Theorem 2.3 ([15]). If X is a finite spectrum, then there is an Adams
spectral sequence of the form

E2 = Exts,t
A(2)(H̃

∗(X;F2),F2) =⇒ t̃mf t−sX
∧
2 .

At p = 3, the cohomology of tmf is not a cyclic A-module, so similar tech-
niques no longer work. By considering instead a slightly refined version of the
Adams spectral sequence, described by Baker and Lazarev [6], we can still
build an analogous spectral sequence.

There is a Hopf algebra Ã(1) analogous to A(2) used to compute tmf -
homology at p = 3. This is most easily expressed in the dual formulation:

Ã(1)∗ = F3[ξ1]/ξ3
1 ⊗ E(τ0, τ1, a2),

where ξ1, τ0, and τ1 arise from the elements of the dual Steenrod algebra of
the same name, and where the coproduct on a2 is given by

ψ(a2) = a2 ⊗ 1 + 1 ⊗ a2 + ξ1 ⊗ τ1 − ξ2
1 ⊗ τ0.
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Theorem 2.4 ([13]). If X is a finite spectrum, then there is an Adams
spectral sequence of the form

E2 = Exts,t

Ã(1)
(H̃∗(X;F3),F3) =⇒ t̃mf t−sX

∧
3 .

At p > 3, the computations are simplified by the lack of p-torsion and a
splitting of tmf into spectra built out of BP .

Theorem 2.5 ([16, 20]). At primes larger than 3, we have a splitting

tmf (p) =
∨

BP 〈2〉.

Since H ∗(BP 〈2〉) = A//E(Q0,Q1,Q2), where Qi is the ith Milnor primi-
tive, standard change-of-rings arguments allow us to compute each summand
of tmf ∗X arising from this splitting.

Theorem 2.6 ([19]). If X is a finite spectrum then there is an Adams
spectral sequence of the form

E2 = Exts,t
E(Q0,Q1,Q2)

(H̃∗(X;Fp),Fp) =⇒ B̃P 〈2〉t−sX
∧
p .

At the prime 2, we will also have need of the ko-homology of K(Z,4). Since
H∗(ko) = A//A(1), where A(1) is the subalgebra of the Steenrod algebra
generated by Sq1 and Sq2, a change-of-rings argument similar to that for tmf
allows us to compute ko-homology.

Theorem 2.7. If X is a finite spectrum, then there is a spectral sequence
of the form

E2 = Exts,t
A(1)(H̃

∗(X;F2),F2) =⇒ k̃ot−sX
∧
2 .

There is a canonical map from tmf → ko that intertwines the σ-orientation
and the Atiyah–Bott–Shapiro orientation [3], [2]. In cohomology, the effect of
this map is the quotient

H∗(ko) = A//A(1) → A//A(2) = H∗(tmf ).

This means that the induced map on Adams spectral sequences is given on
E2 terms by the canonical map

ExtA(2)(H̃∗(X;F2),F2) → ExtA(1)(H̃∗(X;F2),F2)

induced by the inclusion of A(1) into A(2).
Many of our Adams spectral sequence arguments will be made more clear

with pictures of the corresponding E2 pages. In all of these charts, the hor-
izontal axis represents t − s, the difference between the internal grading and
the Ext degree, and this corresponds to the stem of the target. This means
that all of the groups in a column reassemble to give a single homotopy group.
The vertical direction represents s, the Ext degree, and a dr differential de-
creases t − s by 1 and increases s by r. Additionally, it the pictures that
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follow, a dot represents a copy of Z/p, and vertical lines connecting dots rep-
resents multiplication by a class v0 from the Adams spectral sequence of the
sphere. This class detects multiplication by p, reflecting a nontrivial additive
extension between the linked copies of Z/p. In particular, a class which is
v0-torsion free represents a copy of Zp.

Since MString and BE8 are finite type, we know that copies of Zp in the
p-completion arise from copies of Z(p) in the localization. We will therefore
blur the distinction in what follows, stating without further comment that
v0-towers yield copies of Z(p).

2.3. Cohomology of K(Z,4). The final ingredient is the cohomology of
Eilenberg–MacLane spaces, worked out by Cartan and Serre [9], [21].

Theorem 2.8. The cohomology of K(Z, n) with coefficients in Fp is the
free graded commutative unstable algebra over the Steenrod algebra generated
by a class ιn in degree n subject to the relation that βιn = 0.

In particular, H∗(K(Z,4);Fp) is generated by classes i4 and P Iι4 for all
admissible I of excess less than 4 that do not end in β. This is a very harsh
restriction.

Corollary 2.9. For p > 5, the only cohomology classes of dimension less
than 16 are ι4, ι24, and ι34.

For p = 5, there are additionally the classes P 1ι4 and βP 1ι4 in degrees 12
and 13 respectively.

For p = 3, there are classes ι4, P 1ι4, βP 1ι4, ι24, ι34 = P 2ι4, ι4P 1ι4, and
ι4βP 1ι4.

For p = 2, there are classes ι4, Sq2ι4, Sq3ι4, ι24 = Sq4ι4, Sq4Sq2ι4, ι4Sq2ι4,
Sq5Sq2ι4, ι4Sq3ι4, (Sq2ι4)2 = Sq6Sq2ι4, ι34, Sq6Sq3ι4, Sq2ι4Sq3ι4, (Sq3 ×
ι4)2 = Sq7Sq3ι4, ι4Sq4Sq2ι4, ι24Sq2ι4 ι24Sq3ι4, and ι4Sq5Sq2ι4.

We remark that for p > 5, the Bockstein spectral sequence collapses, show-
ing that the integral cohomology of K(Z,4) is p-torsion free through dimen-
sion 15.

The modules for p = 3 and p = 2 are best understood via pictures. In
these, the vertical direction indicates the dimension, and dots represent basis
elements. In the picture for p = 3, curved lines represent the action of P 1

and straight lines represent the action of β. The module is presented in
Figure 1(a). For p = 2, Theorem 2.3 shows us that we need only understand
the cohomology as a module over A(2). For this, straight lines indicate Sq1,
curved lines indicate Sq2 and brackets indicate Sq4. The module (with a
slightly nicer basis) is depicted in Figure 1(b).

This collection of data is sufficient to carry out almost all of the required
computations.
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(a) p = 3 (b) p = 2

Figure 1. Hk(K(Z,4);Fp) for k < 16 as an A-module.

3. The groups Ω̃String
k (BE8) for k < 15

3.1. Computation with 6 inverted. When 6 is inverted, the spectrum tmf
has no torsion. This makes running the Atiyah–Hirzebruch spectral sequence
for t̃mf kK(Z,4) much simpler.

Theorem 3.1. For k < 15, we have

Ω̃String
k BE8 ⊗ Z

[
1
6

]
=

⎧⎪⎨
⎪⎩

Z[ 16 ] when k = 4,8,

Z[16 ] × Z[ 16 ] when k = 12,

0 otherwise.

Proof. Localized at primes larger than 5, there is no torsion in the integral
homology of K(Z,4) in our range. For degree reasons, the Atiyah–Hirzebruch
spectral sequence then collapses, giving the result.

At p = 5, the Atiyah–Hirzebruch spectral sequence becomes less transpar-
ent:

H12

(
K(Z,4);Z

[
1
6

])
= Z/5 ⊕ Z

[
1
6

]
,

and this propagates to give a possible 5-torsion class in Ω̃String
12 K(Z,4). Using

instead the Adams spectral sequence, we see that in fact Ω̃String
12 K(Z,4)[ 16 ] is

torsion free, since the class βP 1 is Q1 on integral classes and detects v1. At
p = 5, the class v1 is the class c4 in tmf [20], showing that the 12th String
bordism group is in fact torsion free. �
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4 6 8 10 12 14
0

2

4

Figure 2. An Adams E2 term for t̃mf kK(Z,4), k < 15.

Remark 1. The possible 5-torsion in Ω̃String
12 K(Z,4) is exactly analogous

to the possible 3-torsion Stong encountered computing Ω̃Spin
8 K(Z,4). Stong

elegantly avoided the use of the Adams spectral sequence by appealing to
characteristic classes. A similar argument applies here, relating the mod 5
reduction of p2 to the first Wu class.

3.2. Computation at p = 3. The space K(Z,4) splits stably at p = 3, due to
the presence of the automorphism given by multiplication by −1. This acts on
i4 by −1, and the stable splitting is reflected in the cohomology by splitting
the cohomology into ±1 eigenspaces. In particular, the two summands of
Figure 1(a) arise from different stable summands, and therefore they do not
interact in the Adams spectral sequence.

The relevant Ext groups for the two modules making up H∗(K(Z,4);F3)
are easy to compute using the long exact sequences in Ext induced by the
inclusions of the skeleta [13], and the analogue of the Adams E2 term is given
in Figure 2.

We see that for degree reasons, there are no differentials and no possible
extensions. In particular, there are no torsion summands in this range, and
we conclude that at 3, the results are essentially the same as for large primes.

Theorem 3.2. For k < 15, we have that

Ω̃String
k BE8 ⊗ Z(3) =

⎧⎪⎨
⎪⎩

Z(3) when k = 4,8,

Z2
(3) when k = 12,

0 otherwise.

3.3. Computation at p = 2. Using a program written by Robert Bruner [8],
we compute

Exts,t
A(2)(H̃

∗(K(Z,4);F2),F2).

The result is depicted in Figure 3. In this figure, lines of slope 1 are multi-
plication by η, the generator of πs

1(S
0). Since the stable homotopy groups of

spheres are the cobordism groups of framed manifolds, we can interpret this
class as a framed manifold: S1 together with the nonbounding framing.
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4 6 8 10 12 14
0

2

4

6

Figure 3. The Adams E2 term for t̃mf kK(Z,4), k < 15.

There is the possibility for a d2 differential in degrees 10 and 11. Us-
ing Stong’s computation of Ω̃Spin

11 K(Z,4), we can show that there is such a
differential.

Theorem 3.3 ([22]). We have

Ω̃Spin
10 K(Z,4) = Z/2 ⊕ Z/2 and Ω̃Spin

11 K(Z,4) = 0.

We can show our desired differential by mapping down to ko, using the
natural map tmf → ko making the following diagram commute:

MString

σ

MSpin

Â

tmf ko.

The Â-genus MSpin → ko is the projection onto one of the summands of
MSpin described by Anderson, Brown, and Peterson [1]. Through dimen-
sion 10, the splitting looks like

MSpin = ko ∨ ko[8] ∨ ko[10],

where ko[n] denotes the (n − 1)-connected cover of ko.
Since K(Z,4) begins in dimension 4, we conclude that the Â-genus induces

an isomorphism

Ω̃Spin
k (K(Z,4)) �−→ k̃okK(Z,4)

for k ≤ 11.
The Adams E2 term for k̃o∗K(Z,4) is very easy to compute directly, and

is presented in Figure 4 through dimension 14.
It is similarly easy to see that the map on Adams E2 terms induced by

tmf → ko is injective through dimension 14.
Stong’s computation that Ω̃Spin

11 K(Z,4) is 0 shows that the class ηx10 can-
not survive the Adams spectral sequence. For degree reasons, the only way
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4 6 8 10 12 14
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6

x8

x10

Figure 4. The Adams E2 term for ko∗K(Z,4).

to remove this class is for it to support a differential, and the only possibility
is

d2(ηx10) = η2x8.

Since the Adams spectral sequence for ko-homology is a spectral sequence of
modules over the Adams spectral sequence for ko∗, we conclude that we also
have a differential of the form

d2(x10) = ηx8.

Naturality of the Adams spectral sequence implies that the same must be
true for tmf .

Corollary 3.4. There is a d2 differential in dimensions 10 and 11 in the
Adams spectral sequence for t̃mf ∗K(Z,4).

In the homotopy of ko, there is a Massey product relation linking the
generator of the 4 stem with the lower generators:

ko4 = Z · 〈2, η, η2〉.
This relationship propagates, and in particular, we know that the generator of
13 stem in the Adams E2 term for k̃o∗K(Z,4) is linked by a bracket of the form
〈2, η, −〉 to ηx10. Adams differentials satisfy a kind of Leibnitz rule [19], and
this allows us to conclude that there is a d2 differential on the 13-dimensional
generator, hitting the generator of the Z-tower beginning in filtration 4 in
dimension 12 modulo indeterminacy. For this bracket, the indeterminacy is
the submodule generated by v0 times each of the generators in this degree, and
thus cannot cancel out the piece of the differential hitting the aforementioned
generator.

Corollary 3.5. In dimension 12, Ω̃String
k K(Z,4) ⊗ Z(2) is torsion free.

Using an analysis built out of the fact that H13(K(Z,4);Z) = Z/20, Francis
has shown that the target of the differential hits nontrivial multiples of all of
the classes in that degree [12].
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For degree reasons, there are no further differentials possible and no possi-
ble extensions. We conclude the following theorem.

Theorem 3.6. For k < 15, we have

Ω̃String
k BE8 ⊗ Z(2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z(2) when k = 4,8,

Z/2 when k = 9,10,

Z2
(2) when k = 12,

0 otherwise.

Our analysis of the Adams spectral sequences for k̃o∗K(Z,4) and t̃mf ∗K(Z,

4) shows an additional result, since all of the differentials for k̃o∗K(Z,4) lift
to differentials for t̃mf ∗K(Z,4).

Corollary 3.7. The map

Ω̃String
k (BE8) ⊗ Z(2) → Ω̃Spin

k (BE8) ⊗ Z(2)

is injective for k < 14.

Theorems 3.1, 3.2, and 3.6 together give a restatement of Theorem 1.1.
In each degree, we simply find a finitely generated abelian group which has
the correct localizations with respect to each prime, and this yields the table
given in the Introduction. Since the String bordism groups with 2 inverted
are torsion free, Corollary 3.7 implies that integrally,

Ω̃String
k (BE8) → Ω̃Spin

k (BE8)

is injective for k < 14.
In particular, in dimension 10, a dimension of particular interest to String

theorists, the cobordism invariant discussed by Diaconescu–Moore–Witten
can also be used to detect cobordism classes of String 10-manifolds equipped
with a 4-dimensional cohomology class [10].

4. The Groups Ω̃String
k (BE8 × BE8) for k < 15

The earlier analysis goes though mutatis mutandis, showing that it will
suffice to compute t̃mf kK(Z × Z,4). Since we have a stable splitting

K(Z × Z,4) = K(Z,4) ∨ K(Z,4) ∨ K(Z,4) ∧ K(Z,4),

the homology computation will be two copies of the results of the previous
section together with a factor coming from the smash square of K(Z,4).

The cohomology of this is easily determined. Let I denote the augmenta-
tion ideal of the graded algebra H∗(X;Fp) for any simply connected space X .
Since we are working over a field, the Künneth theorem says that

H∗(X × X;Fp) = H∗(X;Fp) ⊗ H∗(X;Fp).
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The reduced cohomology of X ∧ X is therefore given by the ideal I ⊗ I sitting
in this algebra, and the action of the Steenrod algebra is given by the Cartan
formula and the action on H∗(X;Fp). In particular, since the augmentation
ideal begins in degree 4, there are very few possible classes in I ⊗ I below
degree 16.

4.1. Computation with 6 inverted. For degree reasons, the Atiyah–
Hirzebruch spectral sequence collapses, and we quickly conclude the following
theorem.

Theorem 4.1. For k < 15, we have

Ω̃String
k (BE8 ∧ BE8)

[
1
6

]
=

⎧⎪⎨
⎪⎩

Z[ 16 ] when k = 8,

Z[ 16 ]2 when k = 12,

0 otherwise.

4.2. The case of p = 3. Our analysis at p = 3 will again use the stable
splitting induced by multiplication by −1. Localized at p = 3,

K(Z,4) = A ∨ B,

where the bottom cell of A is in dimension 4 while that of B is in 8, we have
a similar splitting

K(Z,4) ∧ K(Z,4) = (A ∧ A) ∨ (A ∧ B) ∨ (B ∧ A) ∨ (B ∧ B).

Since we are looking only through dimension 15, the cells in dimensions
larger than 9 in A play no role. The 9-skeleton of A is a desuspension of B,
and this means that for purposes of our computation, each summand of the
right-hand side is a suspension of spectra of the form A ∧ A. On these, there
is an action of Z/2 given by interchanging the factors. This again allows us to
split each factor into eigenspaces. Working through all of the computations
allows us to easily compute H̃∗(K(Z,4) ∧ K(Z,4)), and this is presented in
Figure 5. We remark that here the bottom cell is in dimension 8, meaning
that the figure contains more information than is necessary.

The above analysis shows that the splitting drawn for the modules is re-
flected topologically. This means that there are no possible differentials or ex-
tensions linking the summands. A fairly straightforward computation yields
the relevant Ext groups, and the result is given in Figure 6.

We see in particular that there are no possible differentials or extensions.
This allows us to conclude the following theorem.

Theorem 4.2. Through dimension 15,

Ω̃String
k (BE8 ∧ BE8) ⊗ Z(3) =

⎧⎪⎨
⎪⎩

Z(3) when k = 8,

Z2
(3) ⊕ Z/3 when k = 12,

0 otherwise.
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A^A A^B B^A

Figure 5. H̃k(K(Z,4) ∧ K(Z,4);F3) for k ≤ 15.

8 10 12 14
0

2

4

Figure 6. An Adams E2 term for t̃mf ∗(K(Z,4) ∧ K(Z,4))
at 3.

4.3. The case of p = 2. For p = 2, the analysis for K(Z,4) ∧ K(Z,4) is
much simpler than that for K(Z,4). Computing the action of the Steenrod
algebra in the cohomology is very easy using the method described above.
However, given the number of cells, it is also incredibly tedious. Bruner’s Ext
program package contains a program for computing the tensor product of two
A(2) modules, allowing us to automate this computation. Combining this
computation with the Ext program allows us to compute the relevant groups.
These are depicted in Figure 7.

For degree reasons, there are no possible differentials or extensions, and we
conclude the following theorem.



MSTRING OF BE8 AND BE8 × BE8 195
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Figure 7. The Adams E2 term for t̃mf k(K(Z,4) ∧ K(Z,4)),
k < 15.

Theorem 4.3. For k < 15,

Ω̃String
k (BE8 ∧ BE8) ⊗ Z(2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z when k = 8,

Z/2 when k = 10,

Z2 when k = 12,

(Z/2)2 when k = 14,

0 otherwise.

Just as before, Theorems 4.1, 4.2, and 4.3 together yield Theorem 1.2.
Comparing the localizations yields the table from that theorem. We do remark
that while the map

Ω̃String
k BE8 → Ω̃Spin

k BE8

is injective for k < 15, the map

Ω̃String
k (BE8 × BE8) → Ω̃Spin

k (BE8 × BE8)

is not.
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