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STABILITY OF HYPERSURFACES WITH CONSTANT
(r + 1)-TH ANISOTROPIC MEAN CURVATURE

YIJUN HE* AND HAIZHONG LI

Abstract. Given a positive function F on Sn which satisfies
a convexity condition, we define the r-th anisotropic mean cur-
vature function HF

r for hypersurfaces in R
n+1 which is a gener-

alization of the usual r-th mean curvature function. Let X : M →
R

n+1 be an n-dimensional closed hypersurface with HF
r+1 =

constant, for some r with 0 ≤ r ≤ n − 1, which is a critical point

for a variational problem. We show that X(M) is stable if and
only if X(M) is the Wulff shape.

1. Introduction

Let F : Sn → R
+ be a smooth function which satisfies the following con-

vexity condition:

(1.1) (D2F + F1)x > 0 ∀x ∈ Sn,

where Sn denotes the standard unit sphere in R
n+1, D2F denotes the intrinsic

Hessian of F on Sn and 1 denotes the identity on TxSn, > 0 means that the
matrix is positive definite. We consider the map

φ : Sn → R
n+1,(1.2)

x �→ F (x)x + (gradSn F )x,

its image WF = φ(Sn) is a smooth, convex hypersurface in R
n+1 called the

Wulff shape of F (see [4], [7]–[9], [11], [14], [18], [19]). We note when F ≡ 1,
WF is just the sphere Sn.
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Now let X : M → R
n+1 be a smooth immersion of a closed, orientable

hypersurface. Let ν : M → Sn denotes its Gauss map, that is ν is the unit
inner normal vector of M .

Let AF = D2F + F1, SF = −d(φ ◦ ν) = −AF ◦ dν. SF is called the F -
Weingarten operator, and the eigenvalues of SF are called anisotropic princi-
pal curvatures. Let σr be the elementary symmetric functions of the aniso-
tropic principal curvatures λ1, λ2, . . . , λn:

(1.3) σr =
∑

i1<···<ir

λi1 · · · λir (1 ≤ r ≤ n).

We set σ0 = 1. The r-th anisotropic mean curvature HF
r is defined by HF

r =
σr/Cr

n, also see Reilly [16].
For each r, 0 ≤ r ≤ n − 1, we set

(1.4) Ar,F =
∫

M

F (ν)σr dAX .

The algebraic (n + 1)-volume enclosed by M is given by

(1.5) V =
1

n + 1

∫
M

〈X,ν〉 dAX .

We consider those hypersurfaces which are critical points of Ar,F restricted
to those hypersurfaces enclosing a fixed volume V . By a standard argument
involving Lagrange multipliers, this means we are considering critical points
of the functional

(1.6) Fr,F ;Λ = Ar,F + ΛV (X),

where Λ is a constant. We will show the Euler–Lagrange equation of Fr,F ;Λ

is:

(1.7) (r + 1)σr+1 − Λ = 0.

So the critical points are just hypersurfaces with HF
r+1 = constant.

If F ≡ 1, then the function Ar,F is just the functional Ar =
∫

M
Sr dAX

which was studied by Alencar, do Carmo, and Rosenberg in [1], where Hr =
Sr/Cr

n is the usual r-th mean curvature. For such a variational problem, they
call a critical immersion X of the functional Ar (that is, a hypersurface with
Hr+1 = constant) stable if and only if the second variation of Ar is nonnegative
for all variations of X preserving the enclosed (n+1)-volume V . They proved
the following theorem.

Theorem 1.1 ([1]). Suppose 0 ≤ r ≤ n − 1. Let X : M → R
n+1 be a closed

hypersurface with Hr+1 = constant. Then X is stable if and only if X(M) is
a round sphere.

Analogously, we call a critical immersion X of the functional Ar,F sta-
ble if and only if the second variation of Ar,F (or equivalently of Fr,F ;Λ) is
nonnegative for all variations of X preserving the enclosed (n + 1)-volume V .
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In [14], Palmer proved the following theorem (also see Winklmann [19]).

Theorem 1.2 ([14]). Let X : M → R
n+1 be a closed hypersurface with

HF
1 = constant. Then X is stable if and only if, up to translations and homo-

theties, X(M) is the Wulff shape.

In this paper, we prove the following theorem.

Theorem 1.3. Suppose 0 ≤ r ≤ n − 1. Let X : M → R
n+1 be a closed

hypersurface with HF
r+1 = constant. Then X is stable if and only if, up to

translations and homotheties, X(M) is the Wulff shape.

Remark 1.4. In the case F ≡ 1, Theorem 1.3 becomes Theorem 1.1. The-
orem 1.3 gives an affirmative answer to the problem proposed in [8]. We also
note that in the case F ≡ 1, our result here gives a new and geometric proof
of Theorem 1.1, which is different from [1].

2. Preliminaries

Let X : M → Rn+1 be a smooth closed, oriented hypersurface with Gauss
map ν : M → Sn, that is, ν is the unit inner normal vector field. Let Xt be a
variation of X , and νt : M → Sn be the Gauss map of Xt. We define

(2.1) ψ =
〈

dXt

dt
, νt

〉
, ξ =

(
dXt

dt

)�
,

where � represents the tangent component and ψ, ξ are dependent of t. The
corresponding first variation of the unit normal vector is given by (see [8],
[11], [14], [19])

(2.2) ν′
t = − gradψ + dνt(ξ),

the first variation of the volume element is (see [2], [3], or [10])

(2.3) ∂tdAXt = (div ξ − nHψ)dAXt ,

and the first variation of the volume V is

(2.4) V ′(t) =
∫

M

ψ dAXt ,

where grad, div, H represents the gradients, the divergence, the mean curva-
ture with respect to Xt, respectively.

Let {E1, . . . ,En} be a local orthogonal frame on Sn, let ei = ei(t) = Ei ◦ νt,
where i = 1, . . . , n and νt is the Gauss map of Xt, then {e1, . . . , en} is a local
orthogonal frame of Xt : M → R

n+1.
The structure equations of x : Sn → R

n+1 are:

(2.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx =
∑

i θiEi,

dEi =
∑

j θijEj − θix,

dθi =
∑

j θij ∧ θj ,

dθij −
∑

k θik ∧ θkj = 1
2

∑
k,l R̃ijklθk ∧ θl = −θi ∧ θj ,
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where θij + θji = 0 and R̃ijkl = δilδjk − δikδjl.
The structure equations of Xt are (see [12], [13]):

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dXt =
∑

i ωiei,

dνt = −
∑

i,j hijωjei,

dei =
∑

j ωijej +
∑

j hijωjνt,

dωi =
∑

j ωij ∧ ωj ,

dωij −
∑

k ωik ∧ ωkj = 1
2

∑
k,l Rijklθk ∧ θl,

where ωij + ωji = 0, Rijkl + Rijlk = 0, and Rijkl are the components of the
Riemannian curvature tensor of Xt(M) with respect to the induced metric
dXt · dXt. Here, we have omitted the variable t for some geometric quantities.

From dei = d(Ei ◦ νt) = ν∗
t dEi =

∑
j ν∗

t θijej − ν∗
t θiνt, we get

(2.7)

{
ωij = ν∗

t θij ,

ν∗
t θi = −

∑
j hijωj ,

where ωij + ωji = 0, hij = hji.
Let F : Sn → R

+ be a smooth function, we denote the coefficients of co-
variant differential of F , gradSn F with respect to {Ei}i=1,...,n by Fi, Fij re-
spectively.

From (2.7), d(F (νt)) = ν∗
t dF = ν∗

t (
∑

i Fiθi) = −
∑

i,j(Fi ◦ νt)hijωj , thus,

(2.8) grad(F (νt)) = −
∑
i,j

(Fi ◦ νt)hijej = dνt(gradSn F ).

Through a direct calculation, we easily get

(2.9) dφ = (D2F + F1) ◦ dx =
∑
i,j

AijθiEj ,

where Aij is the coefficient of AF , that is, Aij = Fij + Fδij .
Taking exterior differential of (2.9) and using (2.5), we get

(2.10) Aijk = Ajik = Aikj ,

where Aijk denotes coefficient of the covariant differential of AF on Sn.
We define (Aij ◦ νt)k by

(2.11) d(Aij ◦ νt) +
∑

(Akj ◦ νt)ωki +
∑

k

(Aik ◦ νt)ωkj =
∑

k

(Aij ◦ νt)kωk.

By a direct calculation by using (2.7) and (2.11), we have

(2.12) (Aij ◦ νt)k = −
∑

l

hklAijl ◦ νt.
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We define Lij by

(2.13)
(

dei

dt

)�
= −

∑
j

Lijej ,

where � denote the tangent component, then Lij = −Lji and we have (see
[2], [3], or [10])

(2.14) h′
ij = ψij +

∑
k

{hijkξk + ψhikhjk + hikLkj + hjkLki}.

Let sij =
∑

k(Aik ◦ ν)hkj , then from (2.7) and (2.9), we have

(2.15) d(φ ◦ νt) = ν∗
t dφ = −

∑
i,j

sijωjei.

We define SF by SF = −d(φ ◦ ν) = −AF ◦ dν, then we have SF (ej) =
∑

i sijei.
We call SF the F -Weingarten operator. From the positive definiteness of
(Aij) and the symmetry of (hij), we know the eigenvalues of (sij) are all
real. We call them anisotropic principal curvatures, and denote them by
λ1, . . . , λn.

Taking exterior differential of (2.15) and using (2.6), we get

(2.16) sijk = sikj ,

where sijk denotes coefficient of the covariant differential of SF .
We have n invariants, the elementary symmetric function σr of the aniso-

tropic principal curvatures:

(2.17) σr =
∑

i1<···<ir

λi1 · · · λin (1 ≤ r ≤ n).

For convenience, we set σ0 = 1 and σn+1 = 0. The r-th anisotropic mean
curvature HF

r is defined by

(2.18) HF
r = σr/Cr

n, Cr
n =

n!
r!(n − r)!

.

We have, by use of (2.2) and (2.6),

∑
i,j

d((AijEi ⊗ Ej) ◦ νt)
dt

=
∑
i,j

〈(
D(AijEi ⊗ Ej)

)
νt

, ν′
t

〉
(2.19)

= −
∑
i,j,k

Aijk

(
ψk +

∑
l

hklξl

)
ei ⊗ ej ,

where D is the Levi–Civita connection on Sn.
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On the other hand, we have∑
i,j

d((AijEi ⊗ Ej) ◦ νt)
dt

(2.20)

=
∑
i,j

{
A′

ijei ⊗ ej + Aij

(
dei

dt

)�
⊗ ej + Aijei ⊗

(
dej

dt

)�}
.

By use of (2.13), we get from (2.19) and (2.20)

d(Aij ◦ νt)
dt

= A′
ij(t)(2.21)

=
∑

k

{
−Aijkψk −

∑
l

Aijkhklξl + AikLkj + AjkLki

}
.

By (2.12), (2.14), (2.21) and the fact Lij = −Lji, through a direct calcula-
tion, we get the following lemma.

Lemma 2.1.
dsij

dt
= s′

ij(t) =
∑

k

{(Aikψk)j + sijkξk + ψsikhkj + skjLki + sikLkj }.

As M is a closed oriented hypersurface, one can find a point where all the
principal curvatures with respect to ν are positive. By the positiveness of AF ,
all the anisotropic principal curvatures are positive at this point. Using the
results of G̊arding [5], we have the following lemma.

Lemma 2.2. Let X : M → R
n+1 be a closed, oriented hypersurface. Assume

HF
r+1 > 0 holds at every point of M , then HF

k > 0 holds on every point of M
for every k = 1, . . . , r.

Using the characteristic polynomial of SF , σr is defined by

(2.22) det(tI − SF ) =
n∑

r=0

(−1)rσrt
n−r.

So, we have

(2.23) σr =
1
r!

∑
i1,...,ir ;j1,...,jr

δj1···jr

i1···ir
si1j1 · · · sirjr ,

where δj1···jr

i1···ir
is the usual generalized Kronecker symbol, i.e., δj1···jr

i1···ir
equals

+1 (resp. −1) if i1 · · · ir are distinct and (j1 · · · jr) is an even (resp. odd)
permutation of (i1 · · · ir) and in other cases it equals zero.

We introduce two important operators Pr and Tr by

Pr = σrI − σr−1SF + · · · + (−1)rSr
F , r = 0,1, . . . , n,(2.24)

Tr = PrAF , r = 0,1, . . . , n − 1.(2.25)
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Obviously, Pn = 0 and we have

(2.26) Pr = σrI − Pr−1SF = σrI + Tr−1 dν, r = 1, . . . , n.

From the symmetry of AF and dν, SF AF and dν ◦ SF are symmetric, so
Tr = PrAF and dν ◦ Pr are also symmetric for each r.

Lemma 2.3. The matrix of Pr is given by:

(2.27) (Pr)ij =
1
r!

∑
i1,...,ir;j1,...,jr

δj1···jri
i1···irjsi1j1 · · · sirjr .

Proof. We prove Lemma 2.3 inductively. For r = 0, it is easy to check that
(2.27) is true.

Assume (2.27) is true for r = k, then from (2.26),

(Pk+1)ij = σk+1δ
i
j −

∑
l

(Pk)ilslj

=
1

(k + 1)!

∑(
δ

j1···jk+1
i1···ik+1

δi
j −

∑
l

δ
j1···jl−1ijl+1···jk+1
i1···il−1ilil+1···ik+1

δjl

j

)
× si1j1 · · · sik+1jk+1

=
1

(k + 1)!

∑
δ

j1···jk+1i
i1···ik+1jsi1j1 · · · sik+1jk+1 . �

Lemma 2.4. For each r, we have

(i)
∑

j(Pr)jij = 0,
(ii) tr(PrSF ) = (r + 1)σr+1,
(iii) tr(Pr) = (n − r)σr,
(iv) tr(PrS

2
F ) = σ1σr+1 − (r + 2)σr+2.

Proof. We only prove (i), the others are easily obtained from (2.23), (2.26),
and (2.27).

Noting si1j1 · · · sirjrj = si1j1 · · · sirjjr by (2.16) and δj1···jrj
i1···iri = −δj1···jjr

i1···iri , we
have ∑

j

(Pr)jij =
1

(r − 1)!

∑
i1,...,ir;j1,...,jr;j

δj1···jrj
i1···iri si1j1 · · · sirjrj = 0.

�

Remark 2.5. When F = 1, Lemma 2.4 was a well-known result (for ex-
ample, see Barbosa–Colares [2], Reilly [15], or Rosenberg [17]).

Since Pr−1SF is symmetric and Lij is anti-symmetric, we have

(2.28)
∑
i,j,k

(Pr−1)ji(skjLki + sikLkj) = 0.
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From (2.16), (2.26), and (i) of Lemma 2.4, we get

(σr)k =
∑

j

(σrδjk)j =
∑

j

(Pr)jkj +
∑
j,l

[(Pr−1)jlslk]j(2.29)

=
∑
i,j

(Pr−1)jisijk.

3. First and second variation formulas of Fr,F ;Λ

Define the operator Lr : C∞(M) → C∞(M) as follows:

(3.1) Lrf =
∑
i,j

[(Tr)ijfj ]i.

Lemma 3.1.
dσr

dt
= σ′

r(t) = Lr−1ψ + ψ〈Tr−1 ◦ dνt,dνt〉 + 〈gradσr, ξ〉.

Proof. Using (2.23), (2.28), (2.29), Lemma 2.1, Lemma 2.3, and (i) of
Lemma 2.4, we have

σ′
r =

1
(r − 1)!

∑
i1,...,ir;j1,...,jr

δj1···jr

i1···ir
si1j1 · · · sir−1jr−1s

′
irjr

=
∑
i,j

(Pr−1)jis
′
ij

=
∑
i,j,k

(Pr−1)ji[(Aikψk)j + ψsikhkj + sijkξk + skjLki + sikLkj ]

=
∑
i,j,k

[(Pr−1)jiAikψk]j + ψ
∑

i,j,k,l

(Pr−1)jiAilhlkhkj +
∑

k

(σr)kξk

=
∑
j,k

[(Tr−1)jkψk]j + ψ
∑
i,j,k

(Tr−1)jihikhkj +
∑

k

(σr)kξk

= Lr−1ψ + ψ〈Tr−1 ◦ dνt,dνt〉 + 〈gradσr, ξ〉. �

Lemma 3.2. For each 0 ≤ r ≤ n, we have

(3.2) div
(
Pr(gradSn F ) ◦ νt

)
+ F (νt) tr(Pr ◦ dνt) = −(r + 1)σr+1

and

(3.3) div(PrX
�) + 〈X,νt〉 tr(Pr ◦ dνt) = (n − r)σr.

Proof. From (2.6), (2.15), and Lemma 2.4,

div
(
Pr(gradSn F ) ◦ νt

)
= div

(
Pr(φ ◦ νt)�)

=
∑
i,j

(
(Pr)ji〈φ ◦ νt, ei〉

)
j
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= −
∑
i,j

(Pr)jisij + F (νt)
∑
i,j

(Pr)jihij

= − tr(PrSF ) − F (νt) tr(Pr ◦ dνt)
= −(r + 1)σr+1 − F (νt) tr(Pr ◦ dνt),

div(PrX
�) =

∑
i,j

((Pr)ji〈X,ei〉)j

=
∑
i,j

(Pr)jiδij +
∑
i,j

(Pr)jihij 〈X,νt〉

= tr(Pr) − tr(Pr ◦ dνt)〈X,νt〉
= (n − r)σr − tr(Pr ◦ dνt)〈X,νt〉.

Thus, the conclusion follows. �

Theorem 3.3 (First variational formula of Ar,F ).

(3.4) A ′
r,F (t) = −(r + 1)

∫
M

ψσr+1 dAXt .

Proof. We have (F (νt))′ = 〈gradSn F,ν′
t〉, so by use of Lemma 3.1, Lem-

ma 3.2, (2.2), (2.3), (2.8), (2.26), and Stokes formula, we have

A ′
r,F (t) =

∫
M

(
F (νt)σ′

r + (F (νt))′σr

)
dAXt + F (νt)σr ∂tdAXt

=
∫

M

{F (νt)div(Tr−1 gradψ) + F (νt)ψ〈Tr−1 ◦ dνt,dνt〉

+ F (νt)〈gradσr, ξ〉 + 〈σr(gradSn F ) ◦ νt, − gradψ + dνt(ξ)〉
+ F (νt)σr(−nHψ + div ξ)} dAXt

=
∫

M

{
−〈grad(F (νt)), Tr−1 gradψ〉 + F (νt)ψ〈Tr−1 ◦ dνt,dνt〉

+ 〈F (νt) gradσr, ξ〉 + ψ div
(
σr(gradSn F ) ◦ νt

)
+ 〈σr grad(F (νt)), ξ〉 − nHψF (νt)σr + F (νt)σr div ξ

}
dAXt

=
∫

M

{
−〈Tr−1 grad(F (νt)),gradψ〉 + F (νt)ψ〈Tr−1 ◦ dνt,dνt〉

+ ψ div
(
σr(gradSn F ) ◦ νt

)
− nHψF (νt)σr

}
dAXt

=
∫

M

ψ
{
div

(
σr(gradSn F ) ◦ νt

)
+ div(Tr−1 grad(F (νt)))

+ F (νt)〈Tr−1 ◦ dνt,dνt〉 − nHF (νt)σr

}
dAXt

=
∫

M

ψ{div[(σr + Tr−1 ◦ dνt)(gradSn F ) ◦ νt]

+ F (νt) tr[(Tr−1 ◦ dνt + σrI) ◦ dνt]} dAXt
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=
∫

M

ψ
{
div

(
Pr(gradSn F ) ◦ νt

)
+ F (νt) tr(Pr ◦ dνt)

}
dAXt

= −(r + 1)
∫

M

ψσr+1 dAXt . �

Remark 3.4. When F = 1, Lemma 4.1 and Theorem 3.3 were proved by
R. Reilly [15] (also see [2], [3]).

From (1.6), (2.4), and (3.4), we get

Proposition 3.5 (The first variational formula). For all variations of X ,
we have

(3.5) F ′
r,F ;Λ(t) = −

∫
M

ψ{(r + 1)σr+1 − Λ} dAXt .

Hence, we obtain the Euler–Lagrange equation of Fr,F ;Λ:

(3.6) (r + 1)σr+1 − Λ = 0.

Theorem 3.6 (The second variational formula). Let X : M → Rn+1 be an
n-dimensional closed hypersurface, which satisfies (3.6), then for all variations
of X preserving V , the second variational formula of Ar,F at t = 0 is given by

(3.7) A ′ ′
r (0) = F ′ ′

r,F ;Λ(0) = −(r + 1)
∫

M

ψ{Lrψ + ψ〈Tr ◦ dν,dν〉 } dAX ,

where ψ satisfies

(3.8)
∫

M

ψ dAX = 0.

Proof. Differentiating (3.5), we get (3.7) by use of (3.6) and Lemma 3.1. �

We call X : M → Rn+1 to be a stable critical point of Ar,F for all variations
of X preserving V , if it satisfies (3.6) and A ′ ′

r (0) ≥ 0 for all ψ with condition
(3.8).

4. Proof of Theorem 1.3

Firstly, we prove that if X(M) is, up to translations and homotheties, the
Wulff shape, then X is stable.

From dφ = (D2F + F1) ◦ dx, dφ is perpendicular to x. So ν = −x is the
unit inner normal vector. We have

(4.1) dφ = −AF ◦ dν =
∑
ijk

Ajkhkiωiej .

On the other hand,

(4.2) dφ =
∑

i

ωiei,
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so we have

(4.3) sij =
∑

k

Aikhkj = δij .

From this, we easily get σr = Cr
n and σr+1 = Cr+1

n , thus, the Wulff shape
satisfies (3.6) with Λ = (r + 1)Cr+1

n . Through a direct calculation, we easily
know for Wulff shape,

(4.4) A ′ ′
r (0) = −(r + 1)Cr

n−1

∫
M

[div(AF gradψ) + ψ〈AF ◦ dν,dν〉] dAX ,

and ψ satisfies

(4.5)
∫

M

ψ dAX = 0.

From Palmer [14] (also see Winklmann [19]), we know A ′ ′
r (0) ≥ 0, that is the

Wulff shape is stable.
Next, we prove that if X is stable, then up to translations and homotheties,

X(M) is the Wulff shape. We recall the following lemmas.

Lemma 4.1 ([7], [8]). For each r = 0,1, . . . , n − 1, the following integral
formulas of Minkowski type hold:

(4.6)
∫

M

(
HF

r F (ν) + HF
r+1〈X,ν〉

)
dAX = 0, r = 0,1, . . . , n − 1.

Lemma 4.2 ([7], [8], [14]). If λ1 = λ2 = · · · = λn = const �= 0, then up to
translations and homotheties, X(M) is the Wulff shape.

From Lemmas 4.1 and (3.8), we can choose ψ = αF (ν)+HF
r+1〈X,ν〉 as the

test function, where α =
∫

M
F (ν)HF

r dAX/
∫

M
F (ν)dAX . For every smooth

function f : M → R, and each r, we define:

(4.7) Ir[f ] = Lrf + f 〈Tr ◦ dν,dν〉.
Then we have from (3.7)

(4.8) A ′ ′
r (0) = −(r + 1)

∫
M

ψIr[ψ] dAX .

Lemma 4.3. For each 0 ≤ r ≤ n − 1, we have

(4.9) Ir[F ◦ ν] = −〈gradσr+1, (gradSn F ) ◦ ν〉 + σ1σr+1 − (r + 2)σr+2

and

(4.10) Ir[〈X,ν〉] = −〈gradσr+1,X
� 〉 − (r + 1)σr+1.

Proof. From (2.8) and (2.26),

Ir[F ◦ ν] = div{Tr grad(F (ν))} + F (ν)〈Tr ◦ dν,dν〉
= div

(
Tr ◦ dν(gradSn F ) ◦ ν

)
+ F (ν)〈Tr ◦ dν,dν〉

= div
(
Pr+1(gradSn F ) ◦ ν

)
+ F (ν) tr(Pr+1 dν)
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− 〈gradσr+1, (gradSn F ) ◦ ν〉
− σr+1

{
div

(
P0(gradSn F ) ◦ ν

)
+ F (ν) tr(P0 dν)

}
,

Ir[〈X,ν〉] = div(Tr grad〈X,ν〉) + 〈X,ν〉〈Tr ◦ dν, dν〉
= div(Tr ◦ dν X�) + 〈X,ν〉〈Tr ◦ dν,dν〉
= div(Pr+1X

�) + 〈X,ν〉 tr(Pr+1 dν) − 〈gradσr+1,X
� 〉

− σr+1{div(P0X
�) + 〈X,ν〉 tr(P0 dν)}.

So the conclusions follow from Lemma 3.2. �

As HF
r+1 is a constant, from (4.9) and (4.10), we have

Ir[ψ] = αIr[F ◦ ν] + HF
r+1Ir[〈X,ν〉](4.11)

= α
(
σ1σr+1 − (r + 2)σr+2

)
− (r + 1)HF

r+1σr+1

= Cr+1
n {α[nHF

1 HF
r+1 − (n − r − 1)HF

r+2] − (r + 1)(HF
r+1)

2}.

Therefore, we obtain from Lemma 4.1 (recall HF
r+1 is constant and

∫
M

ψ dAX =
0)

1
r + 1

A ′ ′
r (0)

= −
∫

M

ψIr[ψ] dAX

= −
∫

M

ψCr+1
n {α[nHF

1 HF
r+1 − (n − r − 1)HF

r+2] − (r + 1)(HF
r+1)

2} dAX

= −αCr+1
n

∫
M

[αF (ν) + HF
r+1〈X,ν〉][nHF

1 HF
r+1 − (n − r − 1)HF

r+2] dAX

= −α2Cr+1
n

∫
M

F (ν)[nHF
1 HF

r+1 − (n − r − 1)HF
r+2] dAX

− αCr+1
n HF

r+1

∫
M

〈X,ν〉[nHF
1 HF

r+1 − (n − r − 1)HF
r+2] dAX

= −α2Cr+1
n

∫
M

F (ν)[nHF
1 HF

r+1 − (n − r − 1)HF
r+2] dAX

+ αCr+1
n HF

r+1

∫
M

F (ν)[nHF
r+1 − (n − r − 1)HF

r+1] dAX

= −α2(n − r − 1)Cr+1
n

∫
M

F (ν)(HF
1 HF

r+1 − HF
r+2)dAX

− α(r + 1)Cr+1
n (HF

r+1)
2∫

M
F (ν)dAX

×
{∫

M

F (ν)HF
1 dAX

∫
M

F (ν)
HF

r

HF
r+1

dAX −
(∫

M

F (ν)dAX

)2}
,



STABILITY OF HYPERSURFACES 1313

where we used α =
∫

M
F (ν)HF

r dAX/
∫

M
F (ν)dAX in the last equality of the

above formula.
As HF

r+1 is a constant, it must be positive by the compactness of M . Thus,
by Lemma 2.2, HF

1 , . . . ,HF
r are all positive. So, from [6] or [20], we have:

(i) for each 0 ≤ r < n − 1,

(4.12) HF
1 HF

r+1 − HF
r+2 ≥ 0,

with the equality holds if and only if λ1 = · · · = λn, and
(ii) for each 1 ≤ r ≤ n − 1,∫

M

F (ν)HF
1 dAX

∫
M

F (ν)
HF

r

HF
r+1

dAX −
(∫

M

F (ν)dAX

)2

(4.13)

≥
∫

M

F (ν)HF
1 dAX

∫
M

F (ν)/HF
1 dAX −

(∫
M

F (ν)dAX

)2

≥ 0,

with the equality holds if and only if λ1 = · · · = λn.
From (4.12) and (4.13), we easily obtain that, for each 0 ≤ r ≤ n − 1,

A ′ ′
r (0) ≤ 0,

with the equality holds if and only if λ1 = · · · = λn. Thus, from Lemma 4.2,
up to translations and homotheties, X(M) is the Wulff shape. We complete
the proof of Theorem 1.3.
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