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DOUBLING MEASURES AND NONQUASISYMMETRIC
MAPS ON WHITNEY MODIFICATION SETS

IN EUCLIDEAN SPACES

XIAOHUA WANG, SHENGYOU WEN*, AND ZHIXIONG WEN

Abstract. Let E be a closed set in R
n and W a Whitney decom-

position of R
n \ E. Choosing one point from the interior of each

cube in W we obtain a set F and then we say that the set E ∪ F

is a Whitney modification of E. The Whitney modification of a

measure μ on R
n to E ∪ F is a measure ν defined on E ∪ F by

ν ≡ μ on E and by ν({x}) = μ(Ix) for every x ∈ F , where Ix ∈ W
is the cube containing the point x. We prove that a measure on

E ∪ F is doubling if and only if it is the Whitney modification

of a doubling measure on R
n. As its application, we show that

there are metric spaces X,Y and a nonquasisymmetric homeo-
morphism f of X onto Y such that a measure μ on X is doubling
if and only if its image μ ◦ f −1 is doubling on Y .

1. Definitions and main results

We start by the definition of doubling measures. Let (X,d) be a metric
space and denote by B(x, r) the ball of radius r > 0 centered at x ∈ X . A Borel
measure μ on X is called doubling if there is a constant C ≥ 1 such that

0 < μ(B(x,2r)) ≤ Cμ(B(x, r)) < +∞

for all balls B(x, r) in X . In this case, μ is also called C-doubling.
A cube in R

n is a set of the type
∏n

i=1[xi − r, xi + r], or more precisely, it is
called the cube of sidelength 2r centered at x = (x1, . . . , xn). We denote it by
Q(x, r). For Borel measures on R

n, the doubling condition can be equivalently
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defined by cubes in place of balls because

Q
(
x, r/

√
n
)

⊆ B(x, r) ⊆ Q(x, r).

Now, we introduce Whitney’s decomposition. Let E be a nonempty closed
set in R

n. A family W of cubes in R
n is called a Whitney decomposition of

R
n \ E, if it satisfies the conditions:

(W1)
⋃

I∈W I = R
n \ E.

(W2) The cubes in W have mutually disjoint interiors.
(W3) There is a constant K ≥ 1 such that for every cube I ∈ W

K−1 dist(I,E) ≤ |I| ≤ K dist(I,E),

where dist(I,E) = infx∈I,y∈E |x − y| denotes the distance to E from I and
|I| denotes the diameter of I .

Definition 1. Let E be a closed set in R
n and W a Whitney decomposi-

tion of R
n \ E. Choosing one point from the interior of each cube in W , we

obtain a set F and then we say that the set E ∪ F is a Whitney modification
of E.

It is clear that the set E has infinitely many different Whitney modifications
for the same Whitney decomposition W of R

n \ E. For clarity, write F (W )
for the set F in Definition 1. For each x ∈ F (W ), denote by Ix the cube in
W containing x.

Definition 2. Let X = E ∪ F (W ) be a Whitney modification of the set E.
Let ν be a measure on X and μ be a measure on R

n. We say that ν is the
Whitney modification of μ to X , if ν ≡ μ on E and ν({x}) = μ(Ix) for each
x ∈ F (W ).

Given a Whitney modification X of the set E, every measure on R
n has a

unique Whitney modification to X . However, it is possible that the Whitney
modifications of two different measures coincide.

Let X be a Whitney modification of a closed set E ⊂ R
1 and μ a doubling

measure on R
1. Kaufman–Wu [2] proved that the Whitney modification of μ

to X is a doubling measure on X . As an application, they showed that some
metric spaces carry purely atomic as well as nonpurely-atomic doubling mea-
sures. We continue the study of doubling measures on Whitney modification
sets and prove the following theorem.

Theorem 1. Let X = E ∪ F (W ) be a Whitney modification of a closed set
E ⊂ R

n and ν be a measure on X . Then ν is doubling on X if and only if there
exists a doubling measure μ on R

n such that ν is the Whitney modification of
μ to X .

Many important theorems in classic analysis, such as Lebesgue’s differen-
tial theorem, Hardy–Littlewood’s maximal function theorem, etc., also hold
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in doubling metric measure spaces (see [1]). This phenomenon leads to the
study of doubling measures on metric spaces. For the existence of doubling
measures, it is known that every complete doubling metric space carries dou-
bling measures (see [4] and [7]). Especially, every closed set in R

n carries
doubling measures. However, there exist Jordan open domains in R

n which
carry no doubling measures (see [5]). For the description of doubling mea-
sures, it is known that doubling measures on the real line are those obtained
by quasi-symmetric maps. However, a similar result does not hold for higher
dimension (see [3] and [6]). Up to now, there are quite few examples of metric
spaces for which doubling measures have been characterized. The Whitney
modification set considered in this paper is closed, so it carries doubling mea-
sures. Theorem 1 provides us a useful description for these doubling mea-
sures.

Now, we show an application of Theorem 1. Let X,Y be metric spaces
which are bilipschitzly equivalent under f . It is clear that a measure μ on
X is doubling if and only if its image μ ◦ f −1 is doubling on Y . In other
words, bilipschitz maps preserve the doubling property of measures. It is also
known that quasisymmetric homeomorphisms of R

1 preserve the doubling
property of measures on R

1. It is natural to ask: is there a nonquasisymmetric
homeomorphism of metric spaces which preserves the doubling property of
measures? The answer to this question is positive.

Theorem 2. There are metric spaces X and Y for which there is a home-
omorphism f of X onto Y such that a measure μ on X is doubling if and
only if its image μ ◦ f −1 is doubling on Y , but f is not quasisymmetric.

Thus, f has the property that was stated above for bilipschitz maps. We
recall that a homeomorphism f : X → Y is quasisymmetric if there is a home-
omorphism η : [0, ∞) → [0, ∞) such that

|f(x) − f(a)|
|f(x) − f(b)| ≤ η

(
|x − a|

|x − b|

)

for any triple x,a, b of distinct points in X , where | · − · | denotes metrics.

2. Preliminary lemmas

We adopt the following notation throughout the paper. Denote by E a
nonempty closed set in R

n, by W a Whitney decomposition of R
n \ E, by K

a constant for which W satisfies the condition (W3), and by X = E ∪ F (W )
a Whitney modification of the set E. For each x ∈ F (W ), denote by Ix the
cube in W containing x. We say that two cubes in W are adjacent if their
boundaries meet.

We need the following simple properties of the Whitney modification sets
and doubling measures on them.
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Lemma 1. |I| ≤ 2K2|J | for any pair of adjacent cubes I, J in W . In other
words, the diameters of two adjacent cubes in W are comparable.

Proof. Let I, J be two adjacent cubes in W . Then

|I| ≤ K dist(I,E) ≤ K
(
dist(J,E) + |J |

)
≤ (K2 + K)|J | ≤ 2K2|J |

by the condition (W3). �

Lemma 2. Let x ∈ X , r > 0, λ > 0, and A = {I ∈ W : I ∩ Q(x, r) �= ∅}.
Then the following propositions hold.
(a) If x ∈ E, then

⋃
I∈A I ⊂ Q(x,2Knr).

(b) If x ∈ F and |Ix| ≤ λr, then
⋃

I∈A I ⊂ Q(x,3K2n(1 + λ)r).

Proof. Without loss of generality, assume that A �= ∅.
Proof of (a). If x ∈ E, then by the condition (W3), for every I ∈ A

|I| ≤ K dist(I,E) ≤ Kr
√

n ≤ Knr,

which implies
⋃

I∈A I ⊂ Q(x, r + Knr) ⊂ Q(x,2Knr).
Proof of (b). If x ∈ F and |Ix| ≤ λr, then by (W3), for every I ∈ A

|I| ≤ K dist(I,E) ≤ K
(
dist(Ix,E) + |Ix| + r

√
n
)

≤ K(2K|Ix| + nr) ≤ 2K2n(1 + λ)r,

which implies
⋃

I∈A I ⊂ Q(x, r + 2K2n(1 + λ)r) ⊂ Q(x,3K2n(1 + λ)r). �

Lemma 3. Let x ∈ R
n \ E. Let y be a point in F such that x ∈ Iy . Then

the following propositions hold.
(a) If r > 2K|Iy |, then Q(x, r) ∩ E �= ∅.
(b) If r < (3Kn)−2|Iy |, then Q(x, r) can be covered by no more than 2n cubes

in W .

Proof. (a) It is immediate since the assumption r > 2K|Iy |, together with
the condition (W3), implies

dist(x,E) ≤ dist(Iy,E) + |Iy | ≤ (K + 1)|Iy | ≤ 2K|Iy | < r.

(b) We first prove E ∩ Q(x, r) = ∅. In fact, if this does not hold then the
assumption r < (3Kn)−2|Iy |, together with the condition (W3), yields

|Iy | ≤ K dist(Iy,E) ≤ K dist(x,E) ≤ K
√

nr < (9Kn)−1|Iy |,
a contradiction. Therefore, Q(x, r) can be covered by cubes in W .

Let A = {I ∈ W : I ∩ Q(x, r) �= ∅ }. To complete this proof, it suffices to
prove that the cardinality card(A) of A is at most 2n. If not, since Q(x,2r)
has only 2n vertices, there is a cube I in A whose interior does not contain
any vertex of Q(x,2r). Therefore, the sidelength of the cube I is no more
than 4r, which implies

(1) |I| ≤ 4r
√

n.
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Since x ∈ Iy and I ∩ Q(x, r) �= ∅, the inequality (1) together with the condition
(W3) yields

|Iy | ≤ K dist(Iy,E) ≤ K dist(x,E) ≤ K
(
dist(I,E) + |I| + r

√
n
)

≤ K(K + 1)|I| + Kr
√

n ≤ 9K2r
√

n ≤ (3Kn)2r,

which contradicts with the assumption r < (3Kn)−2|Iy |. �

Lemma 4. Let ν be a C-doubling measure on the Whitney modification
set X . Let x, y be points in F such that Ix, Iy are adjacent. Then

H−1ν({y}) ≤ ν({x}) ≤ Hν({y}),

where and below H is a constant that may vary from line to line.

Proof. Suppose that x, y are points in F such that Ix, Iy are adjacent. Then
y ∈ Q(x, (2K2 +1)|Ix|) by Lemma 1. It follows from the doubling property of
ν that

(2) ν({y}) ≤ ν
(
Q

(
x, (2K2 + 1)|Ix|

))
≤ Hν(Q(x, (4Kn)−2|Ix|)).

Since, by Lemma 3(2), Q(x, (4Kn)−2|Ix|) can be covered by at most 2n cubes
in W , it contains at most 2n points of F , say x, y1, . . . , ym, where m < 2n.
Therefore,

(3) ν(Q(x, (4Kn)−2|Ix|)) = ν({x, y1, . . . , ym}).

Let di = |x − yi|, i = 1, . . . ,m. Without loss of generality, assume that

d1 ≤ d2 ≤ · · · ≤ dm.

By the doubling property of ν,

ν({x, y1, . . . , yi}) ≤ Hν({x, y1, . . . , yi−1}), i = 1, . . . ,m.

Inductively, ν({x, y1, . . . , ym}) ≤ Hν({x}), which, combined with (2) and (3),
yields

ν({y}) ≤ Hν({x}).
By symmetry, ν({x}) ≤ Hν({y}). This completes the proof. �

3. The proof of Theorem 1

Proof of the necessity. Let X = E ∪ F (W ) be a Whitney modification of
E and ν be a C-doubling measure on X . We are going to construct a measure
μ on R

n such that μ is doubling on R
n and ν is the Whitney modification

measure of μ to X .
The measure μ is constructed by uniformly distributing the ν-measure of

every point x in F to the cube Ix. Let

μ(A) =

{
ν(A), if A ⊂ E,

ρxLn(A), if x ∈ F and A ⊂ Ix,
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where A is a Borel set, ρx = ν({x})/Ln(Ix), and Ln is the Lebesgue measure
on R

n. Clearly, this defines a measure on R
n.

By the definition of μ, we have ν ≡ μ on E and ν({x}) = μ(Ix) for every
x ∈ F , so ν is the Whitney modification measure of μ to X . The rest is to
prove that μ is doubling on R

n. To this end, given a cube Q(x, r) ⊂ R
n, we

are going to show

(4) μ(Q(x,2r)) ≤ Hμ(Q(x, r)).

Case 1 (x ∈ E). Let A = {I ∈ W : I ∩ Q(x,2r) �= ∅}. Since
⋃

I∈A I ⊂
Q(x,4Knr) by Lemma 2(a), it follows from the definition of μ and the dou-
bling property of ν that

(5) μ(Q(x,2r)) ≤ ν(Q(x,4Knr)) ≤ Hν(Q(x, r)).

On the other hand, let B = {I ∈ W : I ∩ Q(x, (2Kn)−1r) �= ∅}. Using Lem-
ma 2(a), again, we get

⋃
I∈B I ⊂ Q(x, r), which combined with the definition

of μ and the doubling property of ν, yields

(6) μ(Q(x, r)) ≥ ν(Q(x, (2Kn)−1r)) ≥ Hν(Q(x, r)).

By (5) and (6), we get μ(Q(x,2r)) ≤ Hμ(Q(x, r)).

Case 2 (x ∈ F ). We consider three subcases.
(a) If r > 4K|Ix| then E ∩ Q(x, r/2) �= ∅ by Lemma 3(a). Pick a point x∗ ∈

E ∩ Q(x, r/2). Then Q(x∗, r/2) ⊂ Q(x, r) and Q(x,2r) ⊂ Q(x∗,4r). Using the
conclusion of Case 1, we get

μ(Q(x,2r)) ≤ μ(Q(x∗,4r)) ≤ Hμ
(
Q(x∗, r/2)

)
≤ Hμ(Q(x, r)).

(b) If r < (3Kn)−2|Ix|/2, then by Lemma 3(b), Q(x,2r) can be covered by
at most 2n cubes in W , say Ix, Iy1 , . . . , Iym , where x, y1, . . . , ym ∈ F,m < 2n.
Moreover, these cubes can be arranged such that they are one by one adjacent.
Therefore, their volumes are comparable due to Lemma 1 and the measures
ν{x}, ν{y1}, . . . , ν{ym} are comparable due to Lemma 4. It then follows that
ρx, ρy1 , . . . , ρym are also comparable, and so

(7)
μ(Q(x,2r))
μ(Q(x, r))

≤ max{ρx, ρy1 , . . . , ρym } Ln(Q(x,2r))
min{ρx, ρy1 , . . . , ρym }Ln(Q(x, r))

≤ H.

(c) For the case (3Kn)−2|Ix|/2 ≤ r ≤ 4K|Ix|, let

A = {I ∈ W : I ∩ Q(x,2r) �= ∅}.

Since x ∈ F , by Lemma 2(b), we have
⋃

I∈A I ⊂ Q(x, ξr), where ξ = 6K2n(1+
(3Kn)2), which combined with the definition of μ and the doubling property
of ν, yields

(8) μ(Q(x,2r)) ≤ ν(Q(x, ξr)) ≤ Hν(Q(x, r)).
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On the other hand, by Lemma 3(b), Q(x, (3Kn)−2|Ix|/2) can be covered by
at most 2n cubes in W , say Ix, Iy1 , . . . , Iym , where x, y1, . . . , ym ∈ F,m < 2n.
By the same argument as that in the above subcase (b), the volumes of these
cubes are comparable, and so ρx, ρy1 , . . . , ρym are comparable. Since ν is
doubling, it then follows that

μ(Q(x, r)) ≥ μ
(
Q

(
x, (3Kn)−2|Ix|/2

))
≥ H|Ix|n min{ρx, ρy1 , . . . , ρym }

≥ HLn

(
Ix ∪

m⋃
i=1

Iyi

)
max{ρx, ρy1 , . . . , ρym }

≥ Hν
(
Q

(
x, (3Kn)−2|Ix|/2

))
≥ Hν(Q(x,4K|Ix|)) ≥ Hν(Q(x, r)),

which together with (8) yields μ(Q(x,2r)) ≤ Hμ(Q(x, r)).

Case 3 (x /∈ X but Q(x, r/2) ∩ X �= ∅). Pick a point x∗ ∈ Q(x, r/2) ∩ X .
Then one has Q(x∗, r/2) ⊂ Q(x, r) and Q(x,2r) ⊂ Q(x∗,4r). It follows from
the conclusion of Case 1 or 2 that

μ(Q(x,2r)) ≤ μ(Q(x∗,4r)) ≤ Hμ
(
Q(x∗, r/2)

)
≤ Hμ(Q(x, r)).

Case 4 (Q(x, r/2) ∩ X = ∅). Let y be a point in F such that x ∈ Iy . Then
we have

(9) |Iy | >
√

nr/2 and Ln
(
Q(x, r) ∩ Iy

)
≥ (r/2)n.

We consider two subcases.
(a) If |Iy | > 2r(3Kn)2, then by Lemma 3(b), Q(x,2r) can be covered by at

most 2n cubes in W . By the same argument as that in Case 2(b), we have
μ(Q(x,2r)) ≤ Hμ(Q(x, r)).

(b) In the case where r
√

n/2 < |Iy | ≤ 2r(3Kn)2, let

A = {I ∈ W : I ∩ Q(x,2r) �= ∅}.

In this case, for every I ∈ A we have

|I| ≤ K dist(I,E) ≤ K
(
dist(Iy,E) + |Iy | + 2r

√
n
)

≤ K
(
2K|Iy | + 2r

√
n
)

≤ 38K4n2r

by the condition (W3). Therefore,⋃
I∈A

I ⊂ Q(x,40K4n2r) ⊂ Q
(
y,40K4n2r + 2r(3Kn)2

)
.

It then follows from the definition of μ and the doubling property of ν that

(10) μ(Q(x,2r)) ≤ ν
(
Q

(
y,40K4n2r + 2r(3Kn)2

))
≤ Hν(Q(y, r)).
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On the other hand, by Lemma 3(b), Q(y, (4Kn)−2|Iy |) can be covered by at
most 2n cubes in W , say Iy, Iy1 , . . . , Iym , where m < 2n. Similar to Case 2(c),
we get from the inequality (9) and the doubling property of ν that

μ(Q(x, r)) ≥ μ
(
Q(x, r) ∩ Iy

)
≥ (r/2)nρy ≥ H|Iy |n max{ρy, ρy1 , . . . , ρym }

≥ Hν(Q(y, (4Kn)−2|Iy |)) ≥ Hν(Q(y, r)),

which together with (10) yields μ(Q(x,2r)) ≤ Hμ(Q(x, r)).

The proof of the necessity of Theorem 1 is now completed.

Proof of the sufficiency. Let X = E ∪ F (W ) be a Whitney modification
of E, μ be a C-doubling measure on R

n and ν be the Whitney modification
measure of μ to X . We are going to prove that ν is doubling on X . Given a
cube Q(x, r) ⊂ R

n, we are going to show

(11) ν(Q(x,2r)) ≤ Hν(Q(x, r)).

Case 1 (x ∈ E). Let A = {I ∈ W : I ∩ Q(x,2r) �= ∅}. Then
⋃

I∈A I ⊂
Q(x,4Knr) by Lemma 2(a). Since ν is the Whitney modification of μ to X ,
it follows from the doubling property of μ that

(12) ν(Q(x,2r)) ≤ μ(Q(x,4Knr)) ≤ Hμ(Q(x, r)).

On the other hand, let B = {I ∈ W : I ∩ Q(x, (2Kn)−1r) �= ∅}. Then
⋃

I∈B I ⊂
Q(x, r) by Lemma 2(a), and so

ν(Q(x, r)) ≥ μ(Q(x, (2Kn)−1r)) ≥ Hμ(Q(x, r)),

which together with (12) implies ν(Q(x,2r)) ≤ Hν(Q(x, r)).

Case 2 (x ∈ F ). We consider three subcases.
(a) If r > 4K|Ix|, then E ∩ Q(x, r/2) �= ∅ by Lemma 3(a). Pick a point x∗ ∈

E ∩ Q(x, r/2). Then Q(x∗, r/2) ⊂ Q(x, r) and Q(x,2r) ⊂ Q(x∗,4r). Using the
conclusion of Case 1, we have ν(Q(x,2r)) ≤ Hν(Q(x, r)).

(b) If r < (3Kn)−2|Ix|/2, then by Lemma 3(b), Q(x,2r) can be covered by
at most 2n cubes in W , say Ix, Iy1 , . . . , Iym , where x, y1, . . . , ym ∈ F,m < 2n.
These cubes can be arranged such that they are one by one adjacent. By
Lemma 1, their diameters are comparable, and so μ{Ix}, μ{Iy1 }, . . . , μ{Iym }
are comparable by the doubling property of μ. As ν is the Whitney modifica-
tion measure of μ to X , we see that ν{x}, ν{y1}, . . . , ν{ym} are comparable,
which implies

ν(Q(x,2r))
ν(Q(x, r))

≤ ν{x} + ν{y1} + · · · + ν{ym}
ν{x} ≤ H.

(c) Now, consider the case (3Kn)−2|Ix|/2 ≤ r ≤ 4K|Ix|. Let

A = {I ∈ W : I ∩ Q(x,2r) �= ∅}.
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As x ∈ F one has
⋃

I∈A I ⊂ Q(x, ξr) by Lemma 2(b), where ξ = 6K2n(1 +
(3Kn)2). Since ν is the Whitney modification measure of μ to X , it follows
from the doubling property of μ that

(13) ν(Q(x,2r)) ≤ μ(Q(x, ξr)) ≤ Hμ(Q(x, r)).

On the other hand, by Lemma 3(b), Q(x, (3Kn)−2|Ix|/2) can be covered by
at most 2n cubes in W , say Ix, Iy1 , . . . , Iym , where x, y1, . . . , ym ∈ F,m < 2n.
By the same argument as that in Case 2(b), ν{x}, ν{y1}, . . . , ν{ym} are com-
parable. It follows from the doubling property of μ that

ν(Q(x, r)) ≥ ν{x} ≥ H(ν{x} + ν{y1} + · · · + ν{ym})

≥ Hμ

(
Ix ∪

m⋃
i=1

Iyi

)
≥ Hμ

(
Q

(
x, (3Kn)−2|Ix|/2

))
≥ Hμ(Q(x,4K|Ix|)) ≥ Hμ(Q(x, r)),

which, combined with (13), yields ν(Q(x,2r)) ≤ Hν(Q(x, r)).

The proof of the sufficiency of Theorem 1 is now completed.

4. The proof of Theorem 2

Let E be a nonempty closed set in R
n. For the same Whitney decompo-

sition W of R
n \ E, the set E has infinitely many different Whitney modi-

fications. Let Xi = E ∪ Fi(W ), i = 1,2, be two Whitney modifications of E.
Then there is a natural homeomorphism f : X1 → X2, which maps a point
in E to itself and a point x in F1(W ) to the unique point in F2(W ) ∩ Ix. It
follows from Theorem 1 that a measure μ on X1 is doubling if and only if
its image μ ◦ f −1 is doubling on X2. To complete this proof, we are going to
show that the Whitney modifications X1 and X2 can be chosen such that f
is not quasisymmetric.

Let E = {0} and W = {[−2n+1, −2n], [2n,2n+1] : n ∈ Z}. It is obvious that
W is a Whitney decomposition of R

1 \ E. Let F1(W ) be the set of midpoints
of intervals in W and

F2(W ) =
(
(−∞,1] ∩ F1(W )

)
∪ {2n ± 2−n : n = 1,3,5, . . .}.

Then Xi = E ∪ Fi(W ), i = 1,2, are Whitney modifications of E. For this
choice of X1 and X2, we claim that f is not quasisymmetric.

In fact, if f is quasisymmetric for a homeomorphism η : [0,+∞) → [0,+∞),
then for any positive integer k

(14)
|f(xk) − f(ak)|

|f(xk) − f(bk)| ≤ η

(
|xk − ak |

|xk − bk |

)
,
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where ak, xk and bk are respectively the midpoints of intervals [22k−1,22k],
[22k,22k+1] and [22k+1,22k+2]. Obviously,

|xk − ak |
|xk − bk | ≤ 1.

Note that

f(ak) = 22k−1 + 2−(2k−1), f(xk) = 22k+1 − 2−(2k+1),

f(bk) = 22k+1 + 2−(2k+1).

One has
|f(xk) − f(ak)|

|f(xk) − f(bk)| → +∞

as k → +∞. Since η is obviously increasing, it follows from the inequality
(14) that η(1) = +∞, a contradiction.
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