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ON QUASICONFORMAL INVARIANCE OF CONVERGENCE
AND DIVERGENCE TYPES FOR FUCHSIAN GROUPS

KATSUHIKO MATSUZAKI

Abstract. We characterize convergence and divergence types for
Fuchsian groups in terms of the critical exponent of convergence

and modified functions of the Poincaré series for certain sub-
groups associated with ends of the quotient Riemann surfaces.

As an application of this result, we prove that convergence and

divergence type are not invariant under a quasiconformal auto-
morphism of the unit disk.

1. Background and statement of results

In this paper, we show that divergence and convergence types for Fuch-
sian groups are not necessarily quasiconformally invariant. Notations and the
definition of the types of Fuchsian groups are given in this section after the
statement of the theorem. For other results on quasiconformal invariance of
certain classes of Fuchsian groups, see for example [8].

Theorem 1. There exist Fuchsian groups Γ of convergence type and Γ#

of divergence type such that the conjugation f −1Γf coincides with Γ# for a
quasiconformal automorphism f of the unit disk B2.

A Fuchsian group Γ is a discrete group of orientation-preserving isometric
automorphisms of the hyperbolic plane H2, which acts properly discontin-
uously on H2. We assume that Γ is torsion-free for the sake of simplicity,
and consequently, that it acts freely (but this assumption is not essential).
The unit disk B2 ⊂ C with a conformal metric ρ(z)|dz| = 2|dz|/(1 − |z|2) is a
model of the hyperbolic plane and Γ acts on B2 as a group of Möbius trans-
formations. The boundary S1 of the model B2 is located at infinity of the
hyperbolic plane and the action of Γ extends to S1.
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The Poincaré series of dimension s ≥ 0 for a Fuchsian group Γ with respect
to the origin 0 ∈ B2 is defined by

Ps(Γ) =
∑
γ∈Γ

exp(−sρ(0, γ(0))),

where ρ also denotes the hyperbolic distance on B2. The critical exponent of
convergence for Γ is defined by

δ(Γ) = inf{s ≥ 0 | Ps(Γ) < ∞},

which is in the interval [0,1]. This is an index measuring the distribution of
the orbit of Γ, which is closely related to geometric structure of the associated
hyperbolic Riemann surface R = H2/Γ. We say that Γ is of divergence type
if Pδ(Γ)(Γ) = ∞ and of convergence type if Pδ(Γ)(Γ) < ∞. Finitely generated
Fuchsian groups (=geometrically finite Fuchsian groups) are all of divergence
type.

It is known that, as in the following proposition, convergence and diver-
gence type is a quasiconformal invariant if δ(Γ) = 1. Note that the Hopf–Tsuji
theorem asserts that the condition P1(Γ) = ∞ is equivalent to a property that
R = H2/Γ has no Green function, as well as to a property that the conical
limit set has full 1-dimensional measure on S1. See [12, Theorem 6.3.3].

Proposition 2. Let Γ be a Fuchsian group with δ(Γ) = 1 and Γ# = f −1Γf
is another Fuchsian group that is quasiconformally conjugate to Γ. If Γ is of
convergence type, then so is Γ#, and if Γ is of divergence type then so is Γ#.

Actually, the invariance of divergence at exponent 1 is seen from the in-
variance of the property that R has no Green function, which is a famous
result due to Pfluger (see [14, p. 221]). The invariance of critical exponent 1
has been proved by Fernández and Rodŕıguez [7] from the invariance of the
bottom of spectra of the Laplacian on R. Proposition 2 makes a contrast to
Theorem 1, and it, in particular, shows that the example of Fuchsian groups
Γ and Γ# in Theorem 1 should satisfy δ(Γ) < 1 and δ(Γ#) < 1.

To prove Theorem 1, we characterize convergence and divergence types
of Fuchsian groups by considering the modified Poincaré series defined be-
low. This idea comes from recent work of Anderson, Falk and Tukia [2], [6].
The modification of the Poincaré series arises in construction of the Patterson
measure.

For a Fuchsian group Γ, a probability measure μ on S1 is said to be a
Γ-invariant conformal measure of dimension s ≥ 0 if

μ(γ(E)) =
∫

E

|γ′(x)|s dμ(x)



CONVERGENCE AND DIVERGENCE TYPES FOR FUCHSIAN GROUPS 1251

for any Borel measurable set E on S1 and for any γ ∈ Γ. For s > δ(Γ), consider
the sum of the weighted Dirac measures∑

γ∈Γ

exp(−sρ(0, γ(0)))Dγ(0).

Dividing this by the total mass, we have a probability measure on the compact
space B2. Then, taking s ↓ δ(Γ), we have a weak limit of a subsequence of
the measures. If Γ is of divergence type, this limit is a Γ-invariant conformal
measure of dimension δ(Γ) and has support in the limit set Λ(Γ). In general,
a Γ-invariant conformal measure of dimension δ(Γ) that has support in Λ(Γ)
is called the Patterson measure for Γ. The above construction is precisely the
way one obtains the Patterson measure for a Fuchsian group of divergence
type.

On the other hand, if Γ is of convergence type, we have to modify the weight
exp(−sρ(0, γ(0)) by using a continuous, nondecreasing function h : (0, ∞) →
(0, ∞) that satisfies the following:
(a) The modified Poincaré series

Ph
s (Γ) =

∑
γ∈Γ

h(ρ(0, γ(0))) exp(−sρ(0, γ(0)))

converges for s > δ(Γ) and diverges for s ≤ δ(Γ);
(b) For every ε > 0, there exists a constant r0 > 0 such that h(t+ r) ≤ eεth(r)

for all r ≥ r0 and t > 0;
(c) There exists a constant C > 0 such that h(r + t) ≤ Ch(r)h(t) for all r > 0

and t > 0.
A function h satisfying these properties is called a Patterson function for Γ.
Note that, if Γ is of divergence type, then the constant function h(t) ≡ 1 can
be a Patterson function for Γ. It is proved by Patterson [13] that a Patterson
function exists for any Fuchsian group Γ and hence, by the same construction
using the modified Poincaré series instead, there is the Patterson measure for
Γ even if Γ is of convergence type. See also [16], [12, Section 3.1], and [5].
The above definition of a Patterson function is due to [6].

Concerning characterization of Fuchsian groups of divergence type, the
following result is originally due to Patterson [13] and Sullivan [16], [17]. Since
the 1-dimensional measure on S1 is the Patterson measure for a Fuchsian
group Γ with P1(Γ) = ∞, this is a generalization of the Hopf–Tsuji theorem.
See also [9, Section 4].

Proposition 3. The following conditions are equivalent to each other for
any nonelementary Fuchsian group Γ:
(1) Γ is of divergence type;
(2) The Patterson measure has full measure on the conical limit set of Γ.
Moreover, if δ(Γ) ≥ 1/2, then condition (3) is also equivalent to (1) and (2):
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(3) For the hyperbolic Laplacian Δ on R = H2/Γ and the constant λ = δ(Γ)
(1 − δ(Γ)), the Green function with respect to the operator Δ − λ does not
exist on R.

However, these properties are described by global geometric structure on
R = H2/Γ and it is difficult to see whether they are quasiconformally invariant
or not. On the other hand, our criterion (Theorem 4 below) will be given by
using subgroups ΓE associated with ends E of R. Here an end is a connected
component E of the complement of a compact subsurface W of R that is not
relatively compact. (Precisely speaking, this should be called a neighborhood
of a topological end of R.) We will say that E is outside W in this situation.
The end subgroup ΓE with respect to E is the image of the fundamental
group of E under the homomorphism π1(E) → π1(R) ∼= Γ (up to conjugacy)
induced by the inclusion map. The limit set for ΓE is investigated in [2].

Theorem 4. The following conditions are equivalent for a nonelementary
Fuchsian group Γ:
(1) Γ is of divergence type;
(4) There exists a Patterson function h for Γ such that the modified Poincaré

series P h
δ(Γ)(Γ

′) converges for every subgroup Γ′ of Γ with Λ(Γ′) � Λ(Γ);
(5) There exists a Patterson function h for Γ and a compact subsurface W

of R = H2/Γ such that Ph
δ(Γ)(ΓE) converges for the end subgroup ΓE with

respect to every end E outside W .

As an application of Theorem 4, we have Theorem 1, which will be demon-
strated in Section 3. In the next section, we show Theorem 4, which is a
new formulation of existing results. Actually, in the proof of Theorem 1, we
use these results rather than Theorem 4. Nevertheless, this theorem seems to
have its own interest.

2. Criteria for convergence and divergence types

Theorem 4 follows from two results (Lemmas 5 and 7) below. To obtain the
necessary condition to be of divergence type, that is, the implication (1) ⇒ (4),
we need the following lemma, which has been formulated in [9, Lemma 30].1

We give a complete proof for it here. Note that, though the statement itself
is given for Fuchsian groups, this is true for Kleinian groups of any dimension
by the same proof.

Lemma 5. Let Γ′ be a subgroup of a Fuchsian group Γ such that the limit set
Λ(Γ′) is a proper subset of Λ(Γ). If Γ′ is of divergence type, then δ(Γ′) < δ(Γ).

Proof. Let μ be a Patterson measure for Γ. Since Λ(Γ) � Λ(Γ′), we can
choose an interval I ⊂ Ω(Γ′) such that μ(I) > 0 and I ∩ γ(I) = ∅ for any

1 The original note is [19]. After completing the present paper, the author has found [18]

which also proves this result.
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nontrivial element γ ∈ Γ′. Then
∑

γ∈Γ′ μ(γ(I)) = μ(
⋃

γ∈Γ′ γ(I)) ≤ 1. Since
∑
γ∈Γ′

μ(γ(I)) =
∑
γ∈Γ′

∫
I

|γ′(x)|δ(Γ) dμ(x) =
∫

I

∑
γ∈Γ′

|γ′(x)|δ(Γ) dμ(x),

this implies that
∑

γ∈Γ′ |γ′(x)|δ(Γ) < ∞ for almost every x ∈ I . Here, by

|γ′(x)| =
1 + |γ(0)|

|x − γ−1(0)|2
(
1 − |γ(0)|

)
≥ 1

4
(
1 − |γ(0)|

)

and 1 − |γ(0)| ≥ e−ρ(0,γ(0)) for every γ, we see that the Poincaré series Pδ(Γ)(Γ′)
of dimension δ(Γ) converges. On the other hand, Pδ(Γ′)(Γ′) of dimension δ(Γ′)
diverges, for Γ′ is of divergence type. Hence, we obtain δ(Γ′) < δ(Γ). �

An example of a Fuchsian group of convergence type arises from a nontrivial
self-covering of a Riemann surface. In the next paragraph, we illustrate this
situation. We apply Lemma 5 in such a particular case. A stronger result
than Corollary 6 below is obtained in [11].

A pair of pants is a hyperbolic surface homeomorphic to a three-punctured
sphere with three geodesic boundary components. Choose a pair of pants
P whose boundary components b0, b1, and b2 have the same length. First,
glue two copies of P along the 2 boundary components b1 and b2 of P , which
results in a hyperbolic surface R1 with 5 boundary components. Next, glue
four copies of P along the 4 boundary components coming from b1 and b2

of P , which results in a hyperbolic surface R2 with 9 boundary components.
Continuing this process infinitely many times, we have a hyperbolic surface
R∞ with the boundary component b0. Let Γ be a Fuchsian group such that
R = H2/Γ is the Nielsen extension of R∞ beyond b0. On the other hand, for
an end E of R that is one of the two components of R∞ − P , the end subgroup
ΓE of Γ is properly contained in Γ but it is conformally conjugate to Γ.

Corollary 6. If there exists an end E of R = H2/Γ such that the end
subgroup ΓE is properly contained in Γ but it is conformally conjugate to Γ,
then Γ is of convergence type. More generally, if there exists a subgroup Γ′

such that Λ(Γ′) � Λ(Γ) and Γ′ is conformally conjugate to Γ, then Γ is of
convergence type.

Proof. Suppose to the contrary that Γ is of divergence type. Because Γ′ is
conformally conjugate to Γ, then δ(Γ′) = δ(Γ) and Γ′ is of divergence type as
well. However, this contradicts Lemma 5 asserting δ(Γ′) < δ(Γ). �

The following sufficient condition for Γ to be of divergence type is given
by Falk and Tukia [6, Corollary] as an application of the arguments for end
subgroups developed in [2].

Lemma 7. Let Γ be a Fuchsian group of convergence type. Let {E1, . . . ,En}
be the family of all ends outside a compact subsurface W of R = H2/Γ. Then,
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for every Patterson function h for Γ, there exists an end Ei (1 ≤ i ≤ n) such
that the modified Poincaré series Ph

δ(Γ)(ΓEi) for the end subgroup ΓEi diverges.

In general, if a subgroup Γ′ of Γ satisfies δ(Γ′) < δ(Γ), then Ph
δ(Γ)(Γ

′) con-
verges for every Patterson function h for Γ. Hence, Lemma 7 in particular
claims the following.

Corollary 8. If there exists a compact subsurface W of R = H2/Γ such
that δ(ΓE) < δ(Γ) for the end subgroup ΓE , with respect to every end E out-
side W , then Γ is of divergence type.

Remark. The converse of Corollary 8 is not true. Indeed, let R be a
Riemann surface of infinite genus that is a cyclic cover of a compact Riemann
surface of genus 2 and let Γ be the Fuchsian group corresponding to R. Since
we know that R admits no Green function, δ(Γ) = 1 and Γ is of divergence
type. However, it can be also proved that δ(ΓE) = 1 for any end subgroup
ΓE .

At this stage, we can verify the statement of Theorem 4 as follows.

Proof of Theorem 4. (1) ⇒ (4): Suppose that Γ is of divergence type. We
take h(t) ≡ 1 as a Patterson function for Γ. Let Γ′ ⊂ Γ be any subgroup
with Λ(Γ′) � Λ(Γ). When Γ′ is of divergence type, we have δ(Γ′) < δ(Γ) by
Lemma 5. Hence, the Poincaré series Pδ(Γ)(Γ′) converges. When Γ′ is of con-
vergence type, Pδ(Γ)(Γ′) also converges since so does Pδ(Γ′)(Γ′) by definition.
In any case, Ph

δ(Γ)(Γ
′) converges for h ≡ 1.

(4) ⇒ (5): For this implication, it suffices to see that there exists a compact
subsurface W in R such that the end subgroup ΓE for each end E outside
W satisfies Λ(ΓE) � Λ(Γ). However, since R has a noncyclic fundamental
group, we can always find such W . (5) ⇒ (1): This follows directly from
Lemma 7. �

Remark. The implication (4) ⇒ (5) is valid only for Fuchsian groups. The
other implications are valid for Kleinian groups even in higher dimension.

Finally in this section, we note another sufficient condition for Γ to be of
divergence type in terms of the exhaustion of R = H2/Γ. A canonical exhaus-
tion of a Riemann surface R is an increasing sequence {Rn}n∈N of compact
subsurfaces of R such that each connected component of the complement of
Rn is an end having exactly one relative boundary component. It is well
known that any topologically infinite Riemann surface R admits a canonical
exhaustion (see [1, p. 144]). For the canonical exhaustion of R, the increasing
sequence {Γn}n∈N of finitely generated Fuchsian subgroups corresponding to
π1(Rn) defines an exhaustion of Γ, that is,

⋃
n∈N

Γn = Γ. Then this gives a
strictly increasing sequence of the critical exponents

δ(Γ1) < δ(Γ2) < · · · < δ(Γn) < · · · < δ(Γ) = lim
n→∞

δ(Γn).



CONVERGENCE AND DIVERGENCE TYPES FOR FUCHSIAN GROUPS 1255

The strictness of the inequalities is a consequence of Lemma 5. The continu-
ity δ(Γ) = limn→∞ δ(Γn) is a consequence of the lower semicontinuity of the
critical exponent under geometric convergence due to Sullivan [16, Corollary
6]. See also [9, Lemma 21]. Hence, we have another corollary to Lemma 7.

Corollary 9. Let {Rn}n∈N be a canonical exhaustion of a Riemann sur-
face R = H2/Γ and {Γn}n∈N the corresponding exhaustion of Γ. If there exists
n ∈ N such that, for every end E outside Rn, the end subgroup ΓE satisfies
δ(ΓE) ≤ δ(Γn), then Γ is of divergence type. Equivalently, if Γ is of conver-
gence type, then, for every n ∈ N, there exists an end E outside Rn such that
δ(ΓE) > δ(Γn).

This tells us that, if the dominant structure with respect to the critical
exponent is concentrated on a compact part of R, then Γ is of divergence
type.

3. Quasiconformal noninvariance of the type

We prove quasiconformal noninvariance of convergence and divergence
types by constructing a pair of Riemann surfaces.

Proof of Theorem 1. First, we make our Fuchsian group Γ as follows. Let
R̂ be a complete hyperbolic torus with one hole such that the meridian geo-
desic c and the boundary-parallel geodesic b have the same length � sufficiently
small. Take a cyclic cover R0 of R̂ that has no genus and that has infinitely
many lifts of b and c. Let Γ0 denote the Fuchsian group corresponding to R0.
Take one of the lifts of c in R0 denoted by c0, which divides R0 into two
connected components, and consider a subgroup Γ of Γ0 that corresponds to
one of the components. Then set R = H2/Γ and denote the lifts of b and c in
R by {bi}i≥1 and {ci}i≥0 in order. See Figure 1.

Figure 1. The Riemann surface R.
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In the above construction, if we take a dividing curve c2 instead of c0, we
have another subgroup Γ′ of Γ0. This Γ′ is conformally conjugate to Γ though
it can be regarded as a subgroup of Γ. Actually, Γ′ is the end subgroup ΓE for
the end E that is cut off by c2. Since Λ(Γ′) � Λ(Γ) in this case, Corollary 6
asserts that Γ is of convergence type.

We will show that the critical exponent of Γ satisfies δ(Γ) < 1. By the
Elstrodt–Patterson–Sullivan theorem [17] (see also [9, Theorem 17]), the bot-
tom λ(Γ) of the spectra of the Laplacian on the hyperbolic surface R = H2/Γ
is represented as λ(Γ) = δ(Γ)(1 − δ(Γ)) when δ(Γ) ≥ 1/2 and λ(Γ) = 1/4 oth-
erwise. Also, it is estimated by the isoperimetric constant h(Γ) = supA(D)/
L(∂D) as λ(Γ) ≥ 1/{4h(Γ)2}, where the supremum is taken over all rela-
tively compact subdomain D in R with smooth boundary; A and L indicate
the hyperbolic area and length, respectively. See [4, IV.3]. If we restrict
the above subdomains D to those D∗ bounded by simple closed geodesics,
we have another isoperimetric constant h∗(Γ) = supA(D∗)/L(∂D∗), but they
are related as h∗(Γ) ≤ h(Γ) ≤ h∗(Γ) + 1 (see [7] and [10]). Since our Riemann
surface R is planar, if D∗ is bounded by n geodesic boundary components,
then A(D∗) = 2π(n − 2) by the Gauss–Bonnet formula. Also, since � is chosen
to be sufficiently small, we see that L(∂D∗) ≥ n�. Thus, we have

h∗(Γ) = sup
n

2π(n − 2)
n�

=
2π

�
.

Applying this estimate to the above inequalities, we have

λ(Γ) ≥ �2

4(2π + �)2
> 0.

Finding a constant d ∈ ( 1
2 ,1) satisfying

d(1 − d) =
�2

4(2π + �)2
<

1
4
,

we conclude that δ(Γ) ≤ d < 1.
Next, we make a quasiconformal conjugate Γ# of Γ so that Γ# is of diver-

gence type. The hyperbolic surface R# = H2/Γ# is obtained by deforming R
as follows. Let W be a compact subsurface in R bounded by simple closed geo-
desics c0, b1, b2, and c2. The end E is outside W . We deform R to R# so that
the lengths of c0, b1 and another simple closed geodesic c1 become shorter but
the lengths of the other bi and ci (i ≥ 2) remain unchanged. The correspond-
ing subsurfaces with geodesic boundaries in R# are denoted by W# and E#,
respectively. Note that the end E# is conformally equivalent to E. The other
ends outside W# are annuli, which are negligible. Since the end subgroup ΓE

is conformally conjugate to Γ, so is ΓE# , and hence δ(ΓE#) = δ(Γ) ≤ d. On
the other hand, δ(Γ#) can be arbitrarily close to 1, and hence greater than
d if we make c0, b1 and c1 sufficiently short. This is because, if the lengths
of the three boundary geodesics of a pair of pants tends to 0, its geometry
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approaches that of the three-punctured sphere whose Fuchsian group has the
critical exponent 1. Then we have δ(ΓE#) < δ(Γ#) and, by Corollary 8, we
see that Γ# is of divergence type. �

Remark. In the above example, by changing the length � of all the geo-
desics bi and ci in R, we consider a quasiconformally equivalent family of
Riemann surfaces {R�}�>0 and the corresponding Fuchsian groups {Γ�}�>0.
Note that each Γ� is of convergence type by the same reason as above. As we
will see in the next paragraph, the critical exponents δ(Γ�) move continuously
with respect to �. Also, we have lim�→0 δ(Γ�) = 1 by the same reason as above.
Hence, there exists some �′ such that δ(Γ�′ ) = δ(Γ#). This means that Γ�′

and Γ# are quasiconformally conjugate and have the same critical exponent,
but their types are different.

The critical exponent δ(Γ�) is equal to the Hausdorff dimension of the con-
ical limit set of Γ�. This fact is true for nonelementary Kleinian groups of
any dimension by Bishop and Jones [3] (see also [15] and [9, Theorem 1]), but
it can be proved relatively easily for Fuchsian groups because any Fuchsian
group can be represented as the geometric limit of an increasing sequence
of geometrically finite Fuchsian groups (see [16, Corollary 27] and [12, The-
orem 9.3.9]). Hence, we can reduce the problem to the continuity of the
Hausdorff dimension of the conical limit set of Γ�. Since the conical limit
set is preserved by quasiconformal deformation of a Fuchsian group (see [8,
Lemma 7.2]) and since the variation of the Hausdorff dimension is well es-
timated by the maximal dilatation of a quasiconformal automorphism, we
obtain that continuity.
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