
Illinois Journal of Mathematics
Volume 52, Number 4, Winter 2008, Pages 1165–1182
S 0019-2082

ON ZEROS OF THE DERIVATIVE OF THE
THREE-DIMENSIONAL SELBERG ZETA FUNCTION

MAKOTO MINAMIDE

Abstract. In this article, we study the distribution of zeros of
the derivative of the Selberg zeta function for compact three-
dimensional hyperbolic spaces. We obtain an asymptotic formula

for the counting function of its zeros. This is a three-dimensional

version of the celebrated work of Wenzhi Luo. We also deduce
other asymptotic formulas relating to its zeros from the above
formula.

1. Introduction

Let H
2 be an upper half plane and Γ a cocompact discrete subgroup of

PSL(2,R) without elliptic elements. Regarding Γ\H
2 as a compact Riemann

surface of genus g ≥ 2, we define the Selberg zeta function ZΓ(s) associated
with Γ\H

2 by

ZΓ(s) :=
∏

{P0}

∞∏
l=0

(
1 − N(P0)−s−l

)
,

for Re(s) > 1, where {P0} is taken over all primitive hyperbolic conjugacy
classes of Γ and N(P0) is the norm of P0 defined by N(P0) := |a(P0)|2, where
a(P0) is the eigenvalue of P0 with |a(P0)| > 1. This function is extended as
an analytic function to the whole plane C by the Selberg trace formula. As
is well known, infinitely many nontrivial zeros of ZΓ(s) lie on the critical line
Re(s) = 1/2, except finitely many real zeros, that is to say, essentially, the
Riemann hypothesis holds for the Selberg zeta function. (See Selberg [Sel] or
Hejhal [Hej].)

Since more than two-third of nontrivial zeros of the Riemann zeta function
ζ(s) are simple under the Riemann hypothesis (see Montgomery [Mon]), a
study on multiplicity of zeros of ZΓ(s) is a natural problem. Also, as zeros of
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ZΓ(s) are corresponding to eigenvalues of the Laplacian on L2(Γ\H
2), such a

study is important from the aspect of the multiplicity problem for eigenvalues
of the Laplacian.

One of the approaches to multiplicity of zeros of a function is to search for
zeros of derivatives of the function. As being connected with the Riemann
hypothesis, the zeros of the derivative of the Riemann zeta function ζ ′(s) and
more generally, the zeros of k-th derivatives ζ(k)(s) were studied by Speiser
[Spe], Spira [Spi1], [Spi2], [Spi3]. Furthermore, Berndt [Ber] and Levinson
and Montgomery [LM] studied counting functions of nonreal zeros of ζ(k)(s).
Soundararajan [Sou] and others also studied zeros of ζ ′(s).

In the case of Selberg zeta functions, Luo studied the distribution of nonreal
zeros of the derivative of the Selberg zeta function Z ′

Γ(s) for compact Riemann
surfaces [Luo2]. Let ρ(k) = β(k) + iγ(k) be zeros of Z

(k)
Γ (s). We define the

counting function Nk(T ) for the above zeros with ordinate less than T as
follows:

Nk(T ) := �
{
β(k) + iγ(k) | Z

(k)
Γ

(
β(k) + iγ(k)

)
= 0,0 < γ(k) ≤ T

}
.

Luo obtained an asymptotic formula for N1(T ).

Theorem 1.1 (Luo [Luo2, p. 1142, Theorem 1]).

N1(T ) =
area(Γ\H

2)
4π

T 2 + O(T ) (as T → ∞),

where area(Γ\H
2) is the area of Γ\H

2 with respect to the hyperbolic measure.

This theorem is an analogue of the Weyl law (see Hejhal [Hej, p. 115,
Theorem 7.1; p. 118, Theorem 7.4; p. 119, Theorem 8.1])

N0(T ) =
area(Γ\H

2)
4π

T 2 + O

(
T

logT

)
(as T → ∞).

The study of Luo is motivated by Luo [Luo1] and Phillips and Sarnak [PS1],
namely, the aim of his study is to obtain a good bound for the multiplicity of
zeros of ZΓ(s) or the multiplicity of eigenvalues of the hyperbolic Laplacian Δ.

His work moved the author to study the distribution of zeros of the deriv-
ative of the Selberg zeta function associated with the real three-dimensional
compact upper half space. Let H

3 be the three-dimensional upper half space
and Γ a cocompact discrete subgroup of PSL(2,C). For the Selberg zeta func-
tion ZΓ(s) associated with the compact quotient Γ\H

3 (see the next section),
we define the counting function Nk(T ) of nonreal zeros of Z

(k)
Γ (s) in the same

way as above. The aim of this paper is to prove the following theorem which
is an analogue of the above theorem of Luo.

Theorem 1.2.

N1(T ) =
vol(Γ\H

3)
6π2

T 3 + O(T 2) (as T → ∞),
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where vol(Γ\H
3) is the volume of Γ\H

3 with respect to the hyperbolic measure.

In the three-dimensional case, the Weyl law is given by the following the-
orem.

Theorem 1.3 (Elstrodt, Grunewald and Mennicke [EGM, p. 215, Theo-
rem 5.6]).

N0(T ) =
vol(Γ\H

3)
6π2

T 3 + O(T 2) (as T → ∞).

From the above two theorems, we have

N0(T ) = N1(T ) + O(T 2).

Remarks. (i) We mentioned that the work of Luo is motivatied by [PS1],
but the theory of Phillips and Sarnak does not hold for hyperbolic spaces of di-
mensions ≥ 3. This is because their theory depends on the deformation theory
of cofinite discrete subgroups of PSL(2,R), and the deformation theory works
efficiently for PSL(2,R) only. (See Phillips and Sarnak [PS2], Sarnak [Sar1],
[Sar2] and Mostow [Mos].) In spite of the shortage of an three-dimensional
analogue of [PS1], our main theorem (Theorem 1.2) holds as an analogue of
the above theorem of Luo (Theorem 1.1).

(ii) In Section 5, we will obtain other asymptotic formulas related to zeros
of the derivative of the Selberg zeta function by Theorem 1.2 and Lemma 4.3
in Section 4. We shall deduce plain zero density estimates by following the
method of Levinson and Montgomery [LM].

2. Preliminaries

In this section, we refer the definition of the Selberg zeta function and the
resolvent trace formula for the three-dimensional hyperbolic space (Elstrodt,
Grunewald and Mennicke [EGM]).

Let H
3 be the three-dimensional upper half space

H
3 := {(z, r) | z = x + iy ∈ C, r > 0}

with the Riemannian metric

ds2 =
dx2 + dy2 + dr2

r2
.

The volume measure is given by

dxdy dr

r3
,

and the Lapalace–Beltrami operator is given by

Δ := −r2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂r2

)
+ r

∂

∂r
.
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Let Γ be a discontinuous subgroup of PSL(2,C). The group Γ acts on H
3 by(

a b
c d

)
(z, r) =

(
(az + b)(cz + d) + acr2

|cz + d|2 + |c|2r2
,

r

|cz + d|2 + |c|2r2

)
,

transitively.
In order to define the Selberg zeta funcion ZΓ(s) associated with Γ\H

3, we
classify any element P ∈ Γ − {I} into 4-classes as follows:

If | tr(P )| = 2 and tr(P ) ∈ R, then P is called parabolic.
If | tr(P )| < 2 and tr(P ) ∈ R, then P is called elliptic.
If | tr(P )| > 2 and tr(P ) ∈ R, then P is called hyperbolic.
In all other cases, P is called loxodromic.
The Selberg zeta function ZΓ(s) is defined by all primitive hyperbolic or

loxodromic conjugacy classes {P0}. A primitive element means that it is not
an essential power of any other element.

Definition 2.1 (Elstrodt, Grunewald, and Mennicke [EGM, p. 206, Defi-
nition 4.1]). For Re(s) > 2, ZΓ(s) is defined as

(2.1) ZΓ(s) :=
∏

{P0}

∏
(l,m)

(
1 − a(P0)−2la(P0)

−2m
N(P0)−s

)
,

where {P0} is taken over all primitive hyperbolic or loxodromic conjugacy
classes of Γ, the pair (l,m) runs over all pairs of nonnegative integers satisfying
the congruence relation l ≡ m(modm(P0)). Here m(P ) is the order of the
torsion of the centralizer of the hyperbolic or loxodromic element P ∈ Γ.

In this article, we only consider a cocompact discrete subgroup Γ of
PSL(2,C). Then the quotient Γ\H

3 is a compact Riemannian space. Let
λn = 1+ r2

n, 0 = λ0 < λ1 ≤ λ2 ≤ · · · be eigenvalues of Δ on the compact space
Γ\H

3.
In the compact case, the completed Selberg zeta function ΞΓ(s) is defined

by the following definition.

Definition 2.2 (Elstrodt, Grunewald, and Mennicke [EGM, p. 206,
(4.13)]).

ΞΓ(s) := ZI(s)ZE(s)ZΓ(s),

where

ZI(s) := exp
(

− vol(Γ\H
3)

6π
(s − 1)3

)
,

ZE(s) := exp
(
E(s − 1)

)
,

which are “gamma factors”. The first gamma factor ZI(s) is a contribution
from the identity of Γ, vol(Γ\H

3) is the volume of Γ\H
3 by the above hyper-

bolic measure. The second gamma factor ZE(s) is a contribution from the
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elliptic elements of Γ, the positive constant E is defined by

E :=
∑

{R}:elliptic

logN(T0)
m(R)| tr(R)2 − 4| ,

where {R} is taken over all elliptic conjugacy classes of Γ, T0 is a hyperbolic
or loxodromic element of the centralizer of R such that N(T0) is minimal and
m(R) denotes the order of maximal finite group in the centralizer of R.

Elstrodt, Grunewald, and Mennicke proved the resolvent trace formula.

Theorem 2.3 (Elstrodt, Grunewald, and Mennicke [EGM, p. 208, Theo-
rem 4.3]). For all s, a ∈ C \ {sn = 1 ± irn|n ≥ 0},

(2.2)
1

2s − 2
Ξ′

Γ(s)
ΞΓ(s)

− 1
2a − 2

Ξ′
Γ(a)

ΞΓ(a)
=

∞∑
n=0

(
1

(s − 1)2 + r2
n

− 1
(a − 1)2 + r2

n

)
.

This formula implies that zeros of ΞΓ(s), ZΓ(s) are of the form 1 ± irn. The
analogue of the Riemann hypothesis holds except those λn satisfying λn < 1.

From the trace formula, the functional equation of ZΓ(s) is deduced.

Theorem 2.4 (Elstrodt, Grunewald, and Mennicke [EGM, p. 209, Corol-
lary 4.4]).

ZΓ(2 − s) = exp
(

− vol(Γ\H
3)

3π
(s − 1)3 + 2E(s − 1)

)
ZΓ(s),(2.3)

Therefore, the critical line of the zeta functions is Re(s) = 1. For more
details on the Sleberg zeta function, see [EGM].

3. Zero-free regions for Z ′(s)

Hereafter, we denote the Selberg zeta function ZΓ(s) briefly by Z(s). Let
s = σ + it (σ, t ∈ R). In order to prove our main theorem, we need two types
of zero-free regions for Z ′(s).

First, one is the zero-free region on the right.

Proposition 3.1. There exists a sufficiently large σ0 ≥ 4 such that

(3.1) Z ′(σ + it) �= 0 for σ ≥ σ0.

Proof. For Re(s) > 2, we have [EGM, p. 208]

Z ′(s)
Z(s)

=
∑

{P }

Λ(P )
N(P )s

,

where, {P } are hyperbolic or loxodromic conjugacy classes of Γ, and

Λ(P ) :=
N(P ) logN(P0)

m(P )|a(P ) − a(P )−1|2 > 0.



1170 M. MINAMIDE

Since

Λ(P ) ≤ logN(P0)
|1 − a(P )−1|2 	 logN(P0) < N(P )ε (ε > 0),

we have

(3.2)
∑′

{P }
Λ(P )
N(P )s

	
∫ ∞

CSN(P00)

dπ0(x)
xσ−ε

,

where

N(P00) := min
{P0}

{N(P0)} > 1,

CS :=
min{N(P )|N(P00) < N(P )}

N(P00)
> 1,

π0(x) := �
{

{P } |N(P ) ≤ x
}
,

and the primed summation symbol means the sum over all hyperbolic or
loxodromic conjugacy classes {P } except for {P } with N(P ) = N(P00). It is
known that π0(x) = O(x2) as x → ∞ ([EGM, p. 70, Lemma 6.3]).

By (3.2), the following estimate is obtained:

(3.3)
∑′

{P }

Λ(P )
N(P )s

= O

(
1

{CSN(P00)}σ

)
(σ ≥ 4).

We choose a sufficiently large σ0 ≥ 4 such that∑′

{P }

Λ(P )
N(P )σ

≤ 1
2

L

N(P00)σ

for σ ≥ σ0, where

L :=
∑

N(P )=N(P00)

Λ(P ).

Then ∣∣∣∣Z ′(s)
Z(s)

∣∣∣∣ ≥ L

N(P00)σ
−

∑′

{P }

Λ(P )
N(P )σ

≥ 1
2

L

N(P00)σ
.

This is the three-dimensional analogue of (4) in Luo [Luo2, p. 1143]. That is

|Z ′(s)| ≥ 1
2

L

N(P00)σ
|Z(s)| > 0.

This implies the assertion of Proposition 3.1. �

On the other hand, the zero-free region of Z ′(s) on the left was determined
by the author’s former paper [Min].

Theorem 3.2 ([Min, Theorem 3]).

Z ′(s) �= 0 for Re(s) < 1, Im(s) �= 0.
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It is proved by the estimate of Im{Z ′(σ + it)/(2s − 2)Z(σ + it)} with the
Hadamard product expression of ΞΓ(s).

Remark. We obtain the following equality from the proof of [Min, Theo-
rem 3].

Im
{

1
2ti

Z ′(1 + it)
Z(1 + it)

}
=

vol(Γ\H
3)

4π
t +

E

2t
.

That is, the function Z ′(1+ it) only vanishes at the zeros of Z(s) when E �= 0,
and except for t = 0 when E = 0. From the viewpoint of the multiplicity
problem for the eigenvalues of the Laplacian, we are interested in the number
of zeros of Z ′(s) on Re(s) = 1, or in Re(s) > 1.

4. The number of zeros of Z ′(s)

In this section, we shall prove our main theorem (Theorem 1.2) by the
method of Luo [Luo2]. In order to count the number of nonreal zeros of
Z ′(s), we define the function X(s) as follows:

Definition 4.1 (cf. Luo [Luo2, p. 1143]).

(4.1) X(s) :=
N(P00)s

L
Z ′(s).

The function X(s) has the following property.

Proposition 4.2. For any t ∈ R and any σ ≥ 4, there exists a constant cΓ

(0 < cΓ < 1) such that

(4.2) X(s) = 1 + O(cσ
Γ) (σ ≥ 4),

where cΓ is independent of σ and t.
Moreover, there exist a sufficiently large σ0 ≥ 4 and a constant C = C(σ0)

such that

(4.3) | ReX(σ0 + it)| > C > 0,

where C depends on σ0, but C and σ0 are independent of t.

Proof. First, we shall prove (4.2). By Definition 4.1, and the proof of
Proposition 3.1 in Section 3,

X(s) =
N(P00)s

L

Z ′(s)
Z(s)

Z(s)

=
N(P00)s

L

(
L

N(P00)s
+

∑′

{P }
Λ(P )
N(P )s

)
Z(s)

=
(

1 + O

(
1

Cσ
S

))
Z(s).
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By [EGM, p. 214, (5.20)], there exists some positive constant M such that

(4.4) | logZ(s)| ≤ M
∑

{P0}

1
N(P0)σ

, σ > 2.

Then by the same argument as that of Hejhal [Hej, p. 74, Proposition 4.13],
Z(s) is estimated by

(4.5) Z(s) = 1 + O

(
1

N(P00)σ

)
(σ ≥ 3).

Therefore, there exists a constant cΓ (0 < cΓ < 1) which satisfies (4.2). It
follows that there exists a sufficiently large σ0 ≥ 4 such that

(4.6) |X(σ0 + it) − 1| <
1
2
.

This proves the existence of a positive constant C > 0 which is independent
of t such that (4.3) holds. �

To prove Theorem 1.2, we need the following lemma.

Lemma 4.3. Let β′ + iγ′ be zeros of Z ′(s) and 0 < α < 1. Then we have

(4.7)
∑

0<γ′ ≤T

(β′ − α) = (1 − α)
vol(Γ\H

3)
6π2

T 3 + O(T 2).

Proof. We choose σ0 which satisfies the assertions of Proposition 3.1 in
Section 3 and Proposition 4.2, and assume that a constant t0 ≥ 2 and T is
sufficiently large. Let R1 be the rectangle with the vertices α + it0, σ0 + it0,
σ0 + iT ′ and α + iT ′ where α is a constant such that 0 < α < 1 and T − 1 ≤
T ′ ≤ T . Without loss of generality, we can assume that Z ′(s) has no zeros on
the boundary of the rectangle R1.

By Littlewood’s theorem [Tit2, p. 132], we have

2π
∑

ρ′ ∈R1

(β′ − α)(4.8)

=
∫ T ′

t0

log |X(α + it)| dt −
∫ T ′

t0

log |X(σ0 + it)| dt

−
∫ σ0

α

argX(σ + it0)dσ +
∫ σ0

α

argX(σ + iT ′)dσ

= I1 + I2 + I3 + I4,

say, where ρ′ = β′ + iγ′ denotes the zeros of Z ′(s).
By estimating Ii (i = 1,2,3,4), we shall prove Theorem 1.2.
[The estimate of I3]: Since the function argX(σ + it0) is independent of

the parameter T ,

(4.9) I3 = −
∫ σ0

α

argX(σ + it0)dσ = O(1).
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[The estimate of I4]: Using Titchmarsh [Tit1, p. 213, Section 9.4], we
shall estimate I4.

By Proposition 4.2, we have | ReX(σ0 + iT ′)| > 0, and

(4.10) | argX(σ0 + iT ′)| <
π

2
.

Now we assume that ReX(s) vanishes q times on the segment between α+ iT ′

and σ0 + iT ′. Then

(4.11) | argX(σ + iT ′)| ≤ (q + 1)π (α ≤ σ < σ0).

In order to estimate the number q, we define a function Y (s) as follows:

Y (s) :=
1
2

{X(s + iT ′) + X(s − iT ′)} (α ≤ σ ≤ σ0).

The number q is expressed by the number of zeros of Y (σ) (σ ∈ R).
Let n(r) be the number of zeros of Y (s) for |s − σ0| ≤ r. Then we have

(4.12) q ≤ n(σ0 − α).

Clearly, n(σ0 − α) satisfies

(4.13) n(σ0 − α) log
σ0 − α′

σ0 − α
≤

∫ σ0−α′

0

n(r)
r

dr (0 < α′ < α < 1).

By Jensen’s theorem

(4.14)
∫ σ0−α′

0

n(r)
r

dr =
1
2π

∫ 2π

0

log
∣∣Y (

σ0 + (σ0 − α′)eiθ
)∣∣dθ − log |Y (σ0)|.

Let

M(σ, t) = max
σ≤σ′ ≤2σ0,
2≤ |t′ |≤t

|X(σ′ + it′)|.

Then we have

(4.15)
∣∣Y (

σ0 + (σ0 − α′)eiθ
)∣∣ ≤ M(α′, T ′ + σ0)

and

(4.16) |Y (σ0)| > C > 0,

hence, by (4.13), (4.14), (4.16), and (4.15), the number q is estimated by

(4.17) q ≤ 1
log σ0−α′

σ0−α

(
logM(α′, T ′ + σ0) + log

1
C

)
.

In order to estimate M(α′, T ′ + σ0), we need the following lemma.

Lemma 4.4. If t �= 0 and σ ∈ R is situated in a finite interval, then there
exists some constant C ′ > 0 such that

(4.18) |Z ′(σ + it)| 	 eC′t2 .
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Proof. By the Cauchy integral formula, we have

(4.19) Z ′(s) =
1

2πi

∫
C̃

Z(ξ)
(ξ − s)2

dξ,

where C̃ is a circle centered at s of suitable radius.
Here, we recall [EGM, p. 213, Corollary 5.4]: There exists some constant
C ′ ′ > 0 such that

(4.20) Z(s) 	 exp(C ′ ′t2),

where Re(s) is located in a finite interval.
Therefore, the estimate (4.18) is deduced from the estimate (4.19), and

(4.20). �

By (4.11), (4.17), and (4.18), we have

| argX(σ + iT ′)| 	 T ′2, (α ≤ σ < σ0)

and

(4.21) I4 =
∫ σ0

α

argX(σ + iT ′)dσ = O(T ′2) = O(T 2).

[The estimate of I2]: In order to estimate the integral I2, let R2 be the
rectangle with the vertices σ0 + it0, R + it0, R + iT ′, and σ0 + iT ′, where
R > σ0. Since X(s) �= 0 inside R2, we may apply Cauchy’s theorem to X(s).
Then we have

−i

∫ T ′

t0

logX(σ0 + it)dt =
∫ σ0

R

logX(σ + iT ′)dσ(4.22)

− i

∫ T ′

t0

logX(R + it)dt

+
∫ R

σ0

logX(σ + it0)dσ.

On the right-hand side of (4.22), we have∫ R

σ0

logX(σ + it0)dσ = O

(∫ R

σ0

cσ
Γ dσ

)
= O(1)

by the estimation (4.2) for X(s). Similarly,∫ σ0

R

logX(σ + iT ′)dσ = O(1),

and ∫ T ′

t0

logX(R + it)dt = O

(∫ T ′

t0

cR
Γ dt

)
→ 0 (as R → ∞).
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Then

(4.23) |I2| ≤
∣∣∣∣
∫ T ′

t0

logX(σ0 + it)dt

∣∣∣∣ = O(1) (as R → ∞).

[The estimate of I1]: This part is the longest and the most important in
the estimates of the integrals in (4.8).

In the functional equation (2.3), we put

f(s) := exp
(

vol(Γ\H
3)

3π
(s − 1)3 − 2E(s − 1)

)
.

Differentiating the functional equation, we have

Z ′(s) = Z(2 − s)
(

f ′(s) − Z ′(2 − s)
Z(2 − s)

f(s)
)

,

where

f ′(s) =
(

vol(Γ\H
3)

π
(s − 1)2 − 2E

)
f(s).

Then X(s) is expressed by

X(s) =
N(P00)s

L
Z(2 − s)f(s)

(
vol(Γ\H

3)
π

(s − 1)2 − 2E

)
(4.24)

×
(

1 − 1
vol(Γ\H3)

π (s − 1)2 − 2E

Z ′(2 − s)
Z(2 − s)

)
.

We recall the zero-free region theorem (Theorem 3.2 in Section 3), i.e.,

(4.25) 1 − 1
vol(Γ\H3)

π (s − 1)2 − 2E

Z ′(2 − s)
Z(2 − s)

�= 0,

for Re(s) < 1 and Im(s) > 0. We shall use it later.
We examine the integral I1. In (4.24), we put s = α + it and take the

absolute values and the logarithms, then∫ T ′

t0

log |X(α + it)| dt(4.26)

=
∫ T ′

t0

log
∣∣∣∣N(P00)α

L

∣∣∣∣dt +
∫ T ′

t0

log |Z(2 − α − it)| dt

+
∫ T ′

t0

log |f(α + it)| dt +
∫ T ′

t0

log
∣∣∣∣vol(Γ\H

3)
π

(α − 1 + it)2 − 2E

∣∣∣∣dt

+
∫ T ′

t0

log
∣∣∣∣1 − 1

vol(Γ\H3)
π (α − 1 + it)2 − 2E

Z ′(2 − α − it)
Z(2 − α − it)

∣∣∣∣dt,

where we call the integrals of the right-hand side of (4.26) I1i (i = 1,2, . . . ,5)
by turns.
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[The estimate of I11]: Obviously,

(4.27) I11 =
∫ T ′

t0

log
∣∣∣∣N(P00)α

L

∣∣∣∣dt = O(T ).

[The estimate of I12]: In order to estimate I12, let R3 be the rectangle
with vertices 2 − α+ it0, 3+ it0, 3+ iT ′ and 2 − α+ iT ′. Since Z(s) �= 0 inside
R3, the function logZ(s) is holomorphic on this domain. By the Cauchy
integral theorem,

0 =
∫ 3

2−α

logZ(σ + it0)dσ + i

∫ T ′

t0

logZ(3 + it)dt

+
∫ 2−α

3

logZ(σ + iT ′)dσ + i

∫ t0

T ′
logZ(2 − α + it)dt.

By taking the imaginary parts, we have∫ T ′

t0

log |Z(2 − α + it)| dt =
∫ 3

2−α

argZ(σ + it0)dσ +
∫ T ′

t0

log |Z(3 + it)| dt

+
∫ 2−α

3

argZ(σ + iT ′)dσ,

where we name the integrals of the right-hand side of the above equality
I12i (i = 1,2,3) by turns.

Obviously, I121 = O(1). By [EGM, p. 214, (5.20)] or (4.4), logZ(s) = O(1)
for σ > 2, therefore, we have log |Z(3 + it)| = O(1). Hence, I122 = O(T ). In
order to estimate I123, we remark

(4.28) logZ(σ + iT ′) = logZ(3+ iT ′) −
∫ 3

σ

Z ′(u + iT ′)
Z(u + iT ′)

du (2 − α ≤ σ ≤ 3).

To estimate the second term in the above equality, we apply [Nak, p. 324,
Lemma 3.4, (3.7)] (see [Hej, p. 102, Proposition 6.6]):

(4.29)
Z ′(1 + ε + it)
Z(1 + ε + it)

	 t2

ε
(ε > 0, |t| ≥ 2)

to (4.28). Then

| logZ(σ + iT ′)| ≤ | logZ(3 + iT ′)| +
∫ 3

σ

∣∣∣∣Z ′(u + iT ′)
Z(u + iT ′)

∣∣∣∣du

= O(1) + O(T ′2).

We remark that the number α is a constant, not a parameter.
This implies

argZ(σ + iT ′) = O(T 2).
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Then I123 = O(T 2). By the above three estimates, we get

(4.30) I12 =
∫ T ′

t0

log |Z(2 − α − it)| dt = O(T 2).

[The estimate of I13]: The estimate of I13 leads to the main term in our
asymptotic formula for N1(T ). We recall that

f(s) := exp
(

vol(Γ\H
3)

3π
(s − 1)3 − 2E(s − 1)

)
,

and put s = α + it. Then

|f(α + it)| = exp
(

vol(Γ\H
3)

3π
(α − 1)3 − vol(Γ\H3)

π
(α − 1)t2 − 2E(α − 1)

)
.

Therefore,

(4.31) I13 =
∫ T ′

t0

log |f(α + it)| dt = (1 − α)
vol(Γ\H3)

3π
T 3 + O(T 2).

[The estimate of I14]: Since∣∣∣∣vol(Γ\H
3)

π
(α − 1 + it)2 − 2E

∣∣∣∣
=

∣∣∣∣vol(Γ\H
3)

π
t2 ×

{(
α − 1

it
+ 1

)2

+
2E

vol(Γ\H3)
π t2

}∣∣∣∣,
we have

(4.32) I14 =
∫ T ′

t0

log
∣∣∣∣vol(Γ\H

3)
π

(α − 1 + it)2 − 2E

∣∣∣∣dt = 2T logT + O(T ).

[The estimate of I15]: A rough estimate I15 = O(T logT ) is deduced from
[Nak, p. 324, Lemma 3.4, (3.10)] easily. For future possibilities of this sort
of studies, we shall search for a better estimate than the aforesaid estimate.
Let D be the trapezoid with vertices α+ it0, α+ iT ′, −T ′ + iT ′ and −t0 + it0.
Here, we recall (4.25). By this, the function

log
(

1 − 1
vol(Γ\H3)

π (s − 1)2 − 2E

Z ′(2 − s)
Z(2 − s)

)

is holomorphic inside D. Then we apply the Cauchy theorem to get the
estimate of I15, that is

i

∫ T ′

t0

log
(

1 − 1
vol(Γ\H3)

π (α − 1 + it)2 − 2E

Z ′(2 − α − it)
Z(2 − α − it)

)
dt

=
∫ α

−T ′
log

(
1 − 1

vol(Γ\H3)
π (σ − 1 + iT ′)2 − 2E

Z ′(2 − σ − iT ′)
Z(2 − σ − iT ′)

)
dσ



1178 M. MINAMIDE

+ (i − 1)
∫ T ′

t0

log
(

1 − 1
vol(Γ\H3)

π (σ + 1 − iσ)2 − 2E

Z ′(2 + σ − iσ)
Z(2 + σ − iσ)

)
dσ

−
∫ α

−t0

log
(

1 − 1
vol(Γ\H3)

π (σ − 1 + it0)2 − 2E

Z ′(2 − σ − it0)
Z(2 − σ − it0)

)
dσ

= I151 + I152 + I153,

say. By estimating I15i (i = 1, 2, 3), we shall prove I15 = O(T ).
We apply [Nak, p. 324, Lemma 3.4, (3.10)]:

Z ′(σ + it)
Z(σ + it)

	 |t|2max(0,2−σ) log |t|
(

σ > 1 +
1

log |t| , |t| ≥ 2
)

to the integrand of I151, namely we see that

1
vol(Γ\H3)

π (σ − 1 + iT ′)2 − 2E

Z ′(2 − σ − iT ′)
Z(2 − σ − iT ′)

	 T 2α logT

T 2
,

where −T ′ ≤ σ ≤ α. Then the integral is estimated by I151 = O(T ). Obvi-
ously, we have I153 = O(1). By the estimate (3.3) in Section 3, we have

Z ′(s)
Z(s)

= O

(
1

N(P00)σ

)
(σ ≥ 4).

Hence, we get I152 = O(1). These estimates imply that

I15 =
∫ T ′

t0

log
∣∣∣∣1 − 1

vol(Γ\H3)
π (α − 1 + it)2 − 2E

Z ′(2 − α − it)
Z(2 − α − it)

∣∣∣∣dt(4.33)

= O(T ).

Substituting (4.27), (4.30), (4.31), (4.32), and (4.33) into (4.26), we have the
estimate of I1,

(4.34) I1 =
∫ T ′

t0

log |X(α + it)| dt = (1 − α)
vol(Γ\H

3)
3π

T 3 + O(T 2).

By (4.8), (4.9), (4.21), (4.23), (4.34), and Theorem 3.2, the proof of Lemma 4.3
is completed. �

Proof of Theorem 1.2. In (4.7), we change α to α/2;

(4.35)
∑

0<γ′ ≤T

(
β′ − α

2

)
=

vol(Γ\H
3)

6π2

(
1 − α

2

)
T 3 + O(T 2).

Subtract (4.7) from (4.35) and divide it by α/2. Then we have the asymptotic
formula

(4.36) N1(T ) =
∑

0<γ′ ≤T

1 =
vol(Γ\H

3)
6π2

T 3 + O(T 2).

This completes the proof of Theorem 1.2. �
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Remarks. (i) The asymptotic formula for the number of zeros of ζ(k)(s)
was given by Berndt [Ber].

(ii) Error terms in (4.7) and (4.35) may depend on the constant α, but it
is clear that the error term in (4.36) is independent of the constant α.

5. Concluding remarks

A good bound of multiplicity for zeros of the Selberg zeta function Z(s)
cannot be obtained by Theorem 1.2 (Lemma 4.3). However, the following
formulas are deduced from Theorem 1.2 and Lemma 4.3.

Theorem 5.1. Let β′ + iγ′ be zeros of Z ′(s). Then∑
0<γ′ ≤T

β′ =
vol(Γ\H3)

6π2
T 3 + O(T 2),(5.1)

∑
0<γ′ ≤T

(β′ − 1) = O(T 2),(5.2)

∑
0<γ′ ≤T

(β′ − λ) = (1 − λ)
vol(Γ\H

3)
6π2

T 3 + O(T 2),(5.3)

where λ is any constant.

Proof. Multiplying the both sides of (4.35) by 2, we get

(5.4)
∑

0<γ≤T

(2β′ − α) = (2 − α)
vol(Γ\H

3)
6π2

T 3 + O(T 2).

Subtract (4.7) from (5.4), then formula (5.1) is deduced.
Next, subtract λ-times the formula N1(T ) from (5.1), then formula (5.3)

is proved.
The formula (5.2) is the special case λ = 1 in (5.3). �

Formula (5.3) implies that formula (4.7) in Lemma 4.3 holds for any con-
stant α. Formula (5.2), which is a three-dimensional analogue of [Luo2,
p. 1147, Theorem 2] (see also Theorem 5.4 below), suggests that the most
of the zeros of Z ′(s) are located near the critical line Re(s) = 1. In fact, we
can prove the following two corollaries.

Corollary 5.2. Let N+
1 (c,T ) denote the number of nonreal zeros of Z ′(s)

such that β′ ≥ c and 0 < γ′ ≤ T . Then, for any positive constant ε > 0,

(5.5) N+
1 (1 + ε,T ) 	 T 2

ε
	 N1(T )

εT
.

Proof. By Theorem 3.2 in Section 3, and formula (5.2), we have

εN+
1 (1 + ε,T ) ≤

∑
0<γ′ ≤T

(β′ − 1) 	 T 2.
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This proves the corollary. �
This is an analogue of the corresponding result for ζ ′(s), due to Levinson

and Montgomery [LM, p. 50, Theorem 2].
Another corollary is the plain zero density estimate.

Corollary 5.3. For any positive constant ε > 0, we have

(5.6) lim
T →∞

�{ρ′ |1 ≤ β′ < 1 + ε,0 < γ′ ≤ T }
N1(T )

= 1.

Proof. Denote the number of nonreal zeros of Z ′(s) such that β′ < c, and
0 < γ′ ≤ T by Ñ −

1 (c,T ). Since

(5.7) N1(T ) = Ñ −
1 (1 + ε,T ) + N+

1 (1 + ε,T ),

the following is obtained:

(5.8) 1 =
Ñ −

1 (1 + ε,T )
N1(T )

+
N+

1 (1 + ε,T )
N1(T )

.

By Corollary 5.2,

(5.9)
Ñ −

1 (1 + ε,T )
N1(T )

= 1 + O

(
1

εT

)
,

that is

(5.10) lim
T →∞

Ñ −
1 (1 + ε,T )
N1(T )

= 1.

By the above and Theorem 3.2, the statement is proved. �
Finally, we will apply the above argument to the case of compact Riemann

surfaces of g ≥ 2. We use the same symbols yet written. However, notice that
the critical line is Re(s) = 1/2.

By Luo [Luo2], the following formula was given.

Theorem 5.4 ([Luo2, p. 1147, Theorem 2]).

(5.11)
∑

0<γ′ ≤T

(
β′ − 1

2

)
=

T logT

2π
+ O(T ).

By using [Luo2, p. 1147, (8)] and the same argument in the proof of The-
orem 5.1, we have the following:

Theorem 5.5.∑
0<γ′ ≤T

β′ =
1
2

area(Γ\H
2)

4π
T 2 +

T logT

2π
+ O(T ),(5.12)

∑
0<γ′ ≤T

(β′ − λ) =
(

1
2

− λ

)
area(Γ\H

2)
4π

T 2 +
T logT

2π
+ O(T ),(5.13)
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where λ is any constant.

By the same method as in the proof of Corollay 5.2, the following result is
deduced from Theorem 5.4.

Corollary 5.6. For any positive constant ε > 0, we have

(5.14) N+
1 (1/2 + ε,T ) 	 T logT

ε
.

In view of Theorem 1.1, we have

(5.15) N+
1 (1/2 + ε,T ) 	 N1(T ) logT

εT
.

Moreover, the following result is obtained by [Min, Theorem 2] and Corol-
lary 5.6.

Corollary 5.7. For any positive constant ε > 0,

(5.16) lim
T →∞

�{ρ′ | 1
2 ≤ β′ < 1

2 + ε,0 < γ′ ≤ T }
N1(T )

= 1.
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