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UNIFORMITY FROM GROMOV HYPERBOLICITY

DAVID HERRON, NAGESWARI SHANMUGALINGAM AND XIANGDONG XIE

Abstract. We show that in a metric space X with annular con-
vexity, uniform domains are precisely those Gromov hyperbolic

domains whose quasiconformal structure on the Gromov bound-
ary agrees with that on the boundary in X. As an application,

we show that quasimöbius maps between geodesic spaces with

annular convexity preserve uniform domains. These results are
quantitative.

1. Introduction

Bonk, Heinonen, and Koskela introduced uniform metric spaces in [BHK],
and demonstrated a fundamental two-way correspondence between these and
proper geodesic Gromov hyperbolic spaces. In addition to this connection
with geometric group theory, uniform metric spaces have come to play a sig-
nificant role in the program of doing analysis in the metric space setting. The
importance of Euclidean uniform domains is well known and documented in
[Ge] and [V4]. Recently, uniform subspaces of the Heisenberg groups, as
well as more general Carnot groups, have been a focus of study; see [CT],
[CGN], [Gr]. Many important concepts in potential theory are known to hold
in uniform spaces; for example, see [A1] and [A2]. There are close ties between
uniformity and extension of Sobolev functions; see [J] for Euclidean space and
[BSh] for the metric space setting.

Uniform domains are Gromov hyperbolic domains, that is they are Gromov
hyperbolic when endowed with their quasihyperbolic metric. An important
problem is to determine which Gromov hyperbolic domains are uniform do-
mains. This question has been answered in the Euclidean setting in [BHK]
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(Theorem 7.11). A Banach space analog was corroborated by Väisälä [V1]
(Theorem 3.27). The goal of this paper is to provide a similar characteriza-
tion for uniform domains in metric spaces that satisfy some mild geometric
conditions.

Let (X,d) be a metric space and Ca ≥ 2 a constant. We say that (X,d)
is Ca-annular convex if for all x ∈ X , all r > 0, and every pair of points
y, z ∈ B(x, r)\B(x, r/2), there is a path γ joining y, z and satisfying:

(1) the length of γ is at most Cad(y, z),
(2) the path γ lies in the annulus B(x,Car)\B(x, r/Ca).

Examples of metric spaces possessing annular convexity include Banach spaces
and Carnot groups, as well as metric spaces equipped with doubling measures
that support Poincaré inequalities [K].

Let (X,d) be a proper metric space (that is, closed and bounded subsets are
compact), and Ω ⊂ X a rectifiably connected open subset (every pair of points
in Ω can be joined by a rectifiable path in Ω) with boundary ∂Ω �= ∅. We say Ω
is a Gromov hyperbolic domain if Ω is Gromov hyperbolic with respect to the
quasihyperbolic metric k on Ω. Given a bounded Gromov hyperbolic domain
Ω, we obtain the Gromov closure Ω∗ = Ω ∪ ∂∗Ω of (Ω, k), where ∂∗Ω is the
Gromov boundary of (Ω, k). The closure of Ω in (X,d) is denoted Ω; since
X is proper and Ω is bounded, Ω is compact. In general, the identity map
f : (Ω, k) → (Ω, d) may not extend to a continuous map from Ω∗ to Ω, and even
if f does extend, the extension may not be injective. However, if Ω is a uniform
domain, then f extends to a homeomorphism from Ω∗ to Ω, and the restriction
of the extension to the Gromov boundary is a quasimöbius map with respect
to the visual metric on ∂∗Ω [BHK]. The main result (Theorem 9.1) of this
paper is that in the setting of annular convex proper metric spaces, uniform
domains are the only Gromov hyperbolic domains with the above property.

Theorem 9.1 provides a characterization of uniform domains in terms of
Gromov hyperbolic spaces and the quasiconformal structure on the Gromov
boundary. It makes it possible to study uniform domains using the theory of
Gromov hyperbolic spaces. As an illustration, we show that quasimöbius maps
preserve uniform domains (Theorem 10.1): if Ω is a domain in an annular
convex proper metric space and Ω is quasimöbius equivalent to a uniform
domain in some metric space, then Ω is also uniform.

For domains in Euclidean spaces and spheres, Theorem 9.1 was proved
by Bonk, Heinonen, and Koskela [BHK] (Theorem 7.11), and for domains in
Banach spaces by Väisälä [V1] (Theorem 3.27). The proof in [BHK] makes
use of the notion of moduli of path families, and therefore does not extend to
metric spaces that have no “nice” measure. The proof in [V1] uses only metric
properties. Our proof follows the general outline of Väisälä’s arguments, but
our proof contains several new ingredients.
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In [V1], the theorem was first proved for unbounded domains in Banach
spaces, and then inversions in Banach spaces were used to reduce the study of
bounded domains to the study of unbounded domains. To follow this strategy,
we use a notion of “inversion” in general metric spaces, see Section 4 or [BHX]
for more details.

We interpret the cross ratio in the Gromov boundary (with respect to a
visual metric) in terms of distances between certain geodesics (see Section 5).
Let (Y,h) be a proper geodesic Gromov hyperbolic space, Q = (ξ1, ξ2, ξ3, ξ4)
a quadruple of distinct points in the Gromov boundary ∂∗Y and hy,ε (y ∈ Y ,
ε > 0) a visual metric on ∂∗Y . Fix any geodesic [ξi, ξj ] (1 ≤ i, j ≤ 4) from ξi

to ξj . The cross ratio of Q with respect to hy,ε, denoted cr(Q,hy,ε), satisfies

cr(Q,hy,ε) ≈
{

eεh([ξ1,ξ4],[ξ2,ξ3]) if h([ξ1, ξ4], [ξ2, ξ3]) ≥ h([ξ1, ξ3], [ξ2, ξ4]),
e−εh([ξ1,ξ3],[ξ2,ξ4]) otherwise.

This interpretation of cross ratio is quite convenient in studying the quasicon-
formal structure of the Gromov boundary, and allows us to simplify some of
the arguments found in [V1].

A crucial property used in Väisälä’s proof is that spheres in Banach spaces
are 2-quasiconvex. A consequence of this property is that each arc point
lies on an anchor. (A point x in a domain Ω is an arc point if every point
on the boundary of Ω that is closest to x is essentially not isolated. The
technical definition of arc points and anchors are given in Section 7.) This
was first shown in [BHK] in the Euclidean setting. Annular convexity is
our replacement for the quasiconvexity of spheres. Under the assumption of
annular convexity, we establish (see Section 7) a slightly weaker version of this
fact sufficient for the proof of Theorem 9.1.

There is another difference between the Banach space setting of [V1] and
our setting of proper quasiconvex space. Since infinite dimensional Banach
spaces are not proper, one cannot assume the existence of quasihyperbolic geo-
desics in domains there; hence the tools of roads and biroads were developed
in [V1]. In our setting, such tools are not needed, as we have the availability
of quasihyperbolic geodesic rays and quasihyperbolic geodesic lines.

It is not clear whether Theorem 9.1 holds if the metric space is not annular
convex. The examples in Section 11 show that even if the theorem holds
without annular convexity, there can be no quantitative result.

Notation. Henceforth (X,d) denotes a metric space, B(x, r) = {y ∈ X :
d(y,x) < r} is the open ball and S(x, r) = {y ∈ X : d(y,x) = r} is the sphere,
with center x ∈ X and radius r > 0. The image of a path α : [a, b] → X is
denoted |α| and �d(α) is the d-length of α. We simply use �(α) if the metric
d in question is clear. We use α : x � y to indicate a path α : [a, b] → X
with α(a) = x and α(b) = y. Given a path α : [a, b] → X and x, y ∈ |α|, then
α[x, y] denotes an arbitrary but fixed subpath of α from x to y. If A ⊂ X and
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r > 0, then Nd(A,r) = {y ∈ X : d(y,x) ≤ r for some x ∈ A} denotes the closed
r-neighborhood of A. For two bounded subsets A,B ⊂ X ,

HDd(A,B) := inf{r > 0 : B ⊂ Nd(A,r) and A ⊂ Nd(B,r)}
is the Hausdorff distance between A and B; if the metric d in question is clear,
we write HD(A,B). Given two real numbers a, b, we denote the smaller of
these by a ∧ b. By c = c(δ, η,Ca), we mean a constant c that depends only on
the parameters δ, η and Ca.

Throughout the entire paper: (X,d) is a proper and quasiconvex metric
space, and Ω ⊂ X is a nonempty rectifiably connected open subset with non-
empty boundary. See Section 2 for the relevant definitions.

The structure of this paper is as follows. In Section 2 of this paper, we
discuss the quasihyperbolic metric on domains in a metric space, and recall
some needed facts about the quasihyperbolic metric. The focus of Section 3 is
Gromov hyperbolic spaces and some useful results about them. The tools of
inversion and sphericalization in metric spaces are given in Section 4, while a
discussion of cross ratios and boundary maps induced by quasiisometries can
be found in Section 5. The focus of Section 6 is to prove that if a domain is
uniform, then the natural map between the Gromov boundary of the domain,
equipped with the quasihyperbolic metric, and metric boundary of the domain
is quasi-Möbius. This fact was proven in [BHK] for bounded domains, and
so the principal concern of Section 6 is unbounded domains. The geometric
concepts of annular points, arc points, anchors, and star-likeness are discussed
in Section 7, and in Section 8 a geometric “carrot” condition associated with
quasihyperbolic geodesics is studied in the setting of the main theorem of
this paper, Theorem 9.1. The proof of this main theorem is then given in
Section 9. Finally, in Section 10 an application of the main theorem to quasi-
Möbius maps is demonstrated, and some examples are studied in Section 11.

2. Quasihyperbolic metric

In this section, we recall some basic facts about quasihyperbolic metric.
While we do not give proofs for most of these facts, we do provide citations
the reader can refer to for them.

A metric space is c-quasiconvex for some c ≥ 1 if each pair of points x, y in
the space can be joined by a path of length no more than cd(x, y). A geodesic
space is simply a 1-quasiconvex metric space.

Let U be an open subset of a metric space. We say U is rectifiably connected
if each pair of points x, y ∈ U can be joined by a rectifiable path in U . The
boundary ∂U of U is the set U \U , where U is the closure of U .

Recall that (X,d) is a proper and quasiconvex metric space, and Ω ⊂ X
is a nonempty rectifiably connected open subset with nonempty boundary.
For x ∈ Ω, we denote δΩ(x) = d(x,∂Ω). The quasihyperbolic metric k on Ω is
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defined as follows: for x, y ∈ Ω,

k(x, y) := inf
∫

γ

ds(z)
δΩ(z)

,

where the infimum is taken over all rectifiable paths γ in Ω joining x and
y, and ds denotes arc length along γ. It is well known that k is a metric
[BHK, p. 9].

The length metric lΩ on Ω is given by lΩ(x, y) = infγ �d(γ) for x, y ∈ Ω,
where the infimum is over paths in Ω joining x and y. Notice that for every
x ∈ Ω there exists an rx > 0 such that all y, z ∈ B(x, rx) can be joined by a path
in Ω with length at most cd(y, z). Hence, the identity map id : (Ω, d) → (Ω, lΩ)
is a homeomorphism. By [BHK, Proposition 2.8], id : (Ω, d) → (Ω, k) is also a
homeomorphism and (Ω, k) is a proper geodesic space.

Lemma 2.1 ([GP]). If x, y ∈ Ω and α : x � y is a rectifiable arc in Ω, then

�d(α) ≤
(
e�k(α) − 1

)
δΩ(x).

Lemma 2.1 implies the following inequalities (see also [BHK, p. 9]): for all
x, y ∈ Ω:

(2.1) k(x, y) ≥ log
(

1 +
d(x, y)

δΩ(x) ∧ δΩ(y)

)
≥

∣∣∣∣log
δΩ(y)
δΩ(x)

∣∣∣∣.
Lemma 2.2 (Lemma 2.13 of [BHK]). If γ : [0,1] → Ω is a path that satisfies

min
{
�d

(
γ|[0,t]

)
, �d

(
γ|[t,1]

)}
≤ AδΩ(γ(t))

for all t ∈ [0,1], then with x = γ(0) and y = γ(1),

�k(γ) ≤ 4A log
(

1 +
�d(γ)

δΩ(x) ∧ δΩ(y)

)
.

The following is a modification of Lemma 3.5 of [V1] to our setting. Since
we replace the 2-quasiconvexity of spheres (in a Banach space) with the annu-
lar convexity property, our estimates are necessarily weaker than those in [V1].

Lemma 2.3. Suppose (X,d) is Ca-annular convex for some Ca. Let
α : x � y be a quasihyperbolic geodesic in Ω, b ∈ ∂Ω, and t > 0:

(i) If B(b,16C2
a t) \ B(b, e−4C3

a t/2) ⊂ Ω and x, y ∈ Ω \ B(b,8Cat), then |α| ⊂
Ω \ B(b, e−4C3

a t).
(ii) If B(b,8Cat) \ B(b, t/Ca) ⊂ Ω and x, y ∈ Ω ∩ B(b,4t), then |α| ⊂ Ω ∩

B(b,8e4C3
a t).

Proof. We first prove (i). Suppose that |α| ∩ B(b, e−4C3
a t) �= ∅. Then α

must intersect B(b,8Cat) as well, and so we can choose z1, z2 ∈ |α| ∩ S(b,8Cat)
such that the subpath α[z1, z2] of α satisfies both |α[z1, z2]| ⊂ B(b,8Cat) and
|α[z1, z2]| ∩ B(b, e−4C3

a t) �= ∅.
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As X is annular convex, there is a path γ : z1 � z2 with

�d(γ) ≤ Cad(z1, z2) ≤ Ca2(8Cat) = 16C2
a t

and |γ| ⊂ B(b,8C2
a t) \ B(b,8t) ⊂ Ω. Hence, by the hypothesis of (i), for every

w ∈ |γ|, we have

δΩ(w) ≥ min{8C2
a t,8t − e−4C3

a t/2} = 8t − e−4C3
a t/2 ≥ 4t.

Therefore,

�k(γ) =
∫

γ

1
δΩ(w)

ds(w) ≤ 1
4t

�d(γ) ≤ 1
4t

16C2
a t = 4C2

a ,

hence, we see that k(z1, z2) ≤ 4C2
a . Since α[z1, z2] is a quasihyperbolic geo-

desic, we have

(2.2) �k(α[z1, z2]) = k(z1, z2) ≤ 4C2
a .

By assumption, there is a point z ∈ |α[z1, z2]| ∩ B(b, e−4C3
a t). By Lemma 2.1,

�k(α[z1, z2]) = �k(α[z1, z]) + �k(α[z, z2])

≥ log
[(

1 +
�d(α[z1, z])

δΩ(z)

)(
1 +

�d(α[z, z2])
δΩ(z)

)]
≥ log

(
1 +

�d(α[z1, z2])
δΩ(z)

)
.

However, as �d(α[z1, z2]) ≥ 8Cat − e−4C3
a t and δΩ(z) ≤ e−4C3

a t, we see that

(2.3) �k(α[z1, z2]) ≥ log
(

1 +
8Cat − e−4C3

a t

e−4C3
a t

)
= log(8Cae

4C3
a ) ≥ 4C3

a .

Combining inequalities (2.2) and (2.3), we obtain 4C2
a ≥ 4C3

a , a contradiction
because Ca ≥ 2. Thus, the path α cannot intersect the ball B(b, e−4C3

a t).
Now, we prove (ii). To do so, suppose that |α| ∩ S(b,8e4C3

a t) �= ∅. Then
clearly |α| intersects the sphere S(b,4t), and so there are points w1,w2 ∈ |α| ∩
S(b,4t) satisfying |α[w1,w2]| ∩ S(b,8e4C3

a t) �= ∅ and |α[w1,w2]| ∩ B(b,4t) = ∅.
By the annular convexity of X , there is a path γ joining w1 and w2 in the

annulus B(b,4Cat) \ B(b,4t/Ca) ⊂ Ω with �d(γ) ≤ Cad(w1,w2) ≤ 8Cat. For
every z ∈ |γ|,

δΩ(z) ≥ min
{

8Cat − 4Cat,
4t

Ca
− t

Ca

}
=

3t

Ca
.

Therefore,

k(w1,w2) ≤ �k(γ) ≤ Ca

3t
�d(γ) ≤ Ca

3t
8Cat =

8
3
C2

a .

Since α is a quasihyperbolic geodesic, we see that

(2.4) �k(α[w1,w2]) = k(w1,w2) ≤ 8
3
C2

a .
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Meanwhile, Lemma 2.1 in conjunction with �d(α[w1,w2]) ≥ 8e4C3
a t − 4t ≥

4e4C3
a t and δΩ(w1) ≤ 4t yields

�k(α[w1,w2]) ≥ log
(

1 +
�d(α[w1,w2])

δΩ(w1)

)
≥ log

(
1 +

4e4C3
a t

4t

)
≥ log e4C3

a = 4C3
a .

By inequality (2.4), we now get 4C3
a ≤ 8

3C2
a , a contradiction as Ca ≥ 2. �

Given c ≥ 1, a path γ : [0,1] → Ω is called a c-uniform path if �d(γ) ≤
cd(γ(0), γ(1)) and cδΩ(γ(t)) ≥ min{�d(γ|[0,t]), �d(γ|[t,1])} for all t ∈ [0,1]. We
say that Ω is a c-uniform domain for some c ≥ 1 if every two points x, y ∈ Ω
can be joined by a c-uniform path. If Ω is equipped with more than one
metric, then to specify the metric d with respect to which Ω is uniform we
say that (Ω, d) is a c-uniform domain.

Lemma 2.4. Let x1 ∈ Ω and x2 ∈ Ω be such that δΩ(x1) ≥ d(x1, x2). Sup-
pose γ is a d-geodesic in X connecting x1 and x2. Then |γ| \ {x2} ⊂ Ω, γ is a
1-uniform path in Ω, and furthermore, δΩ(x) ≥ �d(γ[x2, x]) = d(x,x2) for all
x ∈ |γ| \ {x2}.

Proof. By assumption, x2 ∈ B(x1, δΩ(x1)) ∩ Ω. Let γ : [0, d(x1, x2)] → X
be the arc-length parametrization of γ with γ(0) = x2 and γ(d(x1, x2)) = x1.
Then for every z ∈ |γ| \ {x2} we have d(x1, z) < d(x1, x2), and therefore z ∈
B(x1, δΩ(x1)) ⊂ Ω.

Now, for t ∈ (0, d(x1, x2)], we have d(γ(t), x1) = d(x1, x2) − t, and so

δΩ(γ(t)) ≥ δΩ(x1) − d(x1, γ(t)) = δΩ(x1) − d(x1, x2) + t

= t + [δΩ(x1) − d(x1, x2)] ≥ t. �

Proposition 2.5. Let x0 ∈ Ω, b ∈ ∂Ω with δΩ(x0) = d(x0, b), and γ be a
d-geodesic in X joining x0 and b. Then |γ| \ {b} is a quasihyperbolic geodesic
ray in Ω.

Proof. Let γ : [0, δΩ(x0)] → X be the arclength parametrization of γ with
respect to d, with γ(0) = b and γ(δΩ(x0)) = x0. Then δΩ(γ(t)) = t for all
t ∈ (0, δΩ(x0)]. Let 0 < t1 < t2 ≤ δΩ(x0). Inequality (2.1) implies that k(γ(t1),
γ(t2)) ≥ log(t2/t1). On the other hand,

k(γ(t1), γ(t2)) ≤ �k

(
γ|[t1,t2]

)
=

∫ t2

t1

1
δΩ(γ(t))

dt =
∫ t2

t1

1
t

dt = log
(

t2
t1

)
.

Hence, γ is a quasihyperbolic geodesic ray in Ω. �

Given two rectifiable paths α,β in a metric space (Y,d), we call a map
f : |α| → |β| a length map with respect to the metric d if for all x, y ∈ |α| we
have �d(β[f(x), f(y)]) = �d(α[x, y]).
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Lemma 2.6 (Lemma 3.3 of [V1]). If α and β are paths in (Ω, k) with �k(α) ≤
�k(β), and f : |α| → |β| is a length map (with respect to k) with k(f(x), x) ≤ c
for all x ∈ |α|, then

e−c�d(α) ≤ �d(f ◦ α) ≤ ec�d(α).

3. Gromov hyperbolic spaces

In this section, we review some basic facts about Gromov hyperbolic spaces.
See [CDP], [GdlH], [V3], and references therein for more details.

Let (Y,h) be a proper geodesic space and δ ≥ 0 a constant. We say that
(Y,h) is δ-hyperbolic if geodesic triangles in Y are δ-thin. This means that
for any x, y, z ∈ Y and any geodesics γ1 : x � y, γ2 : y � z, γ3 : z � x, we
have |γ3| ⊂ Nh(|γ1| ∪ |γ2|, δ). A space (Y,h) is Gromov hyperbolic if it is δ-
hyperbolic for some δ ≥ 0. Let w ∈ Y be a (fixed) base point. The Gromov
product of x, y ∈ Y based at w is:

(x|y)w =
1
2
[h(x,w) + h(y,w) − h(x, y)].

For the remainder of this section, (Y,h) is always δ-hyperbolic. A sequence
of points {yi} tends to infinity if limi,j→∞(yi|yj)w = ∞ for some (or any)
base point w ∈ Y . Two sequences {xi} and {yi} both tending to infinity are
equivalent if limi,j→∞(xi|yj)w = ∞. The Gromov boundary ∂∗

hY of Y is the
set of equivalence classes of sequences tending to infinity, and the Gromov
closure of Y is defined by Y ∗

h = Y ∪ ∂∗
hY . If the metric h is clear from context,

we simply write ∂∗Y and Y ∗. If ξ ∈ ∂∗Y and a sequence of points {xi}
represents ξ, we write {xi} → ξ.

If γ : [0, ∞) → Y is a geodesic (ray), then one easily sees from the definition
that {γ(t)} tends to infinity as t → ∞, and hence represents some ξ ∈ ∂∗Y .
In this case, we say γ(0) and ξ are the endpoints of γ. Similarly, for any
complete geodesic γ : R → Y there are ξ+, ξ− ∈ ∂∗Y such that {γ(t)} → ξ+ as
t → ∞ and {γ(t)} → ξ− as t → −∞. We say ξ+ and ξ− are the endpoints of γ.
A proper geodesic δ-hyperbolic space has the visibility property: given any
two distinct points a, b ∈ Y ∗, there is a geodesic γ with a and b as endpoints
[CDP, Chapter 2, Proposition 2.1]. For three distinct points a1, a2, a3 ∈ Y ∗,
and geodesics γi : ai � ai+1 (i = 1,2,3) in Y with ai and ai+1 as endpoints
(a4 := a1), the subset |γ1| ∪ |γ2| ∪ |γ3| of Y is called a geodesic triangle in Y ∗.
Geodesic triangles in Y ∗ are 24δ-thin [CDP, Chapter 2, Proposition 2.2].

Lemma 3.1. Let a, b, c ∈ Y ∗ be three distinct points, and α : a � b, β : b �
c, γ : c � a be geodesics. Then there is a point x ∈ |γ| satisfying h(x, |α|) ≤ 24δ
and h(x, |β|) ≤ 24δ.

Proof. Let A = {x ∈ |γ| : h(x, |α|) ≤ 24δ} and B = {x ∈ |γ| : h(x, |β|) ≤
24δ}. Then both A and B are closed subsets of |γ|. Since geodesic trian-
gles in Y ∗ are 24δ-thin, we have A ∪ B = |γ|. Suppose A ∩ B = ∅. Then the
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connectedness of |γ| implies that either A = |γ| or B = |γ|. We may assume
A = |γ|; the case B = |γ| can be handled similarly. Then |γ| is contained in
the 24δ-neighborhood of |α|. If c ∈ ∂∗Y , then we must have c = a or c = b,
contradicting the assumption that a, b, c are distinct. To see this, note that if
c ∈ ∂∗Y , then we can find xn ∈ |γ| such that {xn} → c in the sense discussed
above. But then for each n, we can find zn ∈ |α| such that h(zn, xn) ≤ 24δ. It
is clear that {zn} tends to infinity, and {xn} and {zn} are equivalent. Hence,
{zn} → c. Since zn ∈ |α|, we have either c = a or c = b. Hence, we must have
c ∈ Y . But then c ∈ A ∩ B, contradicting the assumption A ∩ B = ∅. �

Let w ∈ Y be a base point. The Gromov product of two points ξ, η ∈ ∂∗Y
is defined as follows:

(ξ|η)w = sup lim inf
i,j→∞

(xi|yj)w,

where the supremum is taken over all sequences {xi} → ξ, {yi} → η. One
can show that (ξ|η)w − 2δ ≤ lim infi,j→∞(xi|yj)w ≤ (ξ|η)w for all w ∈ Y , all
ξ, η ∈ ∂∗Y and all sequences {xi} → ξ, {yi} → η; see Chapter 7 of [GdlH].
Similarly, the Gromov product of x ∈ Y and η ∈ ∂∗Y is defined to be

(x|η)w = sup lim inf
i→∞

(x|yi)w,

where the supremum is taken over all sequences {yi} → η.
We define a topology on Y ∗ by specifying when a sequence of points xi ∈ Y ∗

converges to a point ξ ∈ Y ∗: if ξ ∈ Y , then xi → ξ means h(ξ, xi) → 0 as i → ∞;
and if ξ ∈ ∂∗Y , then xi → ξ means (ξ|xi)w → ∞ for some (equivalently, every)
w ∈ Y as i → ∞. In this topology, Y ∗ is compact and Y is a dense open subset.
The induced topology on Y agrees with the metric topology on Y .

Given ε > 0, w ∈ Y and ξ, η ∈ ∂∗Y , let ρw,ε(ξ, η) = e−ε(ξ|η)w .

Proposition 3.2 ([GdlH, Chapter 7, Proposition 10]). Let ε0(δ) = min{1,
1
5δ }. Then for any δ-hyperbolic metric space Y , any base point w ∈ Y , and
any 0 < ε ≤ ε0, there is a metric hw,ε on ∂∗Y such that for all ξ, η ∈ ∂∗Y ,

1
2
ρw,ε(ξ, η) ≤ hw,ε(ξ, η) ≤ ρw,ε(ξ, η).

A metric hw,ε satisfying the conclusion of Proposition 3.2 is called a visual
metric.

Definition 3.3. Let L ≥ 1 and A ≥ 0. A (not necessarily continuous) map
γ : I → Y on an interval I is an (L,A)-quasigeodesic if for all t1, t2 ∈ I we have

L−1|t2 − t1| − A ≤ h(γ(t1), γ(t2)) ≤ L|t2 − t1| + A.

Note that an (1,0)-quasigeodesic is a geodesic. An important property
of Gromov hyperbolic spaces is the stability of quasigeodesics. It says that
quasigeodesics are close to geodesics (see also [V3]).



1074 D. HERRON, N. SHANMUGALINGAM AND X. XIE

Lemma 3.4 (Theorem 1.2 and Theorem 3.1 of [CDP], Chapter 3). Given
any δ ≥ 0, L ≥ 1, and A ≥ 0, there is a constant M = M(δ,L,A) such that
whenever Y is a proper geodesic δ-hyperbolic space, the following conditions
hold:
(i) If α : [a, b] → Y and α′ : [a′, b′] → Y are two (L,A)-quasigeodesics with

α(a) = α′(a′) and α(b) = α′(b′), then HD(|α|, |α′ |) ≤ M ;
(ii) If α : R → Y is an (L,A)-quasigeodesic, then there exists a geodesic

α′ : R → Y such that HD(|α|, |α′ |) ≤ M .

Lemma 3.4(ii) implies that every quasigeodesic α : R → Y has two end-
points ξ+, ξ− in ∂∗Y . Since two complete geodesics with the same endpoints
in a δ-hyperbolic space have Hausdorff distance at most 2δ from each other,
by replacing 2δ + 2M with M , we have that HD(|α|, |α′ |) ≤ M for any two
(L,A)-quasigeodesics with the same endpoints.

We also recall the following two results.

Theorem 3.5 (Chapter 8 of [CDP]). Let (Y,h) be a δ-hyperbolic space,
y0 ∈ Y , and Y0 = {y0, y1, . . . , yn} be a set of n + 1 points in Y ∗. For each
1 ≤ i ≤ n, let [y0, yi] be a fixed geodesic connecting y0 and yi. Let X denote the
union of the geodesics [y0, yi], and choose a positive integer k such that 2n ≤
2k + 1. Then there exists a simplicial tree, denoted T (X), and a continuous
map u : X → T (X) which satisfies the following properties:
(i) For each i, the restriction of u to the geodesic [y0, yi] is an isometry;
(ii) For every x and y in X , we have h(x, y) − 2kδ ≤ d(u(x), u(y)) ≤ h(x, y),

where d is the metric on T (X).

Lemma 3.6 (Lemma 2.17 of [V3]). Suppose (Y,h) is δ-hyperbolic and
α1 : a1 � b1, α2 : a2 � b2 are geodesics with �(α1) ≤ �(α2). If h(a1, a2) ≤ μ
and h(b1, |α2|) ≤ μ for some μ ≥ 0, and f : |α1| → |α2| is the length map with
f(a1) = a2, then for all x ∈ |α1|

h(f(x), x) ≤ 8δ + 5μ.

4. Inversions in metric spaces

In this section, we recall the notion of inversions in metric spaces and collect
related facts useful in this paper. See [BHX] for more details.

Let Q = (x1, x2, x3, x4) be a quadruple of distinct points in (X,d). The
cross ratio of Q with respect to d is the number

cr(Q,d) =
d(x1, x3)d(x2, x4)
d(x1, x4)d(x2, x3)

.

Let η : [0, ∞) → [0, ∞) be a homeomorphism. A homeomorphism f : (X,
d1) → (Y,d2) between two metric spaces is called η-quasimöbius if for each
quadruple of distinct points Q = (x1, x2, x3, x4) in X ,

cr(f(Q), d2) ≤ η(cr(Q,d1)),
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where f(Q) = (f(x1), f(x2), f(x3), f(x4)). We say that a homeomorphism
f : (X,d1) → (Y,d2) is quasimöbius if it is η-quasimöbius for some η. A home-
omorphism f : (X,d1) → (Y,d2) between two metric spaces is called η-quasi-
symmetric if, for all triples of distinct points (x1, x2, x3) in X ,

d2(f(x1), f(x2))
d2(f(x1), f(x3))

≤ η

(
d1(x1, x2)
d1(x1, x3)

)
.

We say that a homeomorphism f : (X,d1) → (Y,d2) is quasisymmetric if it
is η-quasisymmetric for some η. A quasisymmetric homeomorphism is qua-
simöbius, but a quasimöbius homeomorphism may not be quasisymmetric.
However, a quasimöbius homeomorphism between bounded metric spaces is
quasisymmetric. See [V2] for more details.

Let p ∈ X . Set Ip(X) = X\ {p} if X is bounded, and Ip(X) = (X\{p}) ∪
{∞} if X is unbounded (where ∞ is a point not in X). Define a function
fp : Ip(X) × Ip(X) → [0, ∞) as follows:

fp(x, y) = fp(y,x) =

⎧⎪⎨⎪⎩
d(x,y)

d(x,p)d(y,p) if x, y ∈ X\{p},
1

d(x,p) if y = ∞ and x ∈ X\{p},

0 if x = ∞ = y.

Theorem 4.1 ([BHX]). dp on Ip(X) satisfying
1
4
fp(x, y) ≤ dp(x, y) ≤ fp(x, y)

for all x, y ∈ Ip(X). Furthermore, the identity map (X\{p}, d) → (X\{p}, dp)
is η-quasimöbius with η(t) = 16t.

Let Ω ⊂ (X,d) be an open subset and p ∈ ∂Ω, and denote d0 = diam(Ω, d)
and d′

0 = diam(∂Ω, d):
(i) If (X,d) is c-quasiconvex and c-annular convex, then (Ip(X), dp) is c′-

quasiconvex and c′-annular convex with c′ = c′(c);
(ii) If (Ω, d) is c-quasiconvex, d′

0 > 0 and d0 < ∞, then the identity map
(Ω, k) → (Ω, kp) is M-bilipschitz with M = max{40c,4cd0/d′

0}, where kp

denotes the quasihyperbolic metric on Ω induced by the metric dp;
(iii) If (Ω, dp) is c1-uniform and (X,d) is both c2-quasiconvex and c2-annular

convex, then (Ω, d) is c-uniform with c = c(c1, c2);
(iv) If d′

0 > 0 and (Ω, d) is c-uniform, then (Ω, dp) is c′-uniform with c′ =
c′(c).

Under the assumptions of Theorem 4.1(ii), (Ω, kp) is δ′-hyperbolic for
some δ′ whenever (Ω, k) is δ-hyperbolic. In general, one cannot control δ′

in terms of δ and c alone. However, we have the following result.

Proposition 4.2. Let (X,d) be c-quasiconvex and c-annular convex. Let
d0 and d′

0 be as in Theorem 4.1. Suppose d0 < ∞ and d′
0 > 0. If (Ω, k) is

δ-hyperbolic and p ∈ ∂Ω, then (Ω, kp) is δ′-hyperbolic with δ′ = δ′(δ, c).
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The proof of Proposition 4.2 is given after Lemma 4.5. We first establish
some preliminary results.

Let L ≥ 1 and A ≥ 0. A (not necessarily continuous) map f : (X,d1) →
(Y,d2) between two metric spaces is an (L,A)-quasiisometry if the following
two conditions are satisfied:
(1) d1(x1, x2)/L − A ≤ d2(f(x1), f(x2)) ≤ Ld1(x1, x2) + A holds for all

x1, x2 ∈ X ;
(2) For each y ∈ Y , there is some x ∈ X with d2(f(x), y) ≤ A.
By definition, an L-bilipschitz map is an (L,0) quasiisometry.

It is well known (see for example Theorem 3.18 in [V3]) that if f : Y1 → Y2

is an (L,A)-quasiisometry between geodesic spaces and Y1 is δ-hyperbolic,
then Y2 is δ′-hyperbolic with δ′ = δ′(δ,L,A). Hence, Proposition 4.2 follows
from Theorem 4.1(ii) when d0 ≤ 20c2 d′

0. Therefore, we assume d0 > 20c2 d′
0

from now on. Since (Ω, d) is bounded (d0 < ∞) and p ∈ ∂Ω, the topolog-
ical boundary of Ω in (X,dp) is ∂pΩ := ∂Ω \ {p}. We denote the Gromov
boundary of (Ω, kp) by ∂∗

pΩ. For x ∈ Ω, let δp(x) = dp(x,∂pΩ). However,
B = B(p,10c2d′

0) will denote the ball with respect to the original metric d.
Let K = Ω\B and S = {x ∈ Ω : d(x, p) = 10c2d′

0}. By the definition of d′
0 and

the assumption that d0 is finite, we see that K and S are compact subsets
of Ω. Let D1 = diam(S,k), D2 = diam(S,kp), and d2 = diam(K,kp). Then
D1,D2, d2 < ∞. Since S ⊂ K, we always have D2 ≤ d2.

We remark that Proposition 4.2 does not follow from the above mentioned
result (Theorem 3.18 in [V3]) since the bilipschitz constant for id : (Ω, k) →
(Ω, kp) depends on the ratio d0/d′

0. In fact, from Lemma 4.4 below we see that
diam(K,kp) ≤ 2c while it can be seen that diam(K,k) → ∞ as d0/d′

0 → ∞.
To understand Propositions 4.2 and 5.6, it is useful to keep in mind the

following geometric pictures of (Ω, k) and (Ω, kp). On Ω\K, the two metrics k
and kp are roughly the same (meaning they are quasiisometric quantitatively,
see Lemma 4.3). The set (K,kp) is quantitatively bounded (Lemma 4.4),
while (K,k) is a “long hair” with “root” (S,k) (the “hair” grows longer as
d0/d′

0 → ∞). Hence, (Ω, k) has a “long hair” sticking out and the transforma-
tion from (Ω, k) to (Ω, kp) is “shrink a long hair to its root”. Hence, (Ω, kp) is
Gromov hyperbolic quantitatively (Proposition 4.2), and the boundary map
of (Ω, k) → (Ω, kp) is quasimöbius, also quantitatively (Proposition 5.6).

The following result follows from the proof of Corollary 4.11 in [BHX].

Lemma 4.3. Let K, D1 and D2 be as above. Under the assumptions of
Proposition 4.2, there is a constant L depending only on c such that for all
x, y ∈ Ω\K we have kp(x, y) ≤ Lk(x, y) + D2 and k(x, y) ≤ Lkp(x, y) + D1.

Recall that X is both c-quasiconvex and c-annular convex. The dp-length
of a path γ in Ip(X) is denoted �p(γ).

Lemma 4.4. The inequalities D1 ≤ 4c2 and d2 ≤ 8c/5 hold.
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Proof. Let x, y ∈ S. Since X is c-annular convex, there is a path γ in X
joining x and y such that |γ| ⊂ B(p,10c3d′

0) \ B(p,10cd′
0) and �(γ) ≤ cd(x, y).

Since ∂Ω is a subset of B(p,10cd′
0), the path γ does not intersect ∂Ω. However,

γ intersects S ⊂ Ω as it has both its end points in S. So |γ| ⊂ Ω and δΩ(z) ≥
5cd′

0 for all z ∈ |γ|. Now,

k(x, y) ≤
∫

γ

1
δΩ(z)

ds(z) ≤
∫

γ

1
5cd′

0

ds(z) =
1

5cd′
0

�(γ) ≤ 1
5cd′

0

cd(x, y)

≤ 1
5d′

0

20c2d′
0 = 4c2.

Now, we prove the second inequality. We first prove that whenever r ≥
10c2d′

0, for every x, y ∈ (B(p,2r) \ B(p, r)) ∩ Ω,

(4.1) kp(x, y) ≤ 8c3d′
0

r
.

Assume r ≥ 10c2d′
0 and let x, y ∈ (B(p,2r) \ B(p, r)) ∩ Ω. Since X is c-annular

convex, there is a path γ connecting x and y with |γ| ⊂ B(p,2cr) \ B(p,2r/c)
and �d(γ) ≤ cd(x, y). Note again that |γ| ⊂ Ω. For any z1, z2 ∈ |γ|, we have
by Theorem 4.1,

dp(z1, z2) ≤ d(z1, z2)
d(z1, p)d(z2, p)

≤ d(z1, z2)
(2r/c)2

=
c2d(z1, z2)

4r2
.

It follows that

�p(γ) ≤ c2�d(γ)
4r2

≤ c2 · cd(x, y)
4r2

≤ c3 4r

4r2
= c3/r.

On the other hand, as r ≥ 10c2d′
0 and |γ| ⊂ B(p,2cr) \ B(p,2r/c), we have

d(z,w) ≥ d(z, p)/2 for all z ∈ |γ| and w ∈ ∂pΩ. Hence, by Theorem 4.1 again,
for any w ∈ ∂pΩ and z ∈ |γ|,

dp(z,w) ≥ d(z,w)
4d(z, p)d(w,p)

≥ 1
8d(w,p)

≥ 1
8d′

0

.

It follows that δp(z) ≥ 1
8d′

0
for all z ∈ |γ|. Consequently,

kp(x, y) ≤
∫

γ

1
δp(z)

dsp(z) ≤ 8d′
0�p(γ) ≤ 8d′

0 · c3/r =
8c3d′

0

r
,

where dsp denotes the dp-arc length along γ.
Set r0 = 10c2d′

0 and let n ≥ 2 be the integer such that 2n−1r0 < d0 ≤ 2nr0.
Then K =

⋃n+1
i=1 Ω ∩ (B(p,2ir0) \ B(p,2i−1r0)). The inequality (4.1) now im-

plies

d2 ≤
n∑

i=0

8c3d′
0

2ir0
≤ 2

8c3d′
0

r0
= 8c/5. �
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Let α : I → Ω be a kp-geodesic with I a closed (not necessarily compact)
interval such that the endpoints of α do not lie in K = Ω\B(p,10c2d′

0). We
define a map α′ : I → (Ω, k) as follows. If |α| ∩ K = ∅, then we let α′ = α.
If |α| ∩ K �= ∅, then let t1 = inf α−1(K) and t2 = supα−1(K); observe that
α(t1), α(t2) ∈ S. Since diam(S,kp) = D2, we have t2 − t1 ≤ D2. Let α′(t) =
α(t) if t < t1 or t > t2, and α′(t) = α(t1) if t ∈ [t1, t2]. Similarly, given any
geodesic β : I → (Ω, k) whose endpoints do not lie in K, we can define a map
β̃ : I → (Ω, kp).

Lemma 4.5. The map α′ is an (L,A)-quasigeodesic with respect to k, where
L,A depend only on c. Similarly, β̃ is an (L,A)-quasigeodesic with respect
to kp.

Proof. We only prove the claim for α′, as the proof for β̃ is similar. We
use Lemma 4.3. Let s, t ∈ I . First, assume s, t ∈ I\[t1, t2]. Then α′(s) = α(s),
α′(t) = α(t), and hence

L−1|s − t| − L−1D2 = L−1[kp(α(s), α(t)) − D2]
≤ k(α′(s), α′(t))
≤ Lkp(α(s), α(t)) + D1 = L|s − t| + D1.

Next, assume s, t ∈ [t1, t2]. Then |s − t| ≤ t2 − t1 ≤ D2 and α′(s) = α′(t).
We therefore see that the above chain of inequalities is again satisfied. Finally,
assume s ∈ [t1, t2] and t /∈ [t1, t2]. Then

k(α′(s), α′(t)) = k(α′(t1), α′(t))
≤ L|t1 − t| + D1 ≤ L(|t1 − s| + |s − t|) + D1

≤ L|s − t| + LD2 + D1,

and

k(α′(s), α′(t)) = k(α′(t1), α′(t)) ≥ |t1 − t|
L

− D2

L

≥ |s − t|
L

− |s − t1|
L

− D2

L

≥ |s − t|
L

− D2

L
− D2

L
.

Now, the lemma follows from Lemma 4.4. �

Proof of Proposition 4.2. As we pointed out in the discussion following the
statement of Proposition 4.2, we can assume that d0 > 20c2d′

0. The goal is to
prove that all geodesic triangles in (Ω, kp) are δ′-thin for some δ′ = δ′(δ, c).

Let x1, x2, x3 ∈ Ω and set x4 := x1, let αi (i = 1,2,3) be a geodesic in
(Ω, kp) joining xi and xi+1. We want to find some δ′ = δ′(δ, c) such that
|α1| ⊂ Nkp(|α2| ∪ |α3|, δ′). We consider several cases.
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Case 1: x1, x2, x3 /∈ K. By Lemma 4.5, we obtain an (L,A)-quasigeodesic
α′

i in (Ω, k) connecting xi and xi+1. Fixing a geodesic βi in (Ω, k) join-
ing xi and xi+1, note by Lemma 3.4 that HDk(|βi|, |α′

i|) ≤ c1 with c1 =
c1(δ,L,A) = c1(δ, c). Let x ∈ |α1|, and fix y ∈ |α′

1| such that kp(x, y) ≤ d2 + 1.
Since HDk(|β1|, |α′

1|) ≤ c1, there is some y1 ∈ |β1| with k(y, y1) ≤ c1. By
the δ-hyperbolicity of (Ω, k), there is some y2 ∈ |β2| ∪ |β3| with k(y1, y2) ≤ δ.
We may assume y2 ∈ |β2|. The fact HDk(|β2|, |α′

2|) ≤ c1 implies that there
is some y3 ∈ |α′

2| with k(y2, y3) ≤ c1. The triangle inequality implies that
k(y, y3) ≤ 2c1 + δ. By Lemma 4.3, we have

kp(x, y3) ≤ kp(x, y) + kp(y, y3) ≤ d2 + 1 + Lk(y, y3) + D2

≤ d2 + D2 + 1 + L(2c1 + δ).

As y3 ∈ |α′
2| ⊂ |α2|, we have shown x ∈ Nkp(|α2| ∪ |α3|, δ1) with δ1 = d2 +D2 +

1 + L(2c1 + δ).
Case 2: x1, x2 ∈ K. Since diam(K,kp) = d2, we have

|α1| ⊂ Nkp({x2}, d2) ⊂ Nkp(|α2| ∪ |α3|, d2).

Case 3: x3 ∈ K and exactly one of x1, x2 lies in K, say x1 ∈ K and x2 /∈ K.
Let x′

1 be the first point on α1 (oriented from x2 to x1) that lies in K and
x′

3 the first point on α2 (oriented from x2 to x3) that lies in K. Let γ′ be a
geodesic in (Ω, kp) connecting x′

1 and x′
3. Now, by Case 1 (strictly speaking

we need x′
1, x

′
3 /∈ K in order to apply Case 1 here, but by the choice of x′

1, x
′
3

we may employ a limiting argument together with Case 1 to get the desired
inclusion),

|α1| ⊂ Nkp(|α1[x2, x
′
1]|, d2) ⊂ Nkp(|α2[x2, x

′
3]| ∪ |γ′ |, d2 + δ1)

⊂ Nkp(|α2[x2, x
′
3]|,2d2 + δ1)

⊂ Nkp(|α2|,2d2 + δ1).

Case 4: x3 /∈ K and exactly one of x1, x2 lies in K, say x1 ∈ K and x2 /∈ K.
Let x′

3 be the first point on α3 (oriented from x3 to x1) that lies in K. Let
γ′ be a geodesic in (Ω, kp) joining x2 and x′

3. Again, Case 1 implies that
|γ′ | ⊂ Nkp(|α3[x3, x

′
3]| ∪ |α2|, δ1) (strictly speaking we need x′

3 /∈ K in order to
apply Case 1 here, but by the choice of x′

3 we may employ a limiting argument
together with Case 1 to get the desired inclusion), and an application of Case 3
yields |α1| ⊂ Nkp(|α3[x1, x

′
3]| ∪ |γ′ |,2d2 + δ1). It follows that

|α1| ⊂ Nkp(|α2| ∪ |α3|,2d2 + 2δ1).

Case 5: x1, x2 /∈ K and x3 ∈ K. Let x′
1 be the first point on α3 (oriented

from x1 to x3) that lies in K. Let γ′ be a geodesic in (Ω, kp) connecting x2 and
x′

1. Case 1 implies that |α1| ⊂ Nkp(|α3[x1, x
′
1]| ∪ |γ′ |, δ1), and Case 3 implies

that |γ′ | ⊂ Nkp(|α2|,2d2+δ1). It follows that |α1| ⊂ Nkp(|α2| ∪ |α3|,2d2 + 2δ1).
�
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We shall also need the following construction of Bonk–Kleiner [BK].
Let (X,d) be an unbounded metric space and p ∈ X . Let Sp(X) = X ∪ {∞},

where ∞ is a point not in X . We define a function sp : Sp(X) × Sp(X) →
[0, ∞) as follows:

sp(x, y) = sp(y,x) =

⎧⎪⎨⎪⎩
d(x,y)

[1+d(x,p)][1+d(y,p)] if x, y ∈ X,
1

1+d(x,p) if x ∈ X and y = ∞,

0 if x = ∞ = y.

It was shown in [BK] that there exists a metric d̂p on Sp(X) satisfying
1
4
sp(x, y) ≤ d̂p(x, y) ≤ sp(x, y) for all x, y ∈ Sp(X).

Furthermore, the identity map (X,d) → (X, d̂p) is η-quasimöbius with η(t) =
16t.

Theorem 4.6 ([BHX]). Let (X,d) be an unbounded proper metric space,
Ω ⊂ X a rectifiably connected open subset of X , and p ∈ ∂Ω. Denote by k̂p

the quasihyperbolic metric on Ω induced by the metric d̂p. Suppose Ω is un-
bounded:
(i) If (Ω, d) is c-quasiconvex, then the identity map (Ω, k) → (Ω, k̂p) is 80c-

bilipschitz;
(ii) If (Ω, d) is c-uniform, then (Ω, d̂p) is c′-uniform with c′ = c′(c);
(iii) If (X,d) is c-quasiconvex and c-annular convex, then (Sp(X), d̂p) is

c′-quasiconvex and c′-annular convex with c′ = c′(c);
(iv) If (Ω, d̂p) is c-uniform, then (Ω, d) is c′-uniform with c′ = c′(c).

5. Boundary maps of quasiisometries

In this section, we study the boundary maps of quasiisometries between
Gromov hyperbolic spaces. Please see [P], [BS], and [V3] for related results.
The result we desire (Proposition 5.6) does not follow from the previous re-
sults.

If (Ω, k) is Gromov hyperbolic, and the hypotheses of Theorem 4.1(ii) hold,
then (Ω, kp) is also Gromov hyperbolic and the boundary map of the iden-
tity map (Ω, k) → (Ω, kp) is η-quasimöbius for some η. In general, there is
no control on η. In this section, we prove Proposition 5.6 which provides
quantitative estimates for η in the case (X,d) is annular convex.

If f : Y1 → Y2 is an (L,A)-quasiisometry between geodesic spaces and Y1

is δ-hyperbolic, then the boundary map (∂∗Y1, hy1,ε) → (∂∗Y2, hy2,ε) of f is
η-quasimöbius with η = η(L,A, δ); see Proposition 5.10. Proposition 5.6 does
not follow from this general result since the bilipschitz constant of the identity
map (Ω, k) → (Ω, kp) depends on the ratio d0/d′

0, where d0 = diam(Ω, d) and
d′
0 = diam(∂Ω, d). See also the remark after Proposition 4.2.
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We first study the cross ratio on the Gromov boundary of a Gromov hy-
perbolic space (Corollary 5.2).

Let (Y,h) be a proper geodesic δ-hyperbolic space and Q = (ξ1, ξ2, ξ3, ξ4) a
quadruple of distinct points in ∂∗Y . The signed distance sd(Q) of Q is the
number

sd(Q) = inf{h([ξ1, ξ4], [ξ2, ξ3]) − h([ξ1, ξ3], [ξ2, ξ4])},

where the infimum is taken over all geodesics [ξi, ξj ] joining ξi and ξj . Since
the Hausdorff distance between two infinite geodesics with the same endpoints
is at most 2δ, we have

(5.1) sd(Q) ≤ h([ξ1, ξ4], [ξ2, ξ3]) − h([ξ1, ξ3], [ξ2, ξ4]) ≤ sd(Q) + 8δ

for all geodesics [ξi, ξj ] joining ξi and ξj . For w ∈ Y , the cross difference of Q
based at w is:

cdw(Q) = (ξ1|ξ4)w + (ξ2|ξ3)w − (ξ1|ξ3)w − (ξ2|ξ4)w.

Proposition 3.2 implies that for all quadruples Q, each w ∈ Y , and every
0 < ε ≤ ε0(δ),

(5.2) eε cdw(Q)/4 ≤ cr(Q,hw,ε) ≤ 4eε cdw(Q).

Notice that if Y is a tree, then sd(Q) = cdw(Q) for all w ∈ Y and all Q. The
following result shows that in a general δ-hyperbolic geodesic space, sd(Q) and
cdw(Q) differ by at most a fixed multiple of δ. Recall that geodesic triangles
in Y ∪ ∂∗Y are 24δ-thin.

Lemma 5.1. The inequality | cdw(Q) − sd(Q)| ≤ 430δ holds for all w ∈ Y
and all Q.

Proof. Fix w ∈ Y . For i, j ∈ {1,2,3,4} with i �= j, choose geodesic rays
[w, ξi] and geodesic lines [ξi, ξj ]. Put X =

⋃
i[w, ξi]. By Theorem 3.5, there

is a tree T (X) and a map u : X → T (X) with the properties stated in Theo-
rem 3.5. Let w′ = u(w) and ξ′

i ∈ ∂∗T (X) be such that u|[w,ξi] is an isometry
onto [w′, ξ′

i]. Let x′
ij ∈ T (X) be the unique point with [w′, x′

ij ] = [w′, ξ′
i] ∩

[w′, ξ′
j ] (x′

ij = x′
ji), and let xij ∈ [w, ξi] be such that u(xij) = x′

ij (xij may not
equal xji).

Let Q′ = (ξ′
1, ξ

′
2, ξ

′
3, ξ

′
4). We will obtain estimates connecting cdw′ (Q′) to

cdw(Q), and estimates connecting sd(Q′) to sd(Q), where cdw′ (Q′) and sd(Q′)
are the quantities related to the tree T (X). Since T (X) is a tree, and hence
cdw′ (Q′) = sd(Q′), these estimates will help us prove the lemma.

We can find sequences xk ∈ [w, ξi] converging to ξi and yk ∈ [w, ξj ] converg-
ing to ξj . Since T (X) is a tree, and hence (u(xk)|u(yl))w′ = d(w′, x′

ij), the
properties of u from Theorem 3.5 imply that

d(w′, x′
ij) − 3δ ≤ (xk |yl)w ≤ d(w′, x′

ij).
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Using (ξi|ξj)w − 2δ ≤ lim infk,l→∞(xk |yl)w ≤ (ξi|ξj)w, we obtain

d(w′, x′
ij) − 3δ ≤ (ξi|ξj)w ≤ d(w′, x′

ij) + 2δ.

It follows that

(5.3) cdw′ (Q′) − 10δ ≤ cdw(Q) ≤ cdw′ (Q′) + 10δ.

We next show that HD([ξi, ξj ], [xij , ξi] ∪ [xji, ξj ]) ≤ 100δ. To this end, let
yij ∈ [xij , ξi] be such that h(xij , yij) = 25δ. The properties of u imply that
d(yij , [w, ξj ]) ≥ 25δ. Since the triangle [w, ξi] ∪ [w, ξj ] ∪ [ξi, ξj ] is 24δ-thin, there
is some point zij ∈ [ξi, ξj ] such that h(yij , zij) ≤ 24δ. Consequently, the fact
that [yij , zij ] ∪ [yij , ξi] ∪ [zij , ξi] is 24δ-thin implies that HD([yij , ξi], [zij , ξi]) ≤
48δ. Similarly, HD([yji, ξj ], [zji, ξj ]) ≤ 48δ. Since h(xij , xji) ≤ 6δ, the triangle
inequality implies that h(zij , zji) ≤ 104δ. It follows that

(5.4) HD([ξi, ξj ], [xij , ξi] ∪ [xji, ξj ]) ≤ 48δ + 52δ = 100δ.

For {i, j, k, l} = {1,2,3,4}, we choose pij ∈ [ξi, ξj ] and pkl ∈ [ξk, ξl] with

h(pij , pkl) = h([ξi, ξj ], [ξk, ξl]).

Inequality (5.4) implies that there are qij ∈ [xij , ξi] ∪ [xji, ξj ] and qkl ∈ [xkl,
ξk] ∪ [xlk, ξl] such that |h(pij , pkl) − h(qij , qkl)| ≤ 200δ. By the properties of u,

h(qij , qkl) − 6δ ≤ d(u(qij), u(qkl)) ≤ h(qij , qkl).

Since u(qij) ∈ [ξ′
i, ξ

′
j ] and u(qkl) ∈ [ξ′

k, ξ′
l], we have

d(u(qij), u(qkl)) ≥ d([ξ′
i, ξ

′
j ], [ξ

′
k, ξ′

l]).

Combining the above inequalities, we obtain

(5.5) h([ξi, ξj ], [ξk, ξl]) ≥ d([ξ′
i, ξ

′
j ], [ξ

′
k, ξ′

l]) − 200δ.

On the other hand, there exist points r′
ij ∈ [ξ′

i, ξ
′
j ] and r′

kl ∈ [ξ′
k, ξ′

l] such that

d(r′
ij , r

′
kl) = d([ξ′

i, ξ
′
j ], [ξ

′
k, ξ′

l]).

Observe that u([xij , ξi] ∪ [xji, ξj ]) = [ξ′
i, ξ

′
j ]. Hence, there exists rij ∈ [xij , ξi] ∪

[xji, ξj ] with u(rij) = r′
ij . Similarly, there is a point rkl ∈ [xkl, ξk] ∪ [xlk, ξl]

with u(rkl) = r′
kl. The properties of u gives h(rij , rkl) − 6δ ≤ d(r′

ij , r
′
kl) ≤

h(rij , rkl). By inequality (5.4), there is a point wij ∈ [ξi, ξj ] with h(wij , rij) ≤
100δ. Similarly, there is some wkl ∈ [ξk, ξl] with h(wkl, rkl) ≤ 100δ. Thus,

h([ξi, ξj ], [ξk, ξl]) ≤ h(wij ,wkl) ≤ h(rij , rkl) + 200δ

≤ d(r′
ij , r

′
kl) + 206δ = d([ξ′

i, ξ
′
j ], [ξ

′
k, ξ′

l]) + 206δ,

whence by inequality (5.5),

(5.6) |h([ξi, ξj ], [ξk, ξl]) − d([ξ′
i, ξ

′
j ], [ξ

′
k, ξ′

l])| ≤ 206δ.

It follows from inequality (5.1) that | sd(Q) − sd(Q′)| ≤ 420δ. Since T (X) is
a tree, we have cdw′ (Q′) = sd(Q′). Therefore, by inequality (5.3), we have

| cdw(Q) − sd(Q)| ≤ 430δ. �
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Remark 5.1. Since T (X) is a tree, one of d([ξ′
1, ξ

′
4], [ξ

′
2, ξ

′
3]), d([ξ′

1, ξ
′
3], [ξ

′
2,

ξ′
4]) is 0. Hence, it follows from inequality (5.6) that

(5.7) min{h([ξ1, ξ4], [ξ2, ξ3]), h([ξ1, ξ3], [ξ2, ξ4])} ≤ 206δ.

Corollary 5.2. Set c0 = 4e86. The following holds for each w ∈ Y , all
0 < ε ≤ ε0(δ), and all quadruples Q:

eε sd(Q)

c0
≤ cr(Q,hw,ε) ≤ c0e

ε sd(Q).

Proof. Recall ε0(δ) = min{1, 1
5δ }. The corollary now follows from Lem-

ma 5.1 and (5.2). �

Corollary 5.3. Let c > 0, w ∈ Y , 0 < ε ≤ ε0(δ), and Q = (ξ1, ξ2, ξ3, ξ4) a
quadruple:
(i) If cr(Q,hw,ε) ≤ c, then for all geodesics [ξi, ξj ] joining ξi and ξj , 1 ≤

i, j ≤ 4,
h([ξ1, ξ4], [ξ2, ξ3]) ≤ c′ = c′(c, ε, δ).

(ii) If h([ξ1, ξ4], [ξ2, ξ3]) ≤ c for some geodesics [ξi, ξj ] joining ξi and ξj , 1 ≤
i, j ≤ 4, then cr(Q,hw,ε) ≤ c′ = c′(c).

Proof. We first prove (i). By hypothesis, cr(Q,hw,ε) ≤ c. Therefore, by
Corollary 5.2, we have sd(Q) ≤ log(c0c)/ε. Let [ξi, ξj ] be a geodesic with end-
points ξi and ξj for 1 ≤ i, j ≤ 4. Now, the claim follows from inequalities (5.1)
and (5.7).

Now, we prove (ii). Suppose that h([ξ1, ξ4], [ξ2, ξ3]) ≤ c. Then sd(Q) ≤ c.
Since ε ≤ 1, by Corollary 5.2, we have cr(Q,hw,ε) ≤ c0e

εc ≤ c0e
c. �

Corollary 5.4. For all w1,w2 ∈ Y and any 0 < ε ≤ ε0(δ), the identity
map (∂∗Y,hw1,ε) → (∂∗Y,hw2,ε) is η-quasimöbius with η(t) = 16e172t = c2

0t.

Proof. By Corollary 5.2,

cr(Q,hw2,ε) ≤ c0e
ε sd(Q) ≤ c2

0 cr(Q,hw1,ε). �

Corollary 5.5. For all 0 < ε1, ε2 ≤ ε0(δ) and any w ∈ Y , the identity
map (∂∗Y,hw,ε1) → (∂∗Y,hw,ε2) is η-quasimöbius with η(t) = 4(1+

ε2
ε1

)t
ε2
ε1 .

Proof. Set t = cr(Q,hw,ε1). Then, by inequality (5.2),

cr(Q,hw,ε2) ≤ 4eε2 cdw(Q) = 4(eε1 cdw(Q))
ε2
ε1 ≤ 4(4t)

ε2
ε1 = η(t). �

Proposition 5.6. Suppose (X,d) is c-quasiconvex and c-annular convex,
Ω ⊂ X a domain, and p ∈ ∂Ω. Suppose also that d0 = diam(Ω, d) < ∞ and
d′
0 = diam(∂Ω, d) > 0. Set k′ := kp. If (Ω, k) is δ-hyperbolic, then the boundary

map ∂f : (∂∗
kΩ, kw,ε) → (∂∗

k′ Ω, k′
w′,ε) of the identity map f : (Ω, k) → (Ω, k′) is

η-quasimöbius with η = η(δ, c).
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By Proposition 4.2, (Ω, k′) is δ′-hyperbolic with δ′ = δ′(δ, c). Theorem 4.1
implies that the identity map f : (Ω, k) → (Ω, k′) is bilipschitz, hence the
boundary map is well defined and is a homeomorphism. Abusing notation we
denote ∂f(ξ) (ξ ∈ ∂∗

kΩ) by ξ. Let K be as in Section 4 if d0 > 20c2d′
0, and

K = ∅ if d0 ≤ 20c2d′
0.

The proof of Proposition 5.6 is achieved by combining Lemmas 5.7
through 5.9. Intuitively, Proposition 5.6 follows from the geometric pictures
of (Ω, k) and (Ω, kp) described before Lemma 4.3.

Lemma 5.7. There exists a constant A′ = A′(δ, c), such that
1
L

k([ξi, ξj ], ]ξk, ξl]) − A′ ≤ k′([̂ξi, ξj ], [̂ξk, ξl]) ≤ Lk([ξi, ξj ], [ξkξl]) + A′

for every quadruple Q = (ξ1, ξ2, ξ3, ξ4) of distinct points in ∂∗
kΩ, all geodesics

[ξi, ξj ] in (Ω, k) joining ξi and ξj , and all geodesics [̂ξi, ξj ] in (Ω, k′) joining
ξi and ξj . Here L is the constant given by Lemma 4.3.

Proof. Let qij ∈ [ξi, ξj ] and qkl ∈ [ξk, ξl] with k(qij , qkl) = k([ξi, ξj ], [ξk, ξl]).
If the geodesic [ξi, ξj ] intersects K then it passes through S. Let x and y re-
spectively be the first and last points on [ξi, ξj ] that lie on S. Since
diam(S,k) = D1, the subsegment [x, y] of [ξi, ξj ] has length at most D1. Hence,
there exists a point wij ∈ [ξi, ξj ]\K such that k(qij ,wij) ≤ D1. If [ξi, ξj ] does
not intersect K, then we can choose wij = qij . Similarly, there is a point
wkl ∈ [ξk, ξl]\K such that k(qkl,wkl) ≤ D1. For the geodesics βij = [ξi, ξj ], con-
sider the maps β̃ij given in the paragraph before Lemma 4.5. By Lemma 4.5,
both β̃ij and β̃kl are (L,A)-quasigeodesics in (Ω, k′), with L and A de-
pending solely on c. It follows from the stability lemma (Lemma 3.4) that
HDk′ (|β̃ij |, [̂ξi, ξj ]) ≤ b1 and HDk′ (|β̃kl|, [̂ξk, ξl]) ≤ b1, where b1 = b1(δ′,L,A) =
b1(δ, c). Hence, we find two points zij ∈ [̂ξi, ξj ] and zkl ∈ [̂ξk, ξl] with k′(wij ,
zij), k′(wkl, zkl) ≤ b1. Now, we have

k′([̂ξi, ξj ], [̂ξk, ξl]) ≤ k′(zij , zkl) ≤ k′(wij ,wkl) + 2b1

≤ Lk(wij ,wkl) + D2 + 2b1

≤ L{k(qij , qkl) + 2D1} + D2 + 2b1

= Lk([ξi, ξj ], [ξk, ξl]) + (D2 + 2b1 + 2LD1).

The second inequality can be proven in a similar manner. �
Denote by Q′ = (∂f(ξ1), ∂f(ξ2), ∂f(ξ3), ∂f(ξ4)) for every quadruple Q =

(ξ1, ξ2, ξ3, ξ4) of distinct points in ∂∗
kΩ.

Lemma 5.8. There exists a constant b2 = b2(δ, c) with the property that for
every quadruple Q = (ξ1, ξ2, ξ3, ξ4) of distinct points in ∂∗

kΩ:
(i) if sd(Q) ≥ 0, then sd(Q′) ≤ L sd(Q) + b2;
(ii) if sd(Q) ≤ 0, then sd(Q′) ≤ sd(Q)/L + b2.
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Proof. We first prove (i). Assume that sd(Q) ≥ 0. Recall

sd(Q) ≤ k([ξ1, ξ4], [ξ2, ξ3]) − k([ξ1, ξ3], [ξ2, ξ4]) ≤ sd(Q) + 8δ.

Now, inequality (5.7) and sd(Q) ≥ 0 imply k([ξ1, ξ3], [ξ2, ξ4]) ≤ 206δ. By
Lemma 5.7,

sd(Q′) ≤ k′([̂ξ1, ξ4], [̂ξ2, ξ3]) − k′([̂ξ1, ξ3], [̂ξ2, ξ4])

≤ k′([̂ξ1, ξ4], [̂ξ2, ξ3])
≤ Lk([ξ1, ξ4], [ξ2, ξ3]) + A′

≤ L{sd(Q) + k([ξ1, ξ3], [ξ2, ξ4]) + 8δ} + A′

≤ L · sd(Q) + 214Lδ + A′.

The proof of (ii) is similar to that of (i). Recall that by Proposition 4.2
(Ω, k′) is δ′-hyperbolic for some δ′ = δ′(δ, c). If sd(Q) ≤ 0, then we have
k([ξ1, ξ4], [ξ2, ξ3]) ≤ 214δ, and therefore Lemma 5.7 implies

sd(Q′) ≤ k′([̂ξ1, ξ4], [̂ξ2, ξ3]) − k′([̂ξ1, ξ3], [̂ξ2, ξ4]) + 8δ′

≤ Lk([ξ1, ξ4], [ξ2, ξ3]) + A′ − 1
L

k([ξ1, ξ3], [ξ2, ξ4]) + A′ + 8δ′

≤ 214Lδ + 2A′ + 8δ′ +
1
L

{k([ξ1, ξ4], [ξ2, ξ3]) − k([ξ1, ξ3], [ξ2, ξ4])}

≤ 214Lδ + 2A′ + 8δ′ +
1
L

(
sd(Q) + 8δ

)
=

1
L

sd(Q) + 214Lδ + 2A′ + 8δ′ + 8δ/L. �

Let w,w′ ∈ Ω and 0 < ε ≤ min{ε0(δ), ε0(δ′)}. For a quadruple Q = (ξ1, ξ2,
ξ3, ξ4) of distinct points in ∂∗

kΩ, set cr(Q) = cr(Q,kw,ε) and cr(Q′) = cr(Q′,
k′

w′,ε).

Lemma 5.9. The map ∂f : (∂∗
kΩ, kw,ε) → (∂∗

k′ Ω, k′
w′,ε) is η-quasimöbius for

some η = η(δ, c).

Proof. Let Q = (ξ1, ξ2, ξ3, ξ4). Recall that ε ≤ ε0(δ) ≤ 1. If sd(Q) ≥ 0,
then by Lemma 5.8, sd(Q′) ≤ L sd(Q) + b2. Let c0 = 4e86. It follows from
Corollary 5.2 that

cr(Q′) ≤ c0e
ε sd(Q′) ≤ c0e

ε(L sd(Q)+b2) = c0e
εb2

(
eε sd(Q)

)L ≤ c0e
εb2(c0 cr(Q))L

= cL+1
0 eεb2(cr(Q))L ≤ cL+1

0 eb2(cr(Q))L.

If sd(Q) ≤ 0, then sd(Q′) ≤ sd(Q)/L + b2. It follows that

cr(Q′) ≤ c0e
ε sd(Q′) ≤ c0e

ε(sd(Q)/L+b2)

= c0e
εb2(eε sd(Q))

1
L ≤ c0e

εb2(c0 cr(Q))
1
L

= c
1+ 1

L
0 eεb2(cr(Q))

1
L ≤ c

1+ 1
L

0 eb2(cr(Q))
1
L .
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Note that cr(Q) → 0 as sd(Q) → −∞. �
The proof of Proposition 5.6 can be easily adapted to show the following

below.

Proposition 5.10. Let f : X → Y be an (L,A) quasiisometry between two
proper geodesic metric spaces. If X is δ-hyperbolic, then ∂f : (∂∗X,hx,ε) →
(∂∗Y,hy,ε) (x ∈ X , y ∈ Y ) is η-quasimöbius with η = η(L,A, δ).

Proposition 5.10 is contained in [V3, Theorem 5.38]. See also [BS, Theo-
rem 6.5] for a related result.

6. Necessity

It is proved in [BHK] that a uniform domain is Gromov hyperbolic with
respect to the quasihyperbolic metric and that when the domain is bounded
the natural map exists and is quasimöbius. In this section, we show that the
natural map is quasimöbius for unbounded domains as well. These statements
are quantitative. We first explain the notion of a natural map.

Let X ′ be the one point compactification X ∪ { ∞} of X if X is unbounded,
and X ′ = X if X is bounded. Let Q = (x1, x2, x3, x4) be a quadruple of distinct
points in X ′. The cross ratio cr(Q,d) is defined as in Section 4 if all xi ∈ X ,
and if one of the xi is ∞, then cr(Q,d) is obtained from the usual definition
by canceling the terms involving ∞. For example, if x1 = ∞, then

cr(Q,d) =
d(x2, x4)
d(x2, x3)

.

Notice that for any p ∈ X , the metric space (Sp(X), d̂p) is homeomorphic
to X ′. By using the properties of the metric d̂p, it is easy to check that
cr(Q, d̂p)/16 ≤ cr(Q,d) ≤ 16cr(Q, d̂p) for any quadruple Q of distinct points
in X ′. This statement justifies the above definition of cross ratio on X ′,
although there is no canonical metric on X ′.

Let Ω ⊂ X be a rectifiably connected open subset with ∂Ω �= ∅. Denote by
∂′Ω the topological boundary of Ω in X ′. Then ∂′Ω = ∂Ω if Ω is bounded,
and ∂′Ω = ∂Ω ∪ { ∞} if Ω is unbounded. Suppose (Ω, k) is Gromov hyperbolic.
If the identity map (Ω, k) → (Ω, d) has a continuous extension to the Gromov
closure Ω ∪ ∂∗Ω of (Ω, k), then the restriction of this extension to the Gromov
boundary, ∂∗Ω → ∂′Ω, is called a natural map of Ω. Since Ω is dense in the
Gromov closure, the natural map is unique if it exists.

Suppose (X,d) is unbounded. Then for any p ∈ X , the metric space
(Sp(X), d̂p) is homeomorphic to the one point compactification X ′. Let ∂̂pΩ
be the boundary of Ω in (Sp(X), d̂p). Notice that ∂̂pΩ = ∂′Ω as sets and
the identity maps ∂̂pΩ → ∂′Ω and (Ω, d̂p) → (Ω, d) are homeomorphisms. So
by a natural map (∂∗Ω, kx,ε) → (∂̂pΩ, d̂p) we mean the continuous extension
to the Gromov boundary of the identity map (Ω, k) → (Ω, d̂p). It follows
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from the remark in the second paragraph of this section that the natural
map (∂∗Ω, kx,ε) → (∂′Ω, d) is η-quasimöbius if and only if the natural map
(∂∗Ω, kx,ε) → (∂̂pΩ, d̂p) is η′-quasimöbius, with η and η′ depending only on
each other.

Suppose (Y,ρ) is a metric space and Ω ⊂ Y is a bounded rectifiably con-
nected open subset with ∂ρΩ (the boundary of Ω in (Y,ρ)) containing at least
two points, and p ∈ ∂ρΩ is such that X = Ip(Y ) with d = ρp; that is the
metric space (X,d) is the “inversion” of (Y,ρ) at p. Then Ω is unbounded
in (X,d). We note that X ′ and Y ′ are homeomorphic. If (Ω, k) is Gromov
hyperbolic and φ : (∂∗Ω, kx,ε) → (∂′Ω, d) is a natural map, then by compos-
ing φ with the identification of X ′ and Y ′, we obtain another natural map
(∂∗Ω, kx,ε) → (∂ρΩ, ρ). By using the properties of the metric ρp, we see that
the natural map φ : (∂∗Ω, kx,ε) → (∂′Ω, d) is η-quasimöbius if and only if the
natural map (∂∗Ω, kx,ε) → (∂ρΩ, ρ) is η′-quasimöbius, with η and η′ depending
only on each other.

Theorem 6.1 (Theorem 3.6 of [BHK]). Let (X,d) be a proper metric space
and Ω ⊂ X a c-uniform domain. Then (Ω, k) is a geodesic δ-hyperbolic space
with δ = δ(c). If Ω is bounded, then for each w ∈ Ω and all 0 < ε ≤ ε0(δ)
the natural map φ : (∂∗Ω, kw,ε) → (∂Ω, d) exists and is η-quasimöbius with
η = η(c, ε).

If we choose ε = ε0(δ) = ε0(c) for the visual metric kw,ε, then the homeo-
morphism η in Theorem 6.1 depends only on c.

Theorem 6.2. Let X be a proper metric space and Ω ⊂ X a c-uniform
domain. There exists a constant ε1(c) > 0 such that for every w ∈ Ω and
0 < ε ≤ ε1(c), the natural map φ : (∂∗Ω, kw,ε) → (∂′Ω, d) exists and is η-quasi-
möbius with η = η(c, ε).

Proof. By Theorem 6.1, it only remains to consider the case when Ω is un-
bounded. Suppose that Ω is an unbounded c-uniform domain. Fix p ∈ ∂Ω and
consider the compact metric space (Sp(X), d̂p). By Theorem 4.6(ii), (Ω, d̂p) is
c1-uniform with c1 = c1(c). Let k′ ′ be the quasihyperbolic metric on Ω with re-
spect to d̂p. By Theorem 6.1, (Ω, k′ ′) is δ1-hyperbolic with δ1 = δ1(c1) = δ1(c),
and for any w ∈ Ω and 0 < ε ≤ ε0(δ1), the natural map φ1 : (∂∗

k′ ′ Ω, k′ ′
w,ε) →

(∂̂pΩ, d̂p) exists and is η1-quasimöbius with η1 = η1(c1, ε) = η1(c, ε). On the
other hand, Theorem 4.6(i) implies that the identity map f : (Ω, k) → (Ω, k′ ′)
is 80c-bilipschitz. By Proposition 5.10, for any w ∈ Ω and any ε satisfy-
ing 0 < ε ≤ ε1(c) := min{ε0(δ), ε0(δ1)}, the boundary map ∂f : (∂∗Ω, kw,ε) →
(∂∗

k′ ′ Ω, k′ ′
w,ε) is η2-quasimöbius with η2 = η2(δ,80c) = η2(c). Hence, there is an

η-quasimöbius natural map

φ = φ1 ◦ ∂f : (∂∗Ω, kw,ε) → (∂̂pΩ, d̂p)

with η = η1 ◦ η2. �
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Again, if we choose ε = ε1(c), then the homeomorphism η in Theorem 6.2
depends only on c.

7. Annulus points, arc points and starlikeness

In this section, we recall the notion of annulus points and arc points, and
show that each arc point lies on an anchor (Lemma 7.3) and that domains
with large boundaries are starlike (Theorem 7.4).

The following definitions are from Chapter 7 of [BHK].

Definition 7.1. Let 0 < λ ≤ 1/2. A point x ∈ Ω is said to be a λ-annulus
point if there is a point a ∈ ∂Ω with δΩ(x) = d(x,a) so that B(a, δΩ(x)/λ) \
B(a,λδΩ(x)) ⊂ Ω. If x ∈ Ω is not a λ-annulus point, then it is said to be a
λ-arc point.

Definition 7.2. Let x0 ∈ Ω and c ≥ 1. A path γ : a � b in Ω is a c-anchor
of x0 if:
(1) x0 ∈ |γ|,
(2) �d(γ) ≤ cd(a, b),
(3) for every x ∈ |γ[a,x0]| we have �d(γ[a,x]) ≤ cδΩ(x),
(4) for every x ∈ |γ[x0, b]| we have �d(γ[x, b]) ≤ cδΩ(x),
(5) |γ| ∩ ∂Ω = {a, b},
(6) γ is a continuous (c, c)-quasigeodesic in (Ω, k): �k(γ[x, y]) ≤ ck(x, y) + c

for all x, y ∈ |γ| \ {a, b}.

If x0 is a λ-arc point, then whenever q is a point in the boundary of
the domain closest to x0, then the boundary of the domain near q is large
at scale λ; hence, we may find two boundary points and a uniform curve
connecting these two points and passing through x0 such that x0 plays the
role of a midpoint of the curve. This is the content of the following lemma,
which is an analog of the anchor Lemma 3.18 in [V1].

Lemma 7.3. Suppose (X,d) is a Ca-annular convex geodesic space. If 0 <
λ ≤ 1/(2C2

a ), then every λ-arc point x0 ∈ Ω has a c-anchor with c = c(λ,Ca).

Proof. In this proof, C and C ′ denote constants that depend only on λ
and Ca, and their values may change from one occurance to another as they
represent all such constants occurring in this proof that we do not need to
keep track of.

Let x0 be a λ-arc point. Choose a ∈ ∂Ω with δΩ(x0) = d(x0, a). Since x0 is a
λ-arc point, there is a point y ∈ X\Ω such that λδΩ(x0) ≤ d(a, y) < δΩ(x0)/λ.
Let γ1 be a d-geodesic connecting a to x0. We break up the construction of
the anchor into two cases, see Figure 1.

Case 1. Suppose d(a, y) ≥ δΩ(x0). Let β0 be a d-geodesic joining y to a;
β0 intersects the sphere S(a, δΩ(x0)) at exactly one point w. By the annular
convexity of X, there is a rectifiable path β1 joining x0 and w in the annulus
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Figure 1. The two cases in Lemma 7.3.

B(a,CaδΩ(x0)) \ B(a, δΩ(x0)/Ca) with �d(β1) ≤ Cad(x0,w). Let β̂0 = β0[y,w]
and γ̂ = β̂0 ∗ β1 ∗ γ1 be the concatenation of the three paths β̂0, β1, and γ1.

Case 2. Suppose d(a, y) < δΩ(x0). In this case, let z ∈ |γ1| be the unique
point with d(z, a) = d(a, y). Let β̂0 = γ1[x0, z] oriented from x0 to z, and by
the annular convexity, let β1 be a rectifiable path in the annulus B(a,Cad(y,
a)) \ B(a, d(y, a)/Ca) joining z and y with �d(β1) ≤ Cad(z, y). Now set γ̂ =
β1 ∗ β̂0 ∗ γ1.

Once such a path γ̂ has been constructed from the above cases, we modify
this path further. Since y /∈ Ω and δΩ(x0) > λ

3Ca
δΩ(x0), there is a point x1 ∈

Ω ∩ (|β1| ∪ |β̂0|) at which |β1| ∪ |β̂0|, beginning from the point x0, first achieves
δΩ(x1) = λ

3Ca
δΩ(x0). Let γ2 = γ̂[x0, x1]. Then for all x ∈ |γ2| \ {x1} we have

(7.1) δΩ(x) >
λ

3Ca
δΩ(x0).

Let b ∈ ∂Ω with

(7.2) δΩ(x1) = d(x1, b) =
λ

3Ca
δΩ(x0).

Now, the choice of x1 implies that x1 is the point on γ2 nearest to b. Let β2

be a d-geodesic from x1 to b, and let γ = β2 ∗ γ2 ∗ γ1.
We next verify that γ satisfies conditions (1)–(6) of the definition of a c-

anchor. By construction x0 ∈ |γ|, so condition (1) is satisfied. Condition (5)
is also clear.

Note that by equation (7.2),

�d(γ) = �d(γ1) + �d(γ2) + �d(β2) = d(x0, a) + �d(γ2) + d(x1, b)

=
(

1 +
λ

3Ca

)
δΩ(x0) + �d(γ2).
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In the situation of Case 1 above, we have

�d(γ2) ≤ �d(β1) + �d(β̂0) ≤ Cad(x0,w) + d(w,y) ≤ 2CaδΩ(x0) +
1
λ

δΩ(x0),

and hence

(7.3) �d(γ) ≤
(

1 +
λ

3Ca
+ 2Ca +

1
λ

)
δΩ(x0).

In the situation of Case 2 above,

�d(γ2) ≤ �d(β1) + �d(β̂0) ≤ Cad(y, z) + δΩ(x0) ≤ 2CaδΩ(x0) + δΩ(x0),

and we obtain inequality (7.3) again. Since γ2 does not intersect the ball
B(a,λδΩ(x0)/Ca), and by equation (7.2) �d(β2) = λδΩ(x0)/(3Ca), we see that
d(a, b) ≥ λδΩ(x0)/Ca − λδΩ(x0)/(3Ca) = 2λδΩ(x0)/(3Ca). Thus, by inequal-
ity (7.3), �d(γ) ≤ Cd(a, b), and hence condition (2) is also satisfied.

By Lemma 2.4, as γ[a,x0] = γ1, condition (3) holds as well.
We now prove condition (4). Recall that γ[x0, b] = β2 ∗ γ2. Again by

Lemma 2.4, for all x ∈ |β2| we have �d(γ[x, b]) = δΩ(x). Let x ∈ |γ2|. Then
δΩ(x) ≥ λδΩ(x0)/(3Ca). Since �d(γ[x, b]) ≤ �d(γ) ≤ CδΩ(x0), we have �d(γ[x,
b]) ≤ CδΩ(x), and condition (4) is satisfied.

It remains to prove condition (6). Note that inequality (7.3) and inequal-
ity (7.1) imply

(7.4) �k(γ2) ≤ 3Ca

λδΩ(x0)
�d(γ2) ≤ C.

Let x,x′ ∈ |γ| \ {a, b}. We consider several cases.
Case (i): x,x′ ∈ |γ1| or x,x′ ∈ |β2|. By Proposition 2.5, both γ1 and β2 are

geodesic rays in (Ω, k). Hence, we have �k(γ[x,x′]) = k(x,x′).
Case (ii): If both x,x′ are in |γ2|, then by inequality (7.4),

(7.5) �k(γ[x,x′]) ≤ �k(γ2) ≤ C ≤ C + k(x,x′).

Case (iii): Suppose x /∈ |γ2| and x′ ∈ |γ2|. If x ∈ |γ1|, then by Case (i)
and (7.5) (with x0, x

′ ∈ |γ2|),

�k(γ[x,x′]) ≤ �k(γ[x,x0]) + �k(γ2) ≤ k(x,x0) + C(7.6)
≤ k(x,x′) + k(x′, x0) + C ≤ k(x,x′) + C.

Similarly, (7.6) holds if x ∈ |β2|.
Case (iv): Finally, if x ∈ |γ1| and x′ ∈ |β2|, then

�k(γ[x,x′]) = �k(γ[x,x0]) + �k(γ2) + �k(γ[x1, x
′])(7.7)

≤ k(x,x0) + C + k(x1, x
′).

Let τ ′ = λ
6Ca

.
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Subcase 1: If d(x,a) ≥ τ ′δΩ(x0), then the proof of Proposition 2.5 shows
that

k(x,x0) = log
(

d(a,x0)
d(a,x)

)
≤ log

(
1
τ ′

)
= C ′,

and in this case, by inequality (7.7),

�k(γ[x,x′]) ≤ k(x,x0) + C + k(x′, x) + k(x,x0) + k(x0, x1)(7.8)
≤ C ′ + C + k(x,x′) + C ′ + C = k(x,x′) + C.

Subcase 2: d(x,a) < τ ′δΩ(x0). By the choice of x1, we have d(a,x1) ≥
λ

Ca
δΩ(x0). Therefore,

d(b, a) ≥ d(a,x1) − d(x1, b) ≥ λ

Ca
δΩ(x0) − λ

3Ca
δΩ(x0) =

2λ

3Ca
δΩ(x0).

Hence, for all z ∈ |β2|,
d(z, a) ≥ d(a, b) − d(z, b) ≥ d(a, b) − d(x1, b)

≥ 2λ

3Ca
δΩ(x0) − λ

3Ca
δΩ(x0) =

λ

3Ca
δΩ(x0).

In particular, the above estimate holds for x′. Therefore, by �d(γ[x,x′]) ≤
�d(γ) ≤ CδΩ(x0),

d(x,x′) ≥ d(x′, a) − d(x,a) ≥ λ

3Ca
δΩ(x0) − τ ′δΩ(x0)

=
λ

6Ca
δΩ(x0) ≥ C−1�d(γ[x,x′]).

Since γ satisfies conditions (3) and (4) of the definition of a c-anchor, so does
γ[x,x′]. Now, Lemma 2.2 implies

�k(γ[x,x′]) ≤ C ′ log
(

1 +
�d(γ[x,x′])

δΩ(x) ∧ δΩ(x′)

)
(7.9)

≤ C ′ log
(

1 +
Cd(x,x′)

δΩ(x) ∧ δΩ(x′)

)
≤ C ′ log

(
1 +

d(x,x′)
δΩ(x) ∧ δΩ(x′)

)
+ C ′ logC

≤ C ′k(x,x′) + C ′ logC.(7.10)

This completes the proof. �

The following result is an analog of Theorem 2.4 of [V1], and provides a
starlikeness condition for the space (Ω, k).

Theorem 7.4. Let (X,d) be a Ca-annular convex proper geodesic space
and Ω ⊂ X a rectifiably connected open subset with ∂Ω �= ∅. Suppose that Ω
is unbounded or diam(Ω) ≤ diam(∂Ω)/τ for some 0 < τ < 1. If (Ω, k) is δ-
hyperbolic, then there is a constant C = C(δ, τ,Ca) such that for all a ∈ ∂∗Ω
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and all x0 ∈ Ω, there exists a quasihyperbolic geodesic line α with a as one
endpoint and k(x0, |α|) ≤ C.

Proof. Let λ = τ/(3C2
a ), and fix a ∈ ∂∗Ω, x0 ∈ Ω. We divide the proof into

two cases.
Case 1: x0 is a λ-arc point. Then by Lemma 7.3, there is a c-anchor γ

with x0 ∈ |γ|, where c = c(λ,Ca) = c(τ,Ca). Since c-anchors are (c, c)-quasi-
geodesics in (Ω, k), by Lemma 3.4 there is a quasihyperbolic geodesic line β
with endpoints ξ, η ∈ ∂∗Ω such that HDk(|β|, |γ|) ≤ M , where M = M(δ, c,
c) = M(δ, τ,Ca). Therefore, there is a point x1 ∈ |β| such that k(x1, x0) ≤ M .
If a = ξ or a = η, we are done. Suppose a /∈ {ξ, η}. Let β1 : a � ξ, β2 : a � η
be two quasihyperbolic geodesic lines. Since geodesic triangles in Ω ∪ ∂∗Ω are
24δ-thin, we have k(x1, |β1| ∪ |β2|) ≤ 24δ. Thus, k(x0, |β1| ∪ |β2|) ≤ M + 24δ,
and hence k(x0, |βi|) ≤ M + 24δ for some i ∈ {1,2}; we choose α = βi for this
particular i.

Case 2: x0 is a λ-annulus point. Then there is a point b ∈ ∂Ω such that
δΩ(x0) = d(x0, b) and B(b, δΩ(x0)/λ) \ B(b, λδΩ(x0)) ⊂ Ω.

First, we prove that there is a quasihyperbolic geodesic line β intersecting
the sphere S(b, δΩ(x0)). If diam(Ω) = ∞, pick xn, yn ∈ Ω with d(x0, xn) → ∞
and d(yn, b) → 0 and fix a quasihyperbolic geodesic [xn, yn]. Since [xn, yn] in-
tersects the compact set S(b, δΩ(x0)) for all sufficiently large n, a subsequence
of {[xn, yn]} converges to a geodesic line intersecting S(b, δΩ(x0)). Now as-
sume diam(Ω) < ∞. Since diam(Ω) ≤ diam(∂Ω)/τ , we have by the choice
of λ,

λδΩ(x0) ≤ τδΩ(x0)/3 ≤ τ diam(Ω)/3 ≤ diam(∂Ω)/3;

hence, there is a point c ∈ ∂Ω such that d(c, b) ≥ λδΩ(x0). The fact that
the annulus B(b, δΩ(x0)/λ) \ B(b, λδΩ(x0)) ⊂ Ω implies c /∈ B(b, δ(x0)/λ). As
before, we can again obtain a quasihyperbolic geodesic line with end points b
and c, intersecting the sphere S(b, δΩ(x0)).

Given any x, y ∈ S(b, δΩ(x0)), the annular convexity of X implies that
there is a path γ : x � y with �d(γ) ≤ Cad(x, y) and |γ| ⊂ B(b,CaδΩ(x0)) \
B(b, δΩ(x0)/Ca). Since B(b, δΩ(x0)/λ) \ B(b, λδΩ(x0)) ⊂ Ω and λ = τ/(3C2

a ) ≤
1/(2Ca), we have δΩ(z) ≥ δΩ(x0)/(2Ca) for all z ∈ γ. It follows that k(x, y) ≤
�k(γ) ≤ 4C2

a . Hence, diamk(S(b, δΩ(x0))) ≤ 4C2
a , and so k(x0, x1) ≤ 4C2

a for
x1 ∈ |β| ∩ S(b, δΩ(x0)). Now, one repeats the argument at the end of Case 1
and concludes the proof. �

The following is a consequence of the proof of Theorem 7.4.

Corollary 7.5. Suppose that (Ω, k) is δ-hyperbolic, diam(∂Ω) > 0, and
0 < τ < 1. For any a ∈ ∂∗Ω and any x0 ∈ Ω:

(i) if x0 is a τ/(3C2
a )-arc point, or

(ii) if x0 is a τ/(3C2
a )-annulus point with δΩ(x0) ≤ diam(∂Ω)/τ ,
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then there is a quasihyperbolic geodesic line γ with one endpoint a and satis-
fying k(x0, |γ|) ≤ C = C(δ, τ,Ca).

The next result follows from the fact that triangles in Ω ∪ ∂∗Ω are 24δ-thin.

Lemma 7.6 (Lemma 6.35 of [V3]). Let (Ω, k) be δ-hyperbolic, a ∈ ∂∗Ω and
C0 be a constant. Suppose that for each x ∈ Ω, there is a quasihyperbolic
geodesic line γ with one endpoint a and k(x, |γ|) ≤ C0. Then for any x1, x2 ∈ Ω
there is a quasihyperbolic geodesic line α such that k(xi, |α|) ≤ C = C(C0, δ)
for i = 1,2.

8. A “carrot” lemma for quasihyperbolic geodesics

In this section, we show that under the assumptions of Theorem 9.1, qua-
sihyperbolic geodesic lines in Ω have properties very similar to the defining
conditions for uniform paths. The proof of Theorem 9.1 will essentially be
reduced to this situation.

Throughout this section, (X,d) is a Ca-annular convex proper geodesic
space, and Ω ⊂ X is an unbounded rectifiably connected open subset with
∂Ω �= ∅. We suppose that (Ω, k) is δ-hyperbolic, that there is a natural map
φ : (∂∗Ω, kw,ε0) → (∂′Ω, d) (for some w ∈ Ω and ε0 = ε0(δ) = min{1, 1

5δ }) and
that φ is η-quasimöbius for some η. Recall that ∂′Ω = ∂Ω ∪ {∞} and that
the cross ratio in (∂′Ω, d) is defined in the second paragraph of Section 6. By
Corollary 5.4, we may assume that for each x ∈ Ω, φ : (∂∗Ω, kx,ε0) → (∂′Ω, d)
is η-quasimöbius. With a (slight) abuse of notation, for ξ ∈ ∂∗Ω we denote
φ(ξ) also as ξ, and for ξ ∈ ∂′Ω, we denote φ−1(ξ) also by ξ.

A quasihyperbolic geodesic line from a point b ∈ ∂Ω to ∞ tries to avoid
the boundary of Ω. In other words, a carrot-shaped region with the tip of the
carrot at the base point b, must lie in the domain. This is the content of the
next lemma, which generalizes [V1, Lemma 3.36]. The proof of this fact plays
out differently for λ-arc points than for λ-annulus points.

Lemma 8.1. If α is a quasihyperbolic geodesic line with endpoints b, ∞ ∈
∂′Ω, then for all x ∈ |α| we have

d(x, b) ≤ c0δΩ(x),

where c0 = c0(δ,Ca, η).

Proof. Let x ∈ |α| and λ = e−4C3
a /(32C2

a ). As before, we break the proof
up into two cases.

Case 1: x is a λ-annulus point. Then there is a point a ∈ ∂Ω such that
δΩ(x) = d(x,a) and B(a, δΩ(x)/λ) \ B(a,λδΩ(x)) ⊂ Ω. Since α : b � ∞, we
can find a sequence {vn} from |α| with vn = α(tn), tn → ∞, such that vn /∈
B(a, δΩ(x)/λ) for all n. Suppose b /∈ B(a,λδΩ(x)). Then b /∈ B(a, δΩ(x)/λ).
As x ∈ |α[b, vn]|, Lemma 2.3(i) applied to the quasihyperbolic geodesic α[b, vn]
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with t = 2e4C3
a δΩ(x) shows that d(x,a) ≥ 2δΩ(x), contradicting δΩ(x) =

d(x,a). Hence, b ∈ B(a,λδΩ(x)). Therefore,

d(x, b) ≤ d(x,a) + d(a, b) ≤ δΩ(x) + λδΩ(x) ≤ 2δΩ(x).

Case 2: x is a λ-arc point. Then by Lemma 7.3 there is a c-anchor τ : a1 �
a2 with a1, a2 ∈ ∂Ω and x ∈ |τ |, where c = c(λ,Ca) = c(Ca). Let β : a1 � a2

be a quasihyperbolic geodesic line. Since τ is a (c, c)-quasigeodesic in (Ω, k)
and x ∈ |α| ∩ |τ |, we have

k(|α|, |β|) ≤ k(x, |β|) ≤ HDk(|τ |, |β|) ≤ C(δ, c, c) = C(δ,Ca).

Set Q = (a1, ∞, b, a2). Then sd(Q) ≤ k(|α|, |β|) ≤ C. Since ε ≤ ε0(δ) ≤ 1,
by Corollary 5.2 we have cr(Q,kx,ε) ≤ c0e

ε sd(Q) ≤ c0e
εC ≤ c0e

C = C, where
c0 = 4e86.

Therefore, by the quasimöbius property of the natural map φ,

d(a1, b)
d(a1, a2)

= cr(Q,d) ≤ η(cr(Q,kx,ε)) ≤ η(C) = C(δ,Ca, η);

that is d(a1, b) ≤ Cd(a1, a2). Since τ is a c-anchor of x with endpoints a1

and a2, by properties (3) and (4) of Definition 7.2 (with x0 = x here),

�d(τa1x) ≤ CδΩ(x) and �d(τxa2) ≤ CδΩ(x),

and therefore d(a1, a2) ≤ �d(τ) ≤ 2CδΩ(x); hence d(a1, b) ≤ CδΩ(x). Finally,

d(x, b) ≤ d(x,a1) + d(a1, b) ≤ �d(τxa1) + CδΩ(x) ≤ CδΩ(x),

where we used property (3) of Definition 7.2 again. �

Lemma 8.2. Let x0 ∈ Ω and τ : a1 � a2 be a c-anchor for x0 (for some
a1, a2 ∈ ∂Ω). Let α : a1 � a2 and αi : ai � ∞ (i = 1,2) be quasihyperbolic
geodesic lines. Let x ∈ |α| be such that k(x, |αi|) ≤ 24δ for i = 1,2. Then
k(x,x0) ≤ c′ = c′(δ, c,Ca, η).

Proof. Since τ is a (c, c)-quasigeodesic in (Ω, k) and τ and α have the same
endpoints, we have HDk(|τ |, |α|) ≤ c1 = c1(δ, c). Fix y ∈ |τ | with k(x, y) ≤ c1.
We claim that there is a constant c2 = c2(δ, c,Ca, η) such that δΩ(y) ≥ δΩ(x0)/
c2.

Assuming the claim, we proceed as follows. Since τ [x0, y] satisfies the as-
sumptions of Lemma 2.2 (this is because τ is an anchor), Lemma 2.2 together
with Definition 7.2(3) or (4) applied to the point x0, implies k(x0, y) ≤ c3 =
c3(δ, c,Ca, η), and hence k(x,x0) ≤ k(x, y) + k(y,x0) ≤ c1 + c3.

We next prove the claim. Let c2 = 2c[c − 1 + (c0 + 1)ec1+24δ], where
c0 = c0(δ,Ca, η) is the constant from Lemma 8.1. Suppose δΩ(y) < δΩ(x0)/c2.
We may assume y ∈ |τ [a2, x0]|. Then Definition 7.2(4) implies d(a2, y) ≤
�d(τ [a2, y]) ≤ cδΩ(y) ≤ cδΩ(x0)/c2. Let y1 ∈ |α1| with k(y1, x) ≤ 24δ. Then
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k(y1, y) ≤ c1 + 24δ. By Lemma 2.1, we have d(y1, y) ≤ (ec1+24δ − 1)δΩ(y) ≤
c−1
2 (ec1+24δ − 1)δΩ(x0) and so

δΩ(y1) ≤ δΩ(y) + d(y, y1) ≤ c−1
2 ec1+24δδΩ(x0).

On the other hand, Lemma 8.1 applied to α1 and y1 implies that

d(a1, y1) ≤ c0δΩ(y1) ≤ c0e
c1+24δ

c2
δΩ(x0).

Now, the triangle inequality gives

d(a1, a2) ≤ d(a1, y1) + d(y1, y) + d(y, a2) ≤ δΩ(x0)
2c

<
δΩ(x0)

c
.

This is impossible since by Definition 7.2(2),

d(a1, a2) ≥ �d(τ)/c ≥ d(x0, a1)/c ≥ δΩ(x0)/c. �

The following is our analog of the length carrot Lemma 3.40 of [V1]. It im-
proves the lower bound in the estimate of Lemma 8.1. Recall that by assump-
tion the natural map φ : (∂∗Ω, kw,ε0) → (∂′Ω, d) exists and is η-quasimöbius.

Lemma 8.3. If α is a quasihyperbolic geodesic line with endpoints b, ∞ ∈
∂′Ω, then there is a constant C = C(δ,Ca, η) such that for all x ∈ |α|,

�d(α[b, x]) ≤ CδΩ(x).

Proof. Let α : R → Ω be the k-arclength parametrization of α such that
limt→ − ∞ α(t) = b and limt→∞ α(t) = ∞. For each n ∈ Z let tn = sup{t ∈
R : δΩ(α(t)) ≤ 2n}. Since limt→∞ α(t) = ∞, Lemma 8.1 implies that for
each n we have tn < ∞, δΩ(α(tn)) = 2n, and tn < tn+1.

Fix x ∈ |α|. Then there exists n ∈ Z for which x ∈ |α|(tn,tn+1]|. We have

�d(α[b, x]) ≤ �d

(
α|(− ∞,tn+1]

)
=

n∑
− ∞

�d

(
α|(tj ,tj+1]

)
.

By Lemma 2.1,

�d

(
α|(tj ,tj+1]

)
≤ δΩ(α(tj))

[
e

�k(α|(tj ,tj+1]) − 1
]
.

Hence,

�d(α[b, x]) ≤
n∑

− ∞
2j

[
e
�k(α|(tj ,tj+1]) − 1

]
.

It suffices to show that there is a constant K = K(δ, η,Ca) such that for all
j ∈ Z,

(8.1) �k

(
α|(tj ,tj+1]

)
≤ K,

for then

�d(α[b, x]) ≤ (eK − 1)
n∑

− ∞
2j ≤ eK2n

0∑
− ∞

2j = 2eK2n.
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On the other hand, as x ∈ |α|(tn,tn+1]|, we have δΩ(x) ≥ 2n. Thus, we can infer
that

�d(α[b, x]) ≤ 2eKδΩ(x),

concluding the proof of the lemma.
Thus, it remains to prove inequality (8.1).
Let λ = (40C3e4C3

)−1, where C = max{Ca,2c0} with c0 the constant from
the conclusion of Lemma 8.1.

Case 1: Both x1 := α(tj) and x2 := α(tj+1) are λ-arc points. By the choice
of tj+1, we know that δΩ(x2) = 2j+1 and so δΩ(x2) = 2 · 2j ≤ 2δΩ(x) for every
x ∈ |α|[tj ,tj+1]|. By Lemma 7.3, there are c-anchors τi : ai � ci for i = 1,2,
with xi ∈ |τi| and c = c(λ,Ca) = c(δ, η,Ca). Without loss of generality, we
may assume that d(ai, b) ≥ d(ci, b) for i = 1,2.

Fix y0 = α(t0) with t0 sufficiently large. For i = 1,2, let αi be a quasihy-
perbolic geodesic ray connecting y0 to ai and βi a quasihyperbolic geodesic
ray from y0 to ci. Set X = |α[y0, ∞]| ∪ |α[y0, b]| ∪ |α1| ∪ |α2| ∪ |β1| ∪ |β2|. There
is a tree T (X) and a map u : X → T (X) with the properties stated in Theo-
rem 3.5. We denote the metric on T (X) by dT . Let a′

i ∈ ∂T (X) be such that
u is an isometry from |αi| onto the geodesic [u(y0), a′

i] in T (X). We similarly
define c′

i, ∞′, b′ ∈ ∂T (X).
Let y′

i ∈ T (X) be the branch point of [u(y0), a′
i] and [u(y0), c′

i], that is
[u(y0), a′

i] ∩ [u(y0), c′
i] = [u(y0), y′

i]. Choose yia ∈ |αi| and yic ∈ |βi| with
u(yia) = u(yic) = y′

i. By Theorem 3.5(ii) k(yia, yic) ≤ c(δ). Fix a quasihy-
perbolic geodesic γi joining ai and ci. Then the argument in the proof of
Lemma 5.1, inequality (5.4) shows that

HDk(|γi|, |αi[yia, ai]| ∪ |βi[yic, ci]|) ≤ c(δ).

Pick yi ∈ |γi| with k(yi, yia) ≤ c(δ). Then k(yi, yic) ≤ 2c(δ). The proof of
Lemma 8.2 shows that k(yi, xi) ≤ c3 = c3(δ,Ca, η). Hence, k(xi, yia) ≤ c3 +
c(δ). Set C1 = c3 + c(δ). We have dT (u(xi), y′

i) ≤ k(xi, yia) ≤ C1.
Consider the following subtrees of T (X): Y ′

i = [∞′, c′
i] ∪ [∞′, a′

i], Z ′
i =

[y′
i, c

′
i] ∪ [y′

i, a
′
i]. Notice that Y ′

i is a tripod and that Z ′
i is a geodesic line. Let

z′
i ∈ Y ′

i be the point where [∞′, b′] branches off from Y ′
i : [∞′, b′] ∩ Y ′

i = [z′
i, ∞′].

Since u(xi) ∈ u(|α|) = [∞′, b′] and y′
i ∈ Z ′

i, the inequality dT (u(xi), y′
i) ≤ C1

implies that dT ([∞′, b′],Z ′
i) ≤ C1. It follows that the branch point z′

i has to
be close to Z ′

i, specifically, dT (z′
i,Z

′
i) ≤ C1.

Let Qi = (ai, ∞, ci, b) for i = 1,2; then

cr(Qi, d) =
d(ai, ci)
d(ai, b)

≤ d(ai, b) + d(ci, b)
d(ai, b)

≤ 2d(ai, b)
d(ai, b)

= 2.

As φ : (∂∗Ω, kw,ε0) → (∂′Ω, d) is η-quasimöbius, φ−1 : (∂′Ω, d) → (∂∗Ω, kw,ε0)
is η′-quasimöbius with η′(t) = 1/η−1(1/t). Therefore,

cr(Qi, kw,ε0) ≤ η′(cr(Qi, d)) ≤ η′(2) = C = C(η).
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Figure 2. Three configurations of Y ′
i ∪ [b′, ∞′].

By Corollary 5.3, we have k([ai, b], [ci, ∞]) ≤ c4 = c4(η, ε0, δ) = c4(η, δ) for any
geodesic [ai, b] joining ai and b and any geodesic [ci, ∞] joining ci and ∞.
Now, the property of u implies dT ([a′

i, b
′], [c′

i, ∞′]) ≤ c4 +c(δ). Let w′
i ∈ [∞′, b′]

be the branch point of [∞′, b′] and [∞′, a′
i]: [∞′, b′] ∩ [∞′, a′

i] = [w′
i, ∞′]. See

Figure 2 for three possible configurations of Y ′
i ∪ [b′, ∞′]. If w′

i ∈ [y′
i, ∞′]\{y′

i},
then w′

i = z′
i and hence

dT (y′
i,w

′
i) = dT (Z ′

i, z
′
i) ≤ C1;

on the other hand, if w′
i ∈ [y′

i, a
′
i], then the inequality dT ([a′

i, b
′], [c′

i, ∞′]) ≤
c4 + c(δ) implies that the branch point w′

i has to be close to y′
i, that is

dT (w′
i, y

′
i) = dT ([a′

i, b
′], [c′

i, ∞′]) ≤ c4 + c(δ).

In either case, we have dT (y′
i,w

′
i) ≤ C2 := max{C1, c4 + c(δ)}. It follows that

(8.2) dT (u(xi),w′
i) ≤ C1 + C2.

As τi is a c-anchor of xi, by Definition 7.2(3),

d(ai, xi) ≤ �d(τi[ai, xi]) ≤ cδΩ(xi),

and by Definition 7.2(2),

δΩ(xi) ≤ d(xi, ai) ≤ �d(τi) ≤ cd(ai, ci) ≤ 2cd(ai, b).
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By Lemma 8.1, d(xi, b) ≤ c0δΩ(xi). From the above group of inequalities,

δΩ(x2) = 2δΩ(x1) ≤ 4cd(a1, b),

and hence

d(a2, b) ≤ d(a2, x2) + d(x2, b) ≤ cδΩ(x2) + c0δΩ(x2) ≤ 4c(c + c0)d(a1, b).

Thus, considering the quadruple Q3 = (b, ∞, a2, a1), we obtain

cr(Q3, d) =
d(a2, b)
d(a1, b)

≤ 4c(c + C) = C = C(δ,Ca, η).

It follows that cr(Q3, kw,ε0) ≤ η′(C). By Corollary 5.3, we have

k([b, a1], [a2, ∞]) ≤ c5 = c5(δ,Ca, η, ε0) = c5(δ,Ca, η)

for any geodesic [b, a1] connecting b to a1 and any geodesic [a2, ∞] connecting
a2 to ∞. Now, the property of u implies dT ([b′, a′

1], [a
′
2, ∞′]) ≤ C3 := c5 + c(δ).

If k(x1, x2) ≤ 3C1 + 3C2 + C3, then we are done. If k(x1, x2) ≥ 3C1 +
3C2 +C3, then dT (u(x1), u(x2)) = k(x1, x2) ≥ 3C1 +3C2 +C3. Then since we
have w′

i ∈ [b′, ∞′], dT (w′
i, u(xi)) ≤ C1 + C2 (by inequality (8.2)), and u(x1) ∈

[u(x2), b′], we have w′
1 ∈ [w′

2, b
′] and dT (w′

1,w
′
2) ≥ C1 + C2 + C3. It follows

that
dT ([b′, a′

1], [a
′
2, ∞′]) = dT (w′

1,w
′
2) ≥ C1 + C2 + C3 > C3,

contradicting the inequality dT ([b′, a′
1], [a

′
2, ∞′]) ≤ C3 from the preceding para-

graph.
Case 2: At least one of x1 = α(tj), x2 = α(tj+1) is a λ-annulus point.

Then for some i ∈ {1,2}, there exists a ∈ ∂Ω such that δΩ(xi) = 2j−1+i =
d(a,xi) and B(a, δΩ(xi)/λ) \ B(a,λδΩ(xi)) ⊂ Ω. Since λ = e−4C3

/(40C3) with
C at least as large as the constant in the conclusion of Lemma 8.1, we see
that

d(a, b) ≤ d(b, xi) + d(xi, a) ≤ (c0 + 1)δΩ(xi).

We break the rest of the proof up into two subcases.
Subcase 2(a): We consider the case when x2 is a λ-annulus point. As

δΩ(x2) = 2δΩ(x1),

d(x1, a) ≥ δΩ(x1) =
1
2
δΩ(x2) > 2CaλδΩ(x2).

On the other hand, by Lemma 8.1 δΩ(x1) = 2j ≥ d(x1, b)/c0, and we have

d(x1, a) ≤ d(x1, b) + d(b, a) ≤ c0δΩ(x2) + (c0 + 1)δΩ(x2)

= (2c0 + 1)δΩ(x2) <
1

2Caλ
δΩ(x2).

It follows that x1 ∈ B(a, δΩ(x2)/(2Caλ)) \ B(a,2CaλδΩ(x2)). Hence, by the
annular convexity of X , there is a path β joining x1 and x2 in B(a, δΩ(x2)/
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(2λ)) \ B(a,2λδΩ(x2)) ⊂ Ω with

�d(β) ≤ Cad(x1, x2) ≤ Ca[d(x1, b) + d(x2, b)]
≤ Ca[c0δΩ(x1) + c0δΩ(x2)] ≤ 3C2δΩ(x1).

For all w ∈ |β|, we have

δΩ(w) ≥ min
{(

1
λ

− 1
2λ

)
δΩ(x2), (2λ − λ)δΩ(x2)

}
= λδΩ(x2).

Thus,

k(x1, x2) ≤ �k(β) =
∫

β

1
δΩ(z)

ds(z) ≤ 1
λδΩ(x2)

�d(β)

≤ 3C2δΩ(x1)
λδΩ(x2)

=
3C2

2λ
,

proving inequality (8.1) in this subcase.
Subcase 2(b): x1 is a λ-annulus point. The proof of this subcase is similar

to the proof of Subcase 2(a), and is left to the reader. �

Lemma 8.4. Let a1, a2 ∈ ∂Ω and α : a1 � a2 be a quasihyperbolic geodesic
line. Then for all z ∈ |α|,

δΩ(z) ≤ Kd(a1, a2)

where K = K(δ,Ca, η) is independent of a1, a2, α.

Proof. Let z ∈ |α| and λ = e−4C3
a /(65C2

a ). Two possibilities arise.
Case 1: z is a λ-annulus point. Then there exists a ∈ ∂Ω such that δΩ(z) =

d(z, a) and B(a, δΩ(z)/λ) \ B(a,λδΩ(z)) ⊂ Ω. Lemma 2.3 implies that exactly
one of a1, a2 lies in B(a,λδΩ(z)) with the other one in X \ B(a, δΩ(z)/λ).
Hence,

d(a1, a2) ≥ |d(a2, a) − d(a1, a)| ≥
(

1
λ

− λ

)
δΩ(z).

Case 2: z is a λ-arc point. Then by Lemma 7.3 there is a c-anchor τ : b1 �
b2 for z with c = c(λ,Ca) = c(Ca). Let β : b1 � b2 and αi : bi � ∞ (i = 1,2)
be quasihyperbolic geodesic lines. By Lemma 3.1, there is some x ∈ |β| such
that k(x, |αi|) ≤ 24δ for i = 1,2. By Lemma 8.2, k(x, z) ≤ c′ = c′(δ, c,Ca, η) =
c′(δ,Ca, η). It follows that

k(|α|, |αi|) ≤ k(z, |αi|) ≤ k(z,x) + k(x, |αi|) ≤ c′ + 24δ.

For i = 1,2, set Pi = (a1, ∞, bi, a2). Corollary 5.3 implies that

cr(Pi, kw,ε) ≤ C = C(c′ + 24δ) = C(δ,Ca, η).

Since the natural map is η-quasimöbius, we have

cr(Pi, d) =
d(a1, bi)
d(a1, a2)

≤ η(C).
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By the definition of a c-anchor, we have

δΩ(z) ≤ d(b1, z) ≤ �d(τ) ≤ cd(b1, b2)
≤ c[d(b1, a1) + d(a1, b2)] ≤ 2cη(C)d(a1, a2),

which is the desired estimate. �
The following is an analog of Lemma 8.3 for quasihyperbolic geodesic lines

that do not have ∞ as one of the endpoints. It says that there is a “bana-
na”-shaped region with respect to the metric d around such a line in Ω. The
proof in [V1] holds in our case, and we skip the details.

Lemma 8.5 (Lemma 3.54 of [V1]). Suppose a1, a2 ∈ ∂Ω and α : a1 � a2 is
a quasihyperbolic geodesic line:
(i) There exists ξα ∈ |α| such that if x1, x2 ∈ |α[a1, ξα]| with k(x2, ξα) ≤

k(x1, ξα) or if x1, x2 ∈ |α[ξα, a2]| with k(x2, ξα) ≤ k(x1, ξα), then �d(α[x1,
x2]) ≤ CδΩ(x2) for some C = C(δ, η,Ca).

(ii) If y1, y2 ∈ |α| are such that max{δΩ(y1), δΩ(y2)} ≤ 2d(y1, y2), then
�d(α[y1, y2]) ≤ Cd(y1, y2), where C = C(δ, η,Ca).

9. Sufficiency

In this section, we prove the main result of the paper. This result (Theo-
rem 9.1), together with Theorem 6.2, provides a characterization of uniform
domains among Gromov hyperbolic domains in annular convex metric spaces
in terms of the quasiconformal structure on the Gromov boundary.

The reader is advised to review the three paragraphs before Theorem 6.1
for the notation ∂′Ω and the notion of natural maps.

Theorem 9.1. Let (X,d) be a c-quasiconvex and c-annular convex proper
metric space, and Ω ⊂ X a rectifiably connected open subset with ∂Ω �= ∅.
Suppose that (Ω, k) is δ-hyperbolic and that the natural map φ : (∂∗Ω, kw,ε0) →
(∂′Ω, d) exists (for some w ∈ Ω and ε0 = ε0(δ) = min{1, 1

5δ }) and is η-quasi-
möbius. Then (Ω, d) is c1-uniform with c1 = c1(c, δ, η).

The following lemma reduces Theorem 9.1 to the case of geodesic metric
spaces.

Lemma 9.2. Let (X,d) be a proper c-quasiconvex metric space, and Ω ⊂ X
a rectifiably connected open subset with ∂Ω �= ∅. Let d′ be the length metric
on X associated with d, and k′ the quasihyperbolic metric on Ω ⊂ (X,d′):
(i) For all x, y ∈ X , we have d(x, y) ≤ d′(x, y) ≤ cd(x, y); in particular, (X,d′)

is a proper geodesic space;
(ii) If (X,d) is Ca-annular convex, then (X,d′) is c′-annular convex with

c′ = c′(c,Ca);
(iii) For all x, y ∈ Ω, we have k(x, y)/c ≤ k′(x, y) ≤ ck(x, y);
(iv) If (Ω, d′) is c′-uniform, then (Ω, d) is c′ ′-uniform with c′ ′ = cc′;
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(v) If (Ω, k) is δ-hyperbolic, then (Ω, k′) is δ′-hyperbolic with δ′ = δ′(δ, c);
(vi) Suppose (Ω, k) is δ-hyperbolic and there exists a natural map φ : (∂∗Ω,

kx,ε) → (∂′Ω, d) for some x ∈ Ω and 0 < ε ≤ ε0(δ) and φ is η-quasimöbius.
Then for 0 < ε′ ≤ ε0(δ′) there is a natural map φ′ : (∂∗

k′ Ω, k′
x,ε′ ) → (∂′Ω,

d′) such that φ′ is η′-quasimöbius with η′ = η′(η, δ, c, ε′/ε). Here δ′ is the
constant from (v).

Proof. (i) For any x, y ∈ X , there is a path γ : x � y with �d(γ) ≤ cd(x, y).
Hence d′(x, y) ≤ cd(x, y). The inequality d(x, y) ≤ d′(x, y) is clear. Since
(X,d) is proper, it now follows that (X,d′) is also proper. Being a proper
length space, (X,d′) has to be geodesic.

(ii) This follows easily from (i) and the annular convexity of (X,d).
(iii) For any x ∈ Ω, let δ′

Ω(x) = d′(x,∂Ω). It can be verified that �d(γ) ≤
�d′ (γ) ≤ c�d(γ) for any path γ ⊂ X , and that δΩ(x) ≤ δ′

Ω(x) ≤ cδΩ(x) for all
x ∈ Ω. Let x, y ∈ Ω, γ a geodesic in (Ω, k) connecting x to y, and γ′ a geodesic
in (Ω, k′) joining x and y. Then

k′(x, y) ≤
∫

γ

1
δ′
Ω(z)

d′s(z) ≤
∫

γ

1
δΩ(z)

cds(z) = ck(x, y),

and

k(x, y) ≤
∫

γ′

1
δΩ(z)

ds(z) ≤
∫

γ′

c

δ′
Ω(z)

d′s(z) = ck′(x, y).

(iv) Let x, y ∈ Ω and γ : x � y a c′-uniform path in (Ω, d′). Then

�d(γ) ≤ �d′ (γ) ≤ c′d′(x, y) ≤ c′cd(x, y),

and for any z ∈ γ,

δΩ(z) ≥ 1
c
δ′
Ω(z) ≥ 1

c

1
c′ min{�d′ (γ[x, z]), �d′ (γ[z, y])}

≥ 1
c′c

min{�d(γ[x, z]), �d(γ[z, y])}.

Hence, γ is (c′c)-uniform in (Ω, d).
(v) By (iii), the identity map (Ω, k) → (Ω, k′) is c-bilipschitz. Recall that

(Ω, k) and (Ω, k′) are geodesic metric spaces, see [BHK, Proposition 2.8]. So
by [V3, Theorem 3.18] if (Ω, k) is δ-hyperbolic, then (Ω, k′) is δ′-hyperbolic
with δ′ = δ′(δ, c).

(vi) We claim that the identity map (Ω, k) → (Ω, k′) induces an η1-quasi-
möbius map f : (∂∗Ω, kx,ε) → (∂∗

k′ Ω, k′
x,ε′ ) with η1 = η1(δ, c, ε′/ε). With this

claim, the identity map g : (∂′Ω, d) → (∂′Ω, d′) is used to construct the de-
sired natural map φ′ := g ◦ φ ◦ f −1. Now, we prove the claim. First, assume
ε′ ≥ ε. Let i : (Ω, k) → (Ω, k′) be the identity map. Since by (iii) i is c-
bilipschitz, Proposition 5.10 implies that the boundary map ∂i : (∂∗Ω, kx,ε) →
(∂∗

k′ Ω, k′
x,ε) is η2-quasimöbius with η2 = η2(δ, c). By Lemma 5.5, the identity

map p : (∂∗
k′ Ω, k′

x,ε) → (∂∗
k′ Ω, k′

x,ε′ ) is η3-quasimöbius with η3 = η3(ε′/ε). It
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follows that f = p ◦ ∂i is η1 := η3 ◦ η2-quasimöbius with η1 = η1(δ, c, ε′/ε).
The claim is similarly proved when ε′ < ε: f in this case is the composi-
tion of the identity map (∂∗Ω, kx,ε) → (∂∗Ω, kx,ε′ ) and the boundary map
(∂∗Ω, kx,ε′ ) → (∂∗

k′ Ω, k′
x,ε′ ) of the identity map (Ω, k) → (Ω, k′). �

Theorem 9.1 follows from Lemma 9.2, Theorem 9.3, and Theorem 9.5.

Theorem 9.3. Let (X,d) be a Ca-annular convex proper geodesic met-
ric space, and Ω ⊂ X an unbounded rectifiably connected open subset with
∂Ω �= ∅. Suppose (Ω, k) is δ-hyperbolic and there is an η-quasimöbius natural
map φ : (∂∗Ω, kw,ε0) → (∂′Ω, d) for some w ∈ Ω and ε0 = ε0(δ). Then (Ω, d)
is c1-uniform with c1 = c1(Ca, δ, η).

Proof. Let x1, x2 ∈ Ω, and γ : x1 � x2 be a quasihyperbolic geodesic. By
Theorem 7.4, Lemma 7.6, and the existence of a natural map, there is a
quasihyperbolic geodesic line α : a1 � a2 with a1, a2 ∈ ∂′Ω such that for
i = 1,2, k(xi, |α|) ≤ C = C(δ,Ca); there are points w1,w2 ∈ |α| satisfying
k(xi,wi) ≤ C. Let f : |γ| → |α| be a length map with f(x1) = w1. Then
by Lemma 3.6, for every x ∈ |γ| we have k(f(x), x) ≤ C. We will show that γ
is a uniform path. By Lemma 2.4, we may assume that

(9.1) d(x1, x2) ≥ max{δΩ(x1), δΩ(x2)}.

We first demonstrate that �d(γ[x1, x]) ∧ �d(γ[x2, x]) ≤ CδΩ(x) for all x ∈ |γ|.
If a2 = ∞, then by Lemma 8.3, �d(α[f(x1), f(x)]) ≤ �d(α[a1, f(x)]) ≤
CδΩ(f(x)). Hence, by Lemma 2.6, as k(f(z), z) ≤ C for all z ∈ |γ|, we have

�d(γ[x1, x]) ≤ eC�d(α[f(x1), f(x)]) ≤ CeCδΩ(f(x))

≤ CeCeCδΩ(x) = CδΩ(x).

The last inequality follows from inequality (2.1). We obtain a similar inequal-
ity if a1 = ∞. Now, we assume that a1 �= ∞ �= a2, and let ξα ∈ |α| be the
point given by Lemma 8.5. After switching a1 and a2 if necessary, we may
assume f(x) ∈ |α[a1, ξα]|. We have f(xi) ∈ |α[a1, f(x)]| for some i ∈ {1,2}.
By Lemma 8.5(i) and inequality (2.1),

�d(α[f(xi), f(x)]) ≤ CδΩ(f(x)) ≤ CeCδΩ(x).

Again by Lemma 2.6, we have �d(γ[xi, x]) ≤ CδΩ(x). This completes the proof
that γ satisfies the second condition for a uniform path.

Finally, we need to prove that �d(γ) ≤ Cd(x1, x2). We break the proof up
into two cases.

Case 1: We first assume 2d(f(x1), f(x2)) ≥ max{δΩ(f(x1)), δΩ(f(x2))}.
Note that by Lemma 2.1, as k(f(xi), xi) ≤ C, we have d(f(xi), xi) ≤ eCδΩ(xi).
If a1 = ∞ or if a2 = ∞, then Lemma 2.6 together with Lemma 8.3 now implies
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that
1
C

�d(γ) ≤ �d(α[f(x1), f(x2)]) ≤ C max{δΩ(f(x1)), δΩ(f(x2))}

≤ 2Cd(f(x1), f(x2))
≤ 2C[d(f(x1), x1) + d(x1, x2) + d(f(x2), x2)]

≤ 2C[eCδΩ(x1) + eCδΩ(x2) + d(x1, x2)].

By the basic assumption of (9.1), we made at the beginning of the proof, we
now get

�d(γ) ≤ 2C2[2eCd(x1, x2) + d(x1, x2)] = Cd(x1, x2),
and we are done. If a1 �= ∞ �= a2, then Lemma 2.6 and Lemma 8.5(ii) show
that

1
C

�d(γ) ≤ �d(α[f(x1), f(x2)]) ≤ Cd(f(x1), f(x2)).

Now, we repeat the above argument and again obtain �d(γ) ≤ Cd(x1, x2).
Case 2: We now assume 2d(f(x1), f(x2)) < max{δΩ(f(x1)), δΩ(f(x2))} =

δΩ(f(x2)). Then f(x1) ∈ B(f(x2), δΩ(f(x2))/2). Hence, a geodesic β with
respect to the metric d joining f(x1) and f(x2) is a 1-uniform path (see
Lemma 2.4), and

k(f(x1), f(x2)) ≤
∫

β

1
δΩ(x)

ds(x) ≤ 2
δΩ(f(x2))

�d(β)

=
2

δΩ(f(x2))
d(f(x1), f(x2)) < 1.

So k(x1, x2) = k(f(x1), f(x2)) ≤ 1. Hence, �k(γ) ≤ 1, and by Lemma 2.1,

�d(γ) ≤ eδΩ(x1) ≤ Cd(x1, x2),

where we again used the assumption (9.1) at the end. �

Lemma 9.4. Let (X,d) be a c-quasiconvex c-annular convex metric space,
and Ω ⊂ X be an open subset. If ∂Ω = {p}, then (Ω, d) is 6c2-uniform.

Proof. Let x, y ∈ Ω. We may assume d(x, p) ≤ d(y, p). Set t = d(x, p). First,
assume that d(y, p) ≤ 2t. The annular convexity of (X,d) implies that there
is a path |γ| ⊂ B(p,2ct) \ B(p,2t/c) connecting x and y such that its length
�(γ) ≤ cd(x, y) ≤ 3ct. Observe that |γ| ⊂ Ω. For any z ∈ |γ|, we have

δΩ(z) = d(z, p) ≥ 2t

c
≥ 2�(γ)

3c2
,

and hence γ is a 3c2-uniform path.
Now, assume d(y, p) > 2t. Then d(y, p)/2 ≤ d(x, y) ≤ 2d(y, p). Let n ≥ 2

be the integer with 2n−1t < d(y, p) ≤ 2nt. Take any path γ from y to x, let
xi, 1 ≤ i ≤ n − 1, be the first point on γ with d(xi, p) = 2it. Set x0 = x and
xn = y. Then xi ∈ Ω. Let γi ⊂ B(p, c2it) \ B(p,2it/c) be a path from xi−1 to



1104 D. HERRON, N. SHANMUGALINGAM AND X. XIE

xi with �(γi) ≤ cd(xi−1, xi) ≤ 3c2i−1t. Let γ′ be the concatenation of the γi.
Then

�(γ′) =
n∑

i=1

�(γi) ≤
n∑

i=1

3c2i−1t ≤ 3ct2n ≤ 6cd(y, p) ≤ 12cd(x, y).

Similarly,
∑k

i=1 �(γi) ≤ 3ct2k. Let z ∈ |γk |. Then

δΩ(z) = d(z, p) ≥ 2kt

c
≥ 1

3c2

k∑
i=1

�(γi) ≥ 1
3c2

�(γ′[x, z]). �

Theorem 9.5. Let (X,d) be a Ca-annular convex proper geodesic space,
and Ω ⊂ X a bounded rectifiably connected open subset with ∂Ω �= ∅. Suppose
that (Ω, k) is δ-hyperbolic, and that the natural map φ : (∂∗Ω, kw,ε0) → (∂Ω, d)
exists (for some w ∈ Ω and ε0 = ε0(δ)) and is η-quasimöbius. Then (Ω, d) is
c1-uniform with c1 = c1(Ca, δ, η).

Proof. By Lemma 9.4, if ∂Ω consists of a single point, then Ω is 6C2
a -

uniform. Hence, we may assume ∂Ω contains at least two points. Fix some p ∈
∂Ω and consider (Ip(X), dp). By Theorem 4.1, (Ip(X), dp) is c′-quasiconvex
and c′-annular convex with c′ = c′(Ca). Since (Ω, k) is δ-hyperbolic, Propo-
sition 4.2 implies that (Ω, kp) is δ′-hyperbolic with δ′ = δ′(δ,Ca). Set k′ :=
kp and ε′ = ε′(δ,Ca) := min{ε0(δ), ε0(δ′)}. Proposition 5.6 implies that the
boundary map ∂f : (∂∗

k′ Ω, k′
w,ε′ ) → (∂∗

kΩ, kw,ε′ ) of the identity map f : (Ω,

k′) → (Ω, k) is η1-quasimöbius with η1 = η1(δ,Ca). By Lemma 5.5, the identity
map g1 : (∂∗

kΩ, kw,ε′ ) → (∂∗
kΩ, kw,ε0) is η2-quasimöbius with η2(t) = 41+

ε0
ε′ t

ε0
ε′ .

Similarly, the identity map g2 : (∂∗
k′ Ω, k′

w,ε1
) → (∂∗

k′ Ω, k′
w,ε′ ) is η3-quasimöbius

with η3(t) = 41+ ε′
ε1 t

ε′
ε1 , where ε1 = ε0(δ′). Set φ′ = φ ◦ g1 ◦ ∂f ◦ g2. Then φ′

is a natural map for (Ω, dp) and is η′-quasimöbius with η′ = η′(δ,Ca, η) :=
η ◦ η2 ◦ η1 ◦ η3. Since (Ω, dp) is unbounded, Theorem 9.1 in the unbounded case
now implies that (Ω, dp) is c′ ′-uniform with c′ ′ = c′ ′(δ′, c′, η′) = c′ ′(δ,Ca, η).
Now, the theorem follows from Theorem 4.1(iii). �

10. An application to quasimöbius maps

In this section, we show that quasimöbius maps between domains in annular
convex metric spaces preserve uniformity. This result is quantitative.

Theorem 10.1. For i = 1,2 let (Xi, di) be a proper metric space and
Ωi ⊂ Xi an open subset with ∂Ωi �= ∅. Let h : Ω1 → Ω2 be an η-quasimöbius
homeomorphism. If Ω1 is c1-uniform and (X2, d2) is c2-quasiconvex and c2-
annular convex, then Ω2 is c-uniform with c = c(c1, c2, η).

Theorem 10.1 has been generalized to the more general case where (X2, d2)
is not assumed to be annular convex [X].
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The remainder of this section is devoted to the proof of Theorem 10.1.
Some segments of the proof have been highlighted as lemmas.

Let i ∈ {1,2}. If Ωi is bounded, set X ′
i = Xi and d′

i = di; if Ωi is unbounded,
then fix any base point pi ∈ ∂Ωi and set X ′

i = Spi(Xi) and d′
i = d̂ipi

. Let Ω′
i

be the image of Ωi in X ′
i , and denote by ∂Ω′

i the boundary of Ω′
i in (X ′

i, d
′
i)

and Ω
′
i the closure of Ω′

i in (X ′
i, d

′
i). Let fi : (Ωi, di) → (Ω′

i, d
′
i) be the identity

map, and set h′ := f2 ◦ h ◦ f −1
1 : (Ω′

1, d
′
1) → (Ω′

2, d
′
2). Let η0(t) = 16t.

Lemma 10.2. The map h′ extends to a η′-quasimöbius homeomorphism
Ω

′
1 → Ω

′
2, which is still denoted by h′. Here η′ = η0 ◦ η ◦ η0. In particular,

there exist a1 ∈ ∂Ω′
1, a2 ∈ ∂Ω′

2 such that for any {xi} ⊂ Ω′
1 with xi → a1 we

have h′(xi) → a2.

Proof. The fact that fi is η0-quasimöbius implies that the map h′ : (Ω′
1,

d′
1) → (Ω′

2, d
′
2) is η′-quasimöbius. Since diam(Ω′

i, d
′
i) < ∞, the map h′ is a

quasisymmetric map. Notice that (X ′
i, d

′
i) is proper. By Theorem 6.12 of [V2],

h′ extends to a quasisymmetric map between the closures of the domains. The
continuity implies that the extension is also η′-quasimöbius. Now, the lemma
follows. �

If ∂Ω′
1 is a single point, then ∂Ω′

2 and ∂Ω2 are also single points. By
Lemma 9.4, (Ω2, d2) is 6c2

2-uniform. From now on, we assume that ∂Ω′
1 has

at least two points.
Now, we fix a1 ∈ ∂Ω′

1, a2 ∈ ∂Ω′
2 with the property stated in Lemma 10.2.

Let X ′ ′
i = Iai(X

′
i) = X ′

i \ {ai} and d′ ′
i = (d′

i)ai . Let Ω′ ′
i be the image of Ω′

i in
X ′ ′

i , and denote by ∂Ω′ ′
i the boundary of Ω′ ′

i in (X ′ ′
i , d′ ′

i ) and Ω
′ ′
i the closure

of Ω′ ′
i in (X ′ ′

i , d′ ′
i ). It is readily seen that ∂Ω′ ′

i = ∂Ω′
i\{ai} and Ω

′ ′
i = Ω

′
i\{ai}

as sets. Let
gi : (X ′

i \ {ai}, d′
i) → (X ′ ′

i , d′ ′
i )

be the identity map and set

h′ ′ := g2 ◦ h′ ◦ g−1
1 : (Ω

′ ′
1 , d′ ′

1) → (Ω
′ ′
2 , d′ ′

2).

Since gi is η0-quasimöbius, h′ ′ is η′ ′-quasimöbius, where η′ ′ := η0 ◦ η′ ◦ η0. The
choice of a1 and a2 implies that for any x ∈ Ω′ ′

1 and {xi} ⊂ Ω′ ′
1 with d′ ′

1(xi, x) →
∞ we have d′ ′

2(h′ ′(xi), h′ ′(x)) → ∞. It follows that h′ ′ is η′ ′-quasisymmetric.
Since (Ω1, d1) is c1-uniform, Theorem 4.6(ii) implies that (Ω′

1, d
′
1) is c′

1-
uniform with c′

1 = c′
1(c1). Since ∂Ω′

1 contains at least two points and a1 ∈ ∂Ω′
1,

it follows from Theorem 4.1(iv) that (Ω′ ′
1 , d′ ′

1) is c′ ′
1 -uniform with c′ ′

1 = c′ ′
1(c′

1) =
c′ ′
1(c1). Let ki be the quasihyperbolic metric on (Ω′ ′

i , d′ ′
i ). By Theorem 6.1,

(Ω′ ′
1 , k1) is δ1-hyperbolic with δ1 = δ1(c′ ′

1) = δ1(c1). Let ε1 = ε1(c′ ′
1) be as in

Theorem 6.2. Then for any ε satisfying 0 < ε ≤ ε1, Theorem 6.2 implies that
there is a natural map φ1 : (∂∗

k1
Ω′ ′

1 , k1w1,ε) → (∂′Ω′ ′
1 , d′ ′

1) and the natural map
is η1-quasimöbius with η1 = η1(c′ ′

1 , ε) = η1(c1, ε).
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The fact that (Ω′ ′
1 , d′ ′

1) is c′ ′
1 -uniform implies that (Ω

′ ′
1 , d′ ′

1) is c′ ′
1 -quasiconvex.

On the other hand, since (X2, d2) is c2-quasiconvex and c2-annular convex,
Theorem 4.6(iii) and Theorem 4.1(i) together imply that (X ′ ′

2 , d′ ′
2) is both

c′ ′
2 -quasiconvex and c′ ′

2 -annular convex with c′ ′
2 = c′ ′

2(c2).

Lemma 10.3 (Lemma 2.3 of [V2]). Suppose X is λ1-quasiconvex, q > 0,
λ2 ≥ 0, and f : X → Y is a map such that d(f(x), f(y)) ≤ λ2 whenever d(x,
y) ≤ q. Then d(f(x), f(y)) ≤ (λ1λ2/q)d(x, y) + λ2 for all x, y ∈ X .

Lemma 10.4. For i = 1,2 let (Yi, di) be a proper metric space and Ωi ⊂ Yi

a rectifiably connected open subset with ∂Ωi �= ∅. Suppose that Yi is c′ ′
i -quasi-

convex and that there is an η′ ′-quasisymmetric homeomorphism g : (Ω1, d1) →
(Ω2, d2). Let ki be the quasihyperbolic metric on (Ωi, di). Then the map
g : (Ω1, k1) → (Ω2, k2) is an (L,A)-quasi-isometry with L and A depending
only on c′ ′

1 , c′ ′
2 and η′ ′.

Proof. By symmetry, we only need to show that there exist constants L
and A depending only on η′ ′ and c′ ′

2 such that k2(g(x), g(y)) ≤ Lk1(x, y) + A
for all x, y ∈ Ω1. Since (Ω1, k1) is a geodesic space, by Lemma 10.3, it suffices
to find a constant q depending only on η′ ′ and c′ ′

2 such that k2(g(x), g(y)) ≤ 1
whenever k1(x, y) ≤ q. We choose q to be the number

q = log
(
1 + (η′ ′)−1((2c′ ′

2)−1)
)
.

Notice that q depends only on η′ ′ and c′ ′
2 . We next show q has the required

property.
As Y1 and Y2 are proper and g : (Ω1, d1) → (Ω2, d2) is an η′ ′-quasisymmetric

map, Theorem 6.12 of [V2] implies that g extends to an η′ ′-quasisymmetric
map (Ω1, d1) → (Ω2, d2), which is also denoted by g. Let x, y ∈ Ω1 with
k1(x, y) ≤ q. Then Lemma 2.1 implies d1(x, y) ≤ (eq − 1)δ1(x), where δi(z) =
di(z, ∂Ωi) for any z ∈ Ωi. Let z ∈ ∂Ω1 with δ2(g(x)) = d2(g(x), g(z)). Since g
is η′ ′-quasisymmetric, we have

d2(g(x), g(y))
δ2(g(x))

=
d2(g(x), g(y))
d2(g(x), g(z))

≤ η′ ′
(

d1(x, y)
d1(x, z)

)
≤ η′ ′

(
d1(x, y)
δ1(x)

)
≤ η′ ′(eq − 1) =

1
2c′ ′

2

.

Since (Y2, d2) is c′ ′
2 -quasiconvex, we can find a path γ connecting g(x) and g(y)

such that �(γ) ≤ c′ ′
2d2(g(x), g(y)). It follows that �(γ) ≤ c′ ′

2d2(g(x), g(y)) ≤
δ2(g(x))/2, and hence δ2(z) ≥ δ2(g(x))/2 for all z ∈ γ. Therefore,

k2(g(x), g(y)) ≤
∫

γ

1
δ2(z)

d2s(z) ≤ 2
δ2(g(x))

�(γ) ≤ 1. �

Lemma 10.4 implies that h′ ′ : (Ω′ ′
1 , k1) → (Ω′ ′

2 , k2) is a (L,A)-quasi-isometry
with L and A depending only on c′ ′

1 , c′ ′
2 and η′ ′. Since (Ω′ ′

1 , k1) is δ1-hyperbolic,
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(Ω′ ′
2 , k2) is δ2-hyperbolic with

δ2 = δ2(δ1,L,A) = δ2(δ1, c
′ ′
1 , c′ ′

2 , η′ ′) = δ2(c1, c2, η).

Set ε2 = ε2(c1, c2, η) := min{ε1, ε0(δ2)}. By Proposition 5.10, the bound-
ary map ∂h′ ′ : (∂∗

k1
Ω′ ′

1 , k1w1,ε2) → (∂∗
k2

Ω′ ′
2 , k2w2,ε2) of the map h′ ′ : (Ω′ ′

1 , k1) →
(Ω′ ′

2 , k2) is η′ ′ ′-quasimöbius with η′ ′ ′ = η′ ′ ′(δ1,L,A) = η′ ′ ′(c1, c2, η). By Lem-
ma 5.5, the identity map g : (∂∗

k2
Ω′ ′

2 , k2w2,ε0(δ2)) → (∂∗
k2

Ω′ ′
2 , k2w2,ε2) is η4-quasi-

möbius with η4 = η4(ε0(δ2), ε2) = η4(c1, c2, η). It follows that φ2 := h′ ′ ◦ φ1 ◦
(∂h′ ′)−1 ◦ g is a natural map of (Ω′ ′

2 , d′ ′
2) that is η2-quasimöbius for η2 =

η2(c1, c2, η) := η′ ′ ◦ η1 ◦ η3 ◦ η4, where η3 depends only on η′ ′ ′. Now, Theo-
rem 9.1 implies that (Ω′ ′

2 , d′ ′
2) is c′-uniform with c′ = c′(c′ ′

2 , δ2, η2) = c′(c1, c2, η).
Now, the result follows from Theorem 4.1(iii) and Theorem 4.6(iv).

The proof of Theorem 10.1 is now complete.

11. Two examples and one question

We give two examples that show the conclusion of Theorem 9.1 may fail if
the space X is not quasiconvex and annular convex.

Example 11.1. The space X is a subset of R2. Let B1 be the graph of
y = x sin( 1

x ), −1 ≤ x < 0, B2 the graph of y = (x − 1) sin( 1
x−1 ), 1 < x ≤ 2, B3 =

{(x, y) : x = −1, sin(1) ≤ y ≤ 2}, B4 = {(x, y) : x = 2, sin(1) ≤ y ≤ 2} and B5 =
{(x, y) : − 1 ≤ x ≤ 2, y = 2}. Let Ω =

⋃5
i=1 Bi and X = Ω ∪ {(0,0), (1,0)}. We

equip X with the Euclidean metric. We notice that X is homeomorphic
to [0,1], Ω is homeomorphic to (0,1) and ∂Ω = {(0,0), (1,0)}. The space
(Ω, k) is isometric to the real line, and hence is hyperbolic; ∂∗Ω consists
of two points. The natural map (∂∗Ω, kx,ε) → (∂Ω, d) exists and is trivially
quasimöbius, but (Ω, d) is not uniform. Indeed, for x, y ∈ Ω, let γxy be the
(unique) arc in Ω connecting x to y; then �(γxy) → ∞ as x → (0,0) and
y → (1,0) while d(x, y) ≤ 2. The metric space (X,d) is not quasiconvex.

Example 11.2. Let n ≥ 1 be an integer and set

X = ([−n,n] × {0}) ∪ ({0} × [−1, n]) ⊂ R2.

Let p1 = (n,0), p2 = (−n,0), p3 = (0, n) and p4 = (0, −1). Let X be equipped
with the path metric, and Ω = X\ {p1, p2, p3, p4}. Then ∂Ω = {p1, p2, p3, p4}.
The space (Ω, k) is a tree with 4 rays glued at a common vertex, hence it is
0-hyperbolic. Let w = (0,0) be the origin. The natural map φ : (∂∗Ω, kw,1) →
(∂Ω, d) exists and is a bijection. Notice that for any quadruple Q of distinct
points in ∂∗Ω, we have cr(Q,dw,1) = 1 and cr(Q,d) = 1. It follows that φ
is η-quasimöbius with η(t) = t. The domain (Ω, d) is n-uniform, but is not
c-uniform for any c < n: any path from p1 to p2 has to pass through w,
which is at distance 1 from p4. Therefore, the quantitative statement fails
for Ω ⊂ (X,d). Observe that the metric space (X,d) is geodesic but is not
annular convex.
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Given the main theorem of the paper and the above two examples, it is
natural to ask the following question:

Question 11.1. Let (X,d) be a quasiconvex proper metric space and
Ω ⊂ X a rectifiably connected open subset with ∂Ω �= ∅. Suppose (Ω, k) is
Gromov hyperbolic, and the natural map exists and is quasimöbius. Is (Ω, d)
uniform?

Example 11.2 shows that one can not expect to control the uniformity
constant even if the answer to the above question is yes.
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MR 1086648

[Ge] F. W. Gehring, Uniform domains and the ubiquitous quasidisk, Jahresber. Deutsch.
Math.-Verein 89 (1987), 88–103. MR 0880189

[Gr] A. V. Greshnov, On uniform and NTA-domains on Carnot groups, Sibirsk. Mat.
Zh. 42 (2001), 1018–1035. MR 1861631

[GP] F. Gehring and B. Palka, Quasiconformally homogeneous domains, J. Analyse
Math. 30 (1976), 172–199. MR 0437753

[J] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev

spaces, Acta Math. 147 (1981), 71–88. MR 0631089
[K] R. Korte, Geometric implications of the Poincaré inequality, Results Math. 50
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