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ORBITS OF CONDITIONAL EXPECTATIONS

M. ARGERAMI AND D. STOJANOFF

Abstract. Let N ⊆M be von Neumann algebras and let E : M → N

be a faithful normal conditional expectation. In this work it is shown
that the similarity orbit S(E) of E by the natural action of the invertible
group of GM of M has a natural complex analytic structure and that the
map GM → S(E) given by this action is a smooth principal bundle. It
is also shown that if N is finite then S(E) admits a Reductive Structure.

These results were previously known under the additional assumptions
that the index is finite and N ′ ∩M ⊆ N . Conversely, if the orbit S(E)
has a Homogeneous Reductive Structure for every expectation defined

on M , then M is finite. For every algebra M and every expectation E,
a covering space of the unitary orbit U(E) is constructed in terms of

the connected component of 1 in the normalizer of E. Moreover, this

covering space is the universal covering in each of the following cases:
(1) M is a finite factor and Ind(E) < ∞; (2) M is properly infinite

and E is any expectation; (3) E is the conditional expectation onto the
centralizer of a state. Therefore, in these cases, the fundamental group

of U(E) can be characterized as the Weyl group of E.

1. Introduction

Let M be a von Neumann algebra with group of invertible elements GM
and unitary group UM . Denote by E(M) the space of faithful normal condi-
tional expectations defined on M and by B(M) the algebra of bounded linear
operators on M . Consider the action

L : GM × B(M)→ B(M)

given by
Lg(T ) = gT (g−1 · g)g−1, g ∈ GM , T ∈ B(M).

Let E ∈ E(M) be a conditional expectation. Define the unitary orbit of E by

(1) U(E) = {Lu(E) : u ∈ UM} ⊆ E(M),
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with the quotient topology induced by the norm topology of UM . Thus we
have a natural fibration

(2) ΠE : UM → U(E) given by ΠE(u) = Lu(E), u ∈ UM .
The goal of this work is the study of the homotopy groups and the differential
geometry of the orbit U(E) or, more precisely, of the fibration ΠE . Results
on this problem appear in [4], [3] and [21], mainly under two very restrictive
hypotheses: the finite index condition for E and the condition E(M)′ ∩M ⊆
E(M). In addition, in [5] a detailed study of this problem is given for the
case when E is a state.

In order to study the homotopy type of these orbits we construct a covering
space over each orbit U(E) whose group of covering transformations is the so-
called Weyl group of the expectation E. To describe this structure we need
the following definitions:

At the level of the unitary group UM of M , the isotropy group of the action
L, i.e., Π−1

E (E), is a very well known group, usually called the normalizer of
E. This group has been studied, among other authors, by A. Connes [10] and
Kosaki [18] in connection with crossed product inclusions of algebras (see also
[7]). We shall denote the normalizer of E by

(3) NE = { u ∈ UM : E(uxu∗) = uE(x)u∗, x ∈M }.
Let N = E(M). Then N is a von Neumann subalgebra of M . We also

consider the von Neumann algebra

(4) ME = {x ∈ N ′ ∩M : E(xm) = E(mx) for all m ∈M},
usually called the centralizer of E (see [9] or [14]). In [7] it was shown that
the connected component of 1 in NE is the group

(5) HE = UN · UME
= {vw : v ∈ UN and w ∈ UME

},
which is a closed, open and invariant subgroup of NE . The set of connected
components of NE is a discrete group, called the Weyl group of E:

(6) W (E) = π0(NE) ' NE/HE .
This group has several characterizations in very different contexts (see [18],
[7] and [8]).

We show that, for any von Neumann algebra M and any E ∈ E(M), the
space X (E) = UM/HE and its natural projection onto U(E) ' UM/NE (see
diagram (9) below) defines a covering map whose group of covering transfor-
mations can be identified with the Weyl group W (E) (Theorem 2.3).

In all examples we know, X (E) is actually the universal covering for U(E),
and the fundamental group π1(U(E), E) therefore coincides with the Weyl
group W (E). We conjecture that this is true for all von Neumann algebras
M and all conditional expectations E ∈ E(M). In Theorem 2.6 we show that
if any of the conditions
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(1) M is properly infinite,
(2) M is finite, dimZ(M) <∞ and E has finite index,
(3) E = Eϕ ∈ E(M,Mϕ) is the canonical expectation associated with

a faithful normal state ϕ of M , i.e., Mϕ is the centralizer of ϕ and
ϕ ◦ E = ϕ

holds, then X (E) is simply connected and therefore is the universal covering
for the orbit U(E). Consequently,

π1(U(E), E) 'W (E).

In order to study the differential geometry of the orbit of an expectation
E we consider the entire similarity orbit

(7) S(E) = {Lg(E) : g ∈ GM} ⊆ B(M)

and the fibration (with the same notation as its restriction to UM )

(8) ΠE : GM → S(E) given by ΠE(g) = Lg(E), g ∈ GM .

Note that Lg(E) is not necessarily a conditional expectation for all g ∈ GM .
Nevertheless we prefer to use this setting, since the group GM is a complex
analytic Banach Lie group and the orbit S(E) can be given a complex analytic
manifold structure. In any case, all geometrical results obtained for S(E) also
hold for the unitary orbit U(E), if one replaces “complex analytic” by “real
analytic”.

In order to study the differential geometry of similarity orbits we need
to generalize several results of [7] mentioned above to the invertible groups
setting. This is carried out in Section 3, where the connected component of
the isotropy group IE of the action L at E is characterized (Proposition 3.3)
and the new Weyl group, which appears naturally, is shown to be the same
group as the “old” one (Theorem 3.5).

In Section 4 we first show that S(E) can always be given a unique complex
analytic differential structure such that the map ΠE defined in (8) becomes
a submersion (Theorem 4.8). The key tool is the construction, in the style
of [9], of a conditional expectation F ∈ E(M) onto the centralizer ME which
commutes with E. This allows us to obtain a complement in M for the
subspace N + ME , which can be naturally identified with the tangent space
of S(E) at E.

We next show that if N = E(M) is a finite von Neumann algebra, then
S(E) has a unique structure of a Homogeneous Reductive Space (HRS) (see
Definition 4.10 and Proposition 4.13). This family of HRS’s is of geometrical
interest. Indeed, perhaps the most general families of examples of infinite di-
mensional HRS’s modeled in operator algebras are studied in [1] and [3]. All
these examples can be represented as quotients of the unitary (or invertible)
group of an algebra M by the unitary (or invertible) group of some subalgebra.
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However, this is not possible in the case of the orbit of a conditional expecta-
tion. Indeed, the isotropy group IE can be large enough to generate the entire
algebra M , whereas S(E) ' GM/IE . Moreover, the map Π0 : GM → GM/ZE
(= Y(E)), where ZE is the connected component of 1 in IE , also defines an
HRS if N is finite. Actually (see Theorem 4.8), this is how we exhibit the
HRS structure of S(E), since Y(E) is a covering space for S(E) and these
spaces therefore are locally homeomorphic (and diffeomorphic). But Y(E)
cannot be represented as a quotient as before (if N 6⊆ ME and ME 6⊆ N),
since, by Proposition 4.6, ZE = GME

·GN , which is not the invertible group
of any subalgebra of M .

At the end of Section 4 we show that the existence of HRS structures for
any expectation E ∈ E(M) forces M to be a finite von Neumann algebra
(Theorem 4.17).

2. The universal covering of U(E)

Let N ⊆ M be von Neumann algebras. From now on we shall denote by
E(M,N) the space of faithful normal conditional expectations E : M → N .
Let E ∈ E(M,N). Recall the definitions of the sets U(E), NE , ME and
HE associated with E, given in equations (1), (3), (4) and (5), respectively.
Consider the space X (E) = UM/HE , with the quotient topology of the norm
topology of UM , and denote by Π0 the projection from UM onto X (E). The
situation we shall study is the following: we have a commutative diagram

(9)

UM
Π0−−−−−→ X (E) = UM/HE

ΠE ↘

y Φ

U(E) ' UM/NE

where the map Φ is defined by Φ(uHE) = ΠE(u) ∼ uNE , u ∈ UM . In [4] it
was shown that when N ′ ∩M ⊆ N , and the Jones index of E is finite, then
the M -unitary orbit of the Jones projection e of E,

UM (e) = {ueu∗ : u ∈ UM} ' UM/UN ,

is a covering space for U(E). Note that, under the above assumptions, we have
UM (e) ' X (E), since both spaces can be identified with UM/UN and since
(see [4]) the quotient topology and the norm topology coincide on UM (e).

In this paper we will show that the map Φ is always a covering map, without
the two hypotheses appearing in [4], and that X (E) = UM/HE is a covering
space for U(E), with group of covering transformations W (E). Moreover, in
several cases (see 2.6) Φ is the universal covering of U(E) and, in particular,
π1(U(E)) 'W (E).
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Note that the Weyl group W (E) = NE/HE , since it is contained in X (E),
has a natural action on X (E) given by right multiplication. This action is
well defined because HE is a normal subgroup of NE .

Proposition 2.1. Let N ⊆ M be von Neumann algebras and let E ∈
E(M,N) be a faithful normal conditional expectation. Then, with the nota-
tions of diagram (9), we have:

(1) The map Φ is continuous.
(2) For any u ∈ UM , the fibre by Φ of LuE ∈ U(E) is precisely the orbit

of Π0(u) ∈ X (E) by the action of W (E).
(3) The unitary orbit U(E) is homeomorphic to X (E)/W (E) (i.e., the

space of orbits by the action of W (E) in X (E)), both considered with
the quotient topology.

Proof. Assertions (1) and (2) follow immediately from the commutative di-
agram (9) and the fact that Φ−1(E) = W (E). Let ρ : X (E) → X (E)/W (E)
be the canonical projection. To prove (3), consider the map Φ̄ : X (E)/W (E)→
U(E) given by Φ̄(ρ(h)) = Φ(h), h ∈ X (E). Then Φ̄ is the desired homeomor-
phism. Indeed, it is clear that Φ̄ is well defined and bijective. The map Φ̄ is
also continuous, since Φ = Φ̄ ◦ ρ is continuous. On the other hand, let U be
an open set in X (E)/W (E). By the full commutative diagram

(10)

UM
Π0−−−−−→ X (E) = UM/HE

ρ−−−−−→ X (E)/W (E)

ΠE ↘ Φ

y Φ̄↙

U(E) = UM/NE
and the fact that ΠE is an open map, it is clear that Φ̄(U) is open in U(E). �

Remark 2.2. In order to show that the map Φ defined in diagram (9)
is a covering map we shall use the following well known result of algebraic
topology (see, for instance, Chapter 1 of [13]):

Let X be a locally pathwise connected and connected topological space, and
let G be a group of homeomorphisms of X that operates properly discontinu-
ously (i.e., for each x ∈ X there exists an open set Vx such that Vx∩g(Vx) = ∅
for every g ∈ G, g 6= e). Consider the map p : X → X/G. Then X is a cover-
ing space for X/G with covering map p and group of covering transformations
G, and p∗(π1(X,x0)) is a normal subgroup of π1(X/G, p(x0)).

Theorem 2.3. Let N ⊆M be von Neumann algebras and let E ∈ E(M,N)
be a faithful normal conditional expectation. Then, with the notations of dia-
gram (9), the space X (E) is a covering space for U(E), with covering map Φ
and group of covering transformations W (E).
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Proof. By the previous remark, it suffices to show that W (E) operates
properly discontinuously on X (E). Fix u ∈ UM and consider the open set

Wu = {w ∈ UM : ‖w − u‖ < 1/2}.
For each element k ∈ W (E), we choose some uk ∈ NE such that Π0(uk) =
ukHE = k. Since the map Π0 is open, we can consider the open set

Vu = Π0(Wu) ⊆ X (E).

Note that, for k ∈ W (E), Vuk = Π0(Wuuk). In order to prove that the
action of W (E) in X (E) is properly discontinuous, we only need to show that
Vu ∩ Vuk = ∅ for every k ∈ W (E) with k 6= 1. Suppose that this is not true.
Then, for some k ∈ W (E), k 6= 1, there exist w1, w2 ∈ Wu and z ∈ HE such
that w1uk = w2z. Then

w∗1w2 = ukz
∗ ∈ NE \ HE .

But, since w1, w2 ∈Wu,

‖w∗1w2 − 1‖ = ‖w2 − w1‖ < 1.

This implies that w∗1w2 ∈ HE (see [7] or the proof of Proposition 3.3 below),
which is a contradiction. �

Corollary 2.4. The group Ψ∗(π1(X (E))) is a normal subgroup of
π1(U(E)), and we have the isomorphism

π1(U(E))/Ψ∗(π1(X (E))) 'W (E).

Proof. By Proposition 2.1, the fibre Ψ−1(E) equals W (E). The assertion
follows from the homotopy exact sequence induced by the covering map Ψ. �

Remark 2.5. Let ϕ be a faithful normal state of the von Neumann algebra
M . In [5] Andruchow and Varela show that the unitary orbit of ϕ,

U(ϕ) = {ϕ(u∗ · u) : u ∈ UM},
is simply connected. Therefore the unitary group of the centralizer Mϕ of ϕ
coincides with the normalizerNϕ of ϕ, considered as a conditional expectation.
Then the covering space is given by

X (ϕ) = UM/UMϕ = UM/Nϕ ' U(ϕ),

and U(ϕ) is its own universal covering.
Moreover, if Eϕ ∈ E(M,Mϕ) is the canonical expectation such that ϕ◦Eϕ =

ϕ, then U(ϕ) ' X (Eϕ) and so U(ϕ) is the universal covering for U(Eϕ).
Indeed, since

X (Eϕ) = UM/UMϕ
UMEϕ

and U(ϕ) ' UM/UMϕ
,

it suffices to show that MEϕ ⊆ Mϕ. But this follows from the definition of
MEϕ (see (4)) and the fact that ϕ ◦ Eϕ = ϕ. This gives a large class of
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conditional expectations for which the covering space X (E) is the universal
covering. We extend this class in the following theorem.

Theorem 2.6. Let M be a von Neumann algebra, let E ∈ E(M), and
suppose that one of the following conditions holds:

(1) M is properly infinite.
(2) M is a II1 factor and E has finite index.
(3) E = Eϕ ∈ E(M,Mϕ) is the canonical expectation associated with a

faithful normal state ϕ of M as in Remark 2.5.
Then X (E) is simply connected, and hence is the universal covering for the
orbit U(E). Consequently,

π1(U(E), E) 'W (E).

Proof. Consider the fibre bundle

(11) Π0 : UM → UM/HE = X (E).

Recall that a fibre bundle gives rise to an exact sequence of homotopy groups.
In our case, the bundle Π0 yields the exact sequence

(12) . . .→ π2(X (E))→ π1(HE)
i∗
→ π1(UM )→ π1(X (E))→ π0(HE) = 0,

where 1 is taken as base point for the homotopy groups of the unitary groups
and [1]X (E) = HE is the base point for X (E). Here i∗ denotes the homomor-
phism induced by the inclusion i : HE ↪→ UM . We can then use results by
Handelmann [15] and Schröeder [27] on computing the homotopy group of the
unitary group of a von Neumann algebra.

If condition (1) holds, the result follows by appealing to the homotopy
exact sequence (12), and the fact [15] that UM has trivial π1 group if M is
properly infinite.

Suppose next that (2) holds. Since M is a II1 factor and Ind(E) <∞ it is
known (see [25]) that N = E(M) is also of type II1 and dimZ(N) <∞. Let
us recall the following results (see [5], [15] and [27]):

(1) If M is a von Neumann algebra of type II1, then π1(UM ) is isomorphic
to the additive group Z(M)sa of selfadjoint elements in Z(M).

(2) Let j : UN → UM be the inclusion map. Then the image of the
homomorphism j∗ : π1(UN ) → π1(UM ) ' Z(M)sa is equal to the
additive group generated by the set {tr(p) : p projection in N}, where
tr is the center valued trace of M .

In our case, π1(UM ) ' R. Let k : UN → HE be the inclusion map. Clearly, i∗◦
k∗ = j∗, where i∗ is the map defined in (12). Then j∗(π1(UN )) ⊆ i∗(π1(HE)).
Let p ∈ Z(N) be a minimal projection. Then pNp is a II1 factor and the trace
of projections in pNp generates the additive group R. Hence i∗ is surjective
and π1(X (E)) must be trivial by the homotopy exact sequence (12).

If condition (3) holds, the result follows from [5] and Remark 2.5. �



250 M. ARGERAMI AND D. STOJANOFF

Remark 2.7. Using the same techniques as in the proof of this theorem,
it can be shown that X (E) is simply connected if Ind(E) < ∞, M is finite
and dimZ(M) <∞.

Example 2.8. Let M be a von Neumann algebra and let p ∈ M be a
projection. Then p determines the conditional expectation Ep : M → N =
{p}′ ∩M given by

Ep(x) = pxp+ (1− p)x(1− p), x ∈M.

Denote by U(p) = {upu∗ : u ∈ UM} the unitary orbit of p, which is a connected
component of the Grassmannians of M . Then

U(p) ' X (Ep)

in the sense that both spaces are homeomorphic to UM/UN , since N ′∩M ⊆ N
and so HEp = UN . Note that on U(p) we consider the norm topology as a
subset of M (see [12] or [26]). Using Theorem 2.6 it is not difficult to show
that the Grassmannian U(p) is always simply connected. Indeed, π1(U(p))
splits in the finite and the properly infinite parts of M , and parts (1) and (3)
of Theorem 2.6 can be applied (see also [2]).

The Weyl group of Ep is trivial if 1− p 6∈ U(p), and it has two elements if
1 − p ∈ U(p), since in this case, for any u ∈ UM satisfying upu∗ = 1 − p we
have LuEp = E1−p = Ep and NEp = UN ∪ u · UN .

A similar study can be made for systems of projections, i.e., n-tuples
P = (p1, . . . , pn) of pairwise orthogonal projections such that

∑
pi = 1 (see

[11]). Using Theorem 2.6, we again see that the joint unitary orbit of P is
simply connected and is homeomorphic to the space X (EP ) associated with
the conditional expectation EP (x) =

∑
pixpi, x ∈ M . The Weyl group is a

subgroup of the permutation group Sn, determined by those projections in P
that are equivalent (and therefore unitary equivalent) in M .

3. The Weyl group, invertible case

In [7], the Weyl group was defined in terms of the unitary group of the
von Neumann algebra M . Our aim in this section is to extend this work to
the case when the action over the conditional expectations is given by the
invertible (instead of unitary) elements.

Let us recall some definitions. Let M be a von Neumann algebra. We
consider the action L : GM×B(M)→ B(M) given by Lg(T ) = gT (g−1 ·g)g−1,
g ∈ GM , T ∈ B(M). Let E ∈ E(M) be a conditional expectation. Then, as
we have already mentioned, Lg(E) is not necessarily a conditional expectation
for all g ∈ GM , but we can still consider the orbit of the expectation S(E) =
{Lg(E) : g ∈ GM} and the fibration ΠE : GM → S(E) given by ΠE(g) =
Lg(E), g ∈ GM . The role, played in the unitary case by the normalizer
NE = {u ∈ UM : Lu(E) = E} as the isotropy group of the action, is now
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played by

(13) IE = {g ∈ GM : Lg(E) = E}.
Let N = E(M) ⊆ M . Then N is a von Neumann algebra. Recall that the
centralizer of E is the von Neumann algebra ME = {x ∈ N ′ ∩M : E(xm) =
E(mx) for all m ∈M}. Define the group

(14) ZE = GME
·GN ⊆ IE .

Proposition 3.1. Let M be a von Neumann algebra, let E ∈ E(M), and
consider the groups IE and ZE defined by (13) and (14). Then we have:

(1) If g ∈ IE, then gE(g−1) = E(g−1)g ∈ME.
(2) If g ∈ IE and E(g−1) is invertible, then g ∈ ZE.
(3) IE ∩M+ = Z+

E .

Proof. If g ∈ IE , then gE(g−1) = gE(g−1g−1g) = E(g−1)g. Let N =
E(M) and b ∈ N . Then

gE(g−1)b = gE(g−1b) = gE(g−1bg−1g) = E(bg−1)g = bE(g−1)g,

so that gE(g−1) ∈ N ′ ∩M . If x ∈M , then, since gNg−1 = N , we have

E(gE(g−1)x) = E(E(g−1)gx) = E(g−1)E(gx)

= E(g−1)gE(xg)g−1 = E(xgE(g−1)),

thus proving that gE(g−1) ∈ME .
If E(g−1) is invertible, then g = gE(g−1) · E(g−1)−1 ∈ GME

GN = ZE
by (1). Finally, if g ∈ IE and g > 0, then g−1 > 0, and, as E is faithful,
E(g−1) > 0. Hence E(g−1) ∈ GN , and by (2) we have g ∈ ZE . �

Lemma 3.2. If g ∈ GM and ‖g − 1‖ < ε < 1, then

‖g−1 − 1‖ < ε

1− ε
.

In particular, if ε ≤ 1/2, then

‖g−1 − 1‖ < 2ε.

The proof of this result is straightforward.

Proposition 3.3. Let M be a von Neumann algebra, let E ∈ E(M), and
consider the groups ZE ⊆ IE defined by (13) and (14). The group ZE is open,
closed and connected in IE. Moreover, the connected component of IE at any
u ∈ IE is exactly u · ZE.

Proof. We first show that ZE is open at 1. Let g ∈ IE be such that ‖g−1‖ <
1/2. Then, by Lemma 3.2, we have ‖g−1−1‖ < 1 and thus ‖E(g−1)−1‖ < 1,
which implies that E(g−1) is invertible. Thus, by Proposition 3.1, we have
g ∈ ZE .
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Now let h ∈ ZE , and let V be a neighborhood of 1 such that V ∩ IE ⊆ ZE .
Then hV is a neighborhood of h and, if g ∈ hV , then h−1g ∈ V , so that
h−1g ∈ ZE . Since h ∈ ZE , we have g ∈ ZE , so ZE is open. Clearly gZE is
open for every g ∈ IE , and since we can obtain IE as a disjoint union of open
sets gZE , these sets are also closed. It is easily seen that ZE is connected,
since ZE is the product of two connected groups. The last assertion of the
proposition is now clear. �

We deduce that the group ZE is closed, open and invariant in IE . Thus
we have a new Weyl group defined by

(15) W1(E) = π0(IE) ' IE/ZE
We next show that this new Weyl group agrees with the old (unitary)

group. We first need a lemma.

Lemma 3.4. With the above notations, we have

HE = UME
UN = NE ∩GME

GN = NE ∩ ZE .

Proof. Let w ∈ NE ∩ ZE . Then w = mn, with m ∈ GME
, n ∈ GN . Using

the polar decomposition of m and n and the fact that ME ⊆ N ′∩M , we have

w = vm|m| · vn|n| = vmvn|m||n| = vmvn|mn| = vnvm|w| = vnvm,

where vm ∈ UME
, vn ∈ UN . Hence w ∈ HE . �

We now have the technical tools we need to prove that the two Weyl groups
coincide.

Theorem 3.5. Let M be a von Neumann algebra, and let E ∈ E(M).
Then the Weyl group obtained by the unitary construction and the Weyl group
obtained by the invertible construction are isomorphic, i.e., we have W1(E) =
W (E).

Proof. Let ϕ : W (E) → W1(E) be given by ϕ([u]W (E)) = [u]W1(E), for
u ∈ NE . We claim that this map is well defined and an isomorphism. That
ϕ is well defined is clear, since HE ⊆ ZE . To show that ϕ is an isomorphism,
note first that, by Lemma 3.4, ϕ is injective. To see that ϕ is onto, let g ∈ IE .
We must find a unitary element u ∈ NE such that [g]W1(E) = [u]W1(E).

Since g ∈ IE , we have (g∗)−1 ∈ IE (by adjoining and using the fact that E
is ∗-linear), and so g∗ ∈ IE , since IE is a group. Therefore g∗g ∈ IE and, by
Proposition 3.1, we have g∗g ∈ ZE . Hence there exist m ∈ ME , n ∈ N with
g∗g = mn. Using again the polar decompositions m = vm|m| and n = vn|n|
with vm ∈ UME

and vn ∈ UN , we obtain

g∗g = mn = vm|m| · vn|n| = vmvn|m||n|
= vmvn|mn| = vmvn|g∗g| = vmvng

∗g.
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This implies that vmvn = 1, and so we can write g∗g = mn with m ∈ M+
E ,

n ∈ N+. Hence |g| = m1/2n1/2 ∈ ZE . By the polar decomposition of g, there
is a unitary u ∈ UM with g = u|g|. Since |g| ∈ ZE and g ∈ IE , it follows that
u ∈ UM ∩ IE = NE , and so [g] = [u]. Finally, since both groups are discrete,
the isomorphism ϕ is also a homeomorphism. �

Remark 3.6. Nearly all constructions given in this paper can be extended
trivially to C∗ algebras. However, in Proposition 3.3 problems appear, since
the invertible group of a C∗ algebra need not be connected.

4. Differential geometry of S(E)

In this section we only consider von Neumann algebras with separable
predual in order to ensure the existence of faithful normal states.

Let N ⊆ M be von Neumann algebras, and let E ∈ E(M,N) and S(E) =
{gE(g−1 · g)g−1 : g ∈ GM}. The differential geometry of the orbit S(E)
has been studied by Larotonda and Recht [21] under the assumption that
N ′ ∩M ⊆ N . Larotonda and Recht showed that, in this case, S(E) admits
a differentiable structure and the map ΠE : GM → S(E) defines a reductive
structure on S(E).

The aim of this section is to remove this hypothesis. We will show that
the orbit S(E) can always be given a differentiable structure, and even a
unique reductive structure if N is finite. We will also show that the existence
of reductive structures for all conditional expectations E ∈ E(M) forces the
algebra M to be finite.

4.1. Differentiable structure. We state here some definitions and three
classical theorems from Banach-Lie group theory that will be used in the
sequel. For a general reference on this subject, see, for example, [20] or [19].

Definition 4.1. Given a Lie-Banach group G (which may be complex
analytic, real analytic, or C∞), we denote by L(G) the Lie algebra of G,
which will always be identified (as a complex or real Banach space) with the
tangent space T1(G) of G at the identity. A subgroup H of G is called a
regular subgroup if it is also a Lie-Banach group (of the same type) and if
T1H is closed and complemented in T1G.

Theorem 4.2. Let G be a Lie group and let H ⊆ G be a subgroup such
that there exist open sets U, V with 0 ∈ U , 1 ∈ V and a decomposition T1(G) =
X ⊕ Y (as a Banach space) satisfying

(1) exp : U → V is a diffeomorphism,
(2) H ∩ V = exp(X ∩ U).

Then H is a regular subgroup of G and T1(H) = X.
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Theorem 4.3. Let G be a Lie group, and let H ⊆ G be a regular subgroup.
Then we have:

(1) G/H has a unique structure of differentiable manifold such that G→
G/H is a submersion.

(2) G→ G/H is a principal bundle with structure group H.
(3) The action G×G/H → G/H is smooth.

Theorem 4.4. If H is a subgroup of a Lie group G and the connected
component H1 of 1 in H is a regular subgroup of G, then H is a regular
subgroup of G if and only if H1 is open in H.

In the following result we construct a conditional expectation that will be
essential in order to characterize the tangent space of S(E) (see also [9]).

Proposition 4.5. Let N ⊆ M be von Neumann algebras and let E ∈
E(M,N). Fix a faithful normal state ϕ on N , and set ψ = ϕ ◦E. Then there
exists a unique conditional expectation F ∈ E(M,ME) such that EF = FE
and ψ ◦ F = ψ.

Proof. Denote by σψt , t ∈ R, the modular group of M induced by ψ. Since
ψ = ϕ ◦ E = ψ ◦ E, we have σψt ◦ E = E ◦ σψt for all t ∈ R (see [9] or [28]).
By direct computation we deduce that σψt (ME) = ME for every t ∈ R. We
take F ∈ E(M,ME) to be the unique expectation with ψ ◦ F = ψ obtained
by Takesaki’s theorem on the existence of conditional expectations (see [28]).
Since E|ME

∈ E(ME ,Z(N)), we have E ◦F ∈ E(M,Z(N)) and ψ ◦ (E ◦F ) =
ψ. Representing M as usual in L2(M,ψ), the three conditional expectations
E,F,E ◦F give rise to three orthogonal projections e, f, g with g = ef . Since
g = g∗, we have ef = fe, and so EF = FE. �

Using the expectation F : M →ME from Proposition 4.5, we can define

(16) ∆ = E + F − EF ∈ B(M).

Note that ∆ is a projection, since E and F commute. The image of ∆ is the
closed subspace ME +N of M , which can also be written as a direct sum:

Im ∆ = (ME ∩ kerE)⊕N.

Proposition 4.6. With the preceding notations, ZE is a regular subgroup
of GM and T1ZE = (ME ∩ kerE)⊕N .

Proof. In order to use Theorem 4.2, we need a decomposition

T1GM = X ⊕ Y
with X = ME + N , the natural candidate for T1ZE . Such a decomposition
exists because, as GM is open in M , we have T1GM = M and so the projection
∆ introduced above gives the desired decomposition.
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Note that the exponential map of the Banach-Lie group GM coincides
with the usual exponential map m 7→ em, if we identify L(GM ) with M .
Since exp is a local diffeomorphism, we can fix an open set 0 ∈ U such that
exp : U → V = exp(U) is a diffeomorphism. Let 0 ∈ U ′ ⊆ U be an open
set and let x ∈ U ′ ∩ X. Then x = a + b with a ∈ ME , b ∈ N , and since a
and b commute, we have exp(a+ b) = exp(a) exp(b) with exp(a) ∈ GME

and
exp(b) ∈ GN . This shows that exp(U ′ ∩X) ⊆ exp(U ′) ∩ ZE .

Let 0 < δ < 1/2 be such that

BM (1, δ) = {y ∈M : ‖y − 1‖ < δ} ⊆ V.
Let y ∈ BM (1, δ)∩ZE , and let g ∈ME and h ∈ N be such that y = gh. Note
that F (h) is in GZ(N). Indeed, since h ∈ N , we have F (h) ∈ Z(N). To see
that F (h) is invertible note that

‖gF (h)− 1‖ = ‖F (gh− 1)‖ ≤ ‖gh− 1‖ < δ < 1.

Now write y = gh = (gF (h))(F (h)−1h). Then ‖gF (h)− 1‖ < δ as before and
by Lemma 3.2 it follows that

‖F (h)−1g−1 − 1‖ < 2δ.

Note also that ‖gh−1‖ < δ < 1 implies ‖gh‖ < 2. Collecting these estimates,
we obtain

‖F (h)−1h− 1‖ = ‖F (h)−1g−1gh− 1‖
≤ ‖gh‖‖F (h)−1g−1 − 1‖+ ‖gh− 1‖
< 4δ + δ = 5δ.

Let ε > 0 and δ be small enough such that BM (0, 2ε) ⊆ U and

exp−1(BM (1, 5δ)) ⊆ BM (0, ε).

Set V ′ = BM (1, δ) ⊆ V and U ′ = exp−1(V ′) ⊆ U . Let y ∈ V ′ ∩ ZE .
Then exp−1(y) ∈ U ′ and, since gF (h) and F (h)−1h are in BM (1, 5δ), their
preimages a = exp−1(gF (h)) ∈ ME and b = exp−1(F (h)−1h) ∈ N satisfy
a+ b ∈ U ∩X. Since exp(a+ b) = y = exp(exp−1(y)) and exp is injective in
U , this implies a+ b = exp−1(y) ∈ U ′. Hence exp(U ′ ∩X) = V ′ ∩ ZE . �

Corollary 4.7. Let M be a von Neumann algebra and let E ∈ E(M).
Then, with the preceding notations, the isotropy group IE is a regular subgroup
of GM .

Proof. We already know that ZE is a regular subgroup, that it is the con-
nected component of 1 in IE and that it is open in IE . Thus, by Theorem
4.4, IE is a regular subgroup. �

Theorem 4.8. Let M be a von Neumann algebra and let E ∈ E(M) be
a faithful normal conditional expectation. Then the similarity orbit S(E) '
GM/IE, with the quotient topology of the norm topology of GM , can be given a
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unique complex analytic manifold structure such that it is a homogeneous space
(i.e., the map ΠE : GM → S(E) is a principal bundle with group structure IE
and ΠE : GM → S(E) is a submersion).

Proof. Apply Corollary 4.7 and Theorem 4.3. �

Remark 4.9. The analogue of Theorem 4.8 remains true (with complex
analytic replaced by real analytic) for the unitary orbit U(E) ' UM/NE under
the action of the real analytic Banach-Lie group UM .

4.2. Reductive Structure. We now consider conditions under which we
can find a reductive structure in S(E) and characterize such a structure. We
first recall the definition of Homogeneous Reductive Spaces (see also [23]):

Definition 4.10. A Homogeneous Reductive Space (HRS) is a differen-
tiable manifold Q and a smooth transitive action of a Banach-Lie group G on
Q, L : G×Q → Q with the following properties:

(1) Homogeneous Structure: For each ρ ∈ Q the map

Πρ : G → Q
g 7→ Lgρ

is a principal bundle with structure group Iρ = {g ∈ G : Lgρ = ρ}
(called the isotropy group of ρ).

(2) Reductive Structure: For each ρ ∈ Q there exists a closed linear sub-
space Hρ of the Lie algebra L(G) of G such that L(G) = Hρ ⊕L(Iρ),
which is invariant under the natural action of Iρ and such that the
distribution ρ 7→ Hρ is smooth.

In order to give an HRS structure to the orbit S(E) under the action of
GM , we must find a decomposition

L(GM ) = L(IE)⊕KE
such that the “horizontal” space KE verifies

(17) g(KE)g−1 = KE for all g ∈ IE .
Recall that L(GM ) can be identified with M , because GM is open in M .
Also, L(IE) can be regarded as T1IE , and also as T1(IE)1 (where (IE)1 is the
connected component of IE at 1). Since, by Proposition 3.3, the connected
component of IE at 1 is ZE , we have T1IE = T1ZE = L(ZE). Also, by Propo-
sition 4.6, we have L(ZE) = ME +N . Hence, by (16), such a decomposition
of M can be found. It remains to show that we can find a complement of
ME +N verifying the equivariance property (17).

Lemma 4.11. Let B ⊆ A be algebras, let P : A→ B be a linear projection
and let g ∈ GA be such that g(kerP )g−1 ⊆ kerP and gBg−1 = B. Then we
have P (gxg−1) = gP (x)g−1 for every x ∈ A.



ORBITS OF CONDITIONAL EXPECTATIONS 257

The proof of this result is straightforward.

Lemma 4.12. Let N ⊆M be von Neumann algebras, and let E ∈ E(M,N)
be a faithful normal conditional expectation. Suppose that there exists a faith-
ful normal tracial state ϕ of N . Let ψ = ϕ ◦ E and let F ∈ E(M,ME) be as
in Proposition 4.5. Then we have:

(1) The expectation F is unique in the sense that for any other faithful
normal tracial state ρ in N , the expectation Fρ ∈ E(M,ME) induced
by ρ ◦ E is equal to F .

(2) We have IE ⊆ IF = {g ∈ GM : gF (·)g−1 = F (g · g−1)}.

Proof. We first show the uniqueness of F . Let ρ be a faithful normal tracial
state of N , and let Fρ ∈ E(M,ME) be the corresponding expectation given
by Proposition 4.5. Then Fρ|N ∈ E(N,Z(N)) is the center valued trace of N ,
since ρ ◦ Fρ|N = ρ (see, for example, [17, 8.3.10]). Then

ψ ◦ Fρ = ψ ◦ E ◦ Fρ = ψ ◦ Fρ ◦ E = ψ ◦ Fρ|N ◦ E = ψ ◦ F |N ◦ E = ψ ◦ F,
and so Fρ = F .

To prove (2), fix g ∈ IE . It is easy to see that gMEg
−1 = ME . Taking

the polar decomposition g = |g∗|u, we see by Proposition 3.1 and the proof
of Theorem 3.5 that u ∈ IE ∩ UM = NE and |g∗| ∈ ZE . Let us first verify
that u ∈ IF . Indeed the expectation Fu = Lu(F ) = uF (u∗ · u)u∗ satisfies
Fu ∈ E(M,ME), Fu ◦ E = E ◦ Fu, and ϕ(u · u∗) ◦ E ◦ Fu = ϕ(u · u∗) ◦ E.
Thus, Fu is the expectation which corresponds by Proposition 4.5 to the
trace ϕ(u · u∗) of N . By part (1) of the lemma, it follows that Fu = F , and
so u ∈ IF . Therefore it suffices to show that ZE ⊆ IF and GN ⊆ IF (since
ZE = GME

GN ).
Let g ∈ GN , y ∈ ME , and x ∈ kerF . Using the fact that ψ ◦ F = ψ, we

obtain
ψ(F (gxg−1)y) = ψ(F (gxg−1y)) = ψ(gxg−1y)

= ϕ(E(gxg−1y)) = ϕ(gE(xg−1yg)g−1)
= ϕ(E(xg−1yg)) = ψ(F (xg−1yg))
= ψ(F (x)g−1yg) = 0.

Since F (gxg−1) ∈ ME and ψ is faithful, it follows that F (gxg−1) = 0, and
thus g(kerF )g−1 ⊆ kerF . By Lemma 4.11, we conclude that IE ⊆ IF . This
proves part (2) of the lemma. �

Proposition 4.13. Let N ⊆ M be von Neumann algebras, let E ∈
E(M,N) be a faithful normal conditional expectation, and assume that N
is finite. Then the similarity orbit S(E) has a unique HRS structure under
the action of GM .

Proof. To find a reductive structure, we need to construct a decomposition
L(GM ) = L(IE)⊕KE , where KE is invariant by inner conjugation of elements
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of IE . Fix a faithful normal tracial state ϕ of N and let F ∈ E(M,ME) be
induced by ϕ as in Proposition 4.5 and Lemma 4.12. By the remarks preceding
Proposition 4.6, it is clear that the projection ∆ = I − (I − E)(I − F ) gives
the desired decomposition, i.e., we have KE = ker ∆.

It remains to show that IE leaves KE invariant, and that the distribution
LgE 7→ gKE is smooth. The first assertion holds since KE = kerF ∩ kerE
and, by Lemma 4.12, IE ⊆ IF .

To see that the distribution is smooth, note that the projection onto KE
with kernel ME + N is I − ∆ = D = (1 − E)(1 − F ). By Lemma 4.12, the
map η : S(E)→ B(M) given by

η(ΠE(g)) = LgD = (1− LgE)(1− LgF ), g ∈ GM

is well defined and gives the desired decomposition for all ΠE(g) ∈ S(E).
Consider the commutative diagram

GM
Ad−−−−−→ Gl(B(M))

ΠE

y
y ΠD

S(E)
η−−−−−→ B(M)

where ΠD(α) = α ◦D ◦ α−1, α ∈ Gl(B(M)). Since, by Theorem 4.8, ΠE has
analytic local cross sections, the map η is clearly analytic.

The uniqueness follows from the fact that KE (actually, the expectation
F ) does not depend on the tracial state ϕ. Indeed, it is easy to see that,
for every faithful normal tracial state ρ of N with corresponding expectation
Fρ ∈ E(M,ME) given by Proposition 4.5, the restriction Fρ|N ∈ E(N,Z(N))
is the center valued trace of N , since ρ ◦ Fρ|N = ρ. Hence Fρ = F . �

Remark 4.14. Let N ⊆ M be von Neumann algebras, let E ∈ E(M,N)
be a faithful normal conditional expectation, and assume that ME ⊆ N , but
that N is not necessarily finite. Then the assertion of Theorem 4.13 holds
with the same proof. Indeed, in this case we have ZE = GN , and one does
not need a tracial state of N since ∆ = E. This result was given in [21] under
the slightly more restrictive hypothesis that N ′ ∩M ⊆ N .

4.15. Let M be an infinite von Neumann algebra. Then there exists a
properly infinite projection p ∈ Z(M) such that pM is properly infinite and
(1 − p)M is finite. Let τ be a faithful normal trace in (1 − p)M . Since p is
properly infinite, it can halved, i.e., there exists a projection q ∈M such that
q ∼ p− q ∼ p, where ∼ denotes the von Neumann equivalence of projections.
Using this projection q, we can identify pM with qMq ⊗M2(C). Thus we
identify M with (qMq)⊗M2(C))⊕ (1− p)M .
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Let N be the subalgebra (qMq ⊗ 1)⊕ (1− p)C of M . Consider the expec-
tation E ∈ E(M,N) given by

E = (id⊗ tr2)⊕ τ.

In matrix form this expectation can be represented by

E

 a b 0
c d 0
0 0 x

 =

 (a+ d)/2 0 0
0 (a+ d)/2 0
0 0 τ(x)

 .

Straightforward calculations show that

N ′ ∩M = Z(qMq)⊗M2(C)⊕ (1− p)M

and
ME = N ′ ∩M.

If S(E) admits a Homogeneous Reductive Structure, then there exists a
bounded linear projection P : M → N +ME with g(kerP )g−1 = kerP for all
g ∈ IE . Since UN ⊆ IE , we have

P (uxu∗) = uP (x)u∗ for every u ∈ UN

by Lemma 4.11. Note that, since (N +ME)∗ = N +ME , we can assume that
P is ∗-linear. Indeed, if P is not ∗-linear, we can replace P by

P ′(x) =
1
2

(P (x) + P (x∗)∗), x ∈M,

which is also a projection onto N +ME and satisfies

P ′(uxu∗) = uP ′(x)u∗ for every u ∈ UN .

Since

(18) N +ME

=


n z2 0
z3 n+ z1 0
0 0 m

 : n ∈ qMq, zi ∈ Z(qMq),m ∈ (1− p)M

 ,

it is clear that the elements located at coordinates 21 and 12 of the image of
P belong to Z(qMq). Consider the linear map T : qMq → Z(qMq) given by

T (n) =
1
2

P
 0 n 0

n 0 0
0 0 0


21

+ P

 0 n 0
n 0 0
0 0 0


12

 , n ∈ qMq,

where (·)ij denotes the matrix entry with coordinates ij. We now establish
the properties of T that we will be of interest to us.
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Proposition 4.16. Let M be an infinite von Neumann algebra. Let p,
q, N and E ∈ E(M,N) be as in 4.15. Assume that the orbit S(E) admits a
Homogeneous Reductive Structure. Consider the linear maps P and T defined
above. Then we have:

(1) T : qMq → Z(qMq) is a ∗-linear mapping.
(2) T is a projection onto Z(qMq).
(3) If u ∈ UqMq, then T (unu∗) = T (n) for every n ∈ qMq.
(4) T (xy) = T (yx) for every x, y ∈ qMq.

Proof. (1) That the image of T is in Z(qMq) can be seen from (18). The
∗-linearity is clear since, by assumption, P is ∗-linear.

(2) If s ∈ Z(qMq), then the matrix 0 s 0
s 0 0
0 0 0


is clearly in N +ME , and hence is left invariant by P , and T (s) = s.

(3) Let u ∈ UqMq and consider

U =

 u 0 0
0 u 0
0 0 1

 ∈ UN ⊆ IE .
The basic property of P is that P (UmU∗) = UP (m)U∗ for every m ∈ M .
But this clearly implies that T (unu∗) = uT (n)u∗ = T (n) for every n ∈ qMq.

(4) This follows from (3) since the unitaries generate the entire algebra. �

Theorem 4.17. Let M be a von Neumann algebra. Then the following
conditions are equivalent:

(1) The similarity orbit S(E) of any expectation E ∈ E(M) can be given
an HRS structure under the action of GM .

(2) M is a finite von Neumann algebra.

Proof. Let p be the largest projection in Z(M) such that pM is properly
infinite, and let q be a subprojection of p that halves p, that is q ∼ p− q ∼ p.
We will use the notations of 4.15 and the conditional expectation E ∈ E(M)
considered there. If condition (1) holds, then, using Proposition 4.16 and 4.15,
we can construct a “tracial” bounded projection T : qMq → Z(qMq). Since q
is also properly infinite, there is a projection r ∈ qMq such that r ∼ q− r ∼ q
in qMq. Using the “traciality” of T , we have

(19) T (q) = T (q − r) = T (q)− T (r) = T (q)− T (q) = 0.

Recall that, by Proposition 4.16, we have T (q) = q. By (19) it follows that
q = 0, which in turn implies p = 0. Thus M is a finite von Neumann algebra.
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Conversely, suppose that M is finite and E ∈ E(M). Then N = E(M) is a
finite von Neumann algebra and we can apply Proposition 4.13. �

Remark 4.18. Let N ⊆ M be von Neumann algebras and let E ∈
E(M,N) be such that S(E) has a structure of HRS. We will describe explicitly
the geometrical invariants of S(E). We first compute the tangent map at 1
of the fibration ΠE : GM → S(E). For simplicity we consider S(E) ⊆ B(M),
despite the fact that the topology of S(E) is, in general, not that induced by
B(M). In this sense, for x ∈M , we have

(T ΠE)1(x) = [x,E(·)]− E([x, ·]),

where [x, y] = xy−yx for x, y ∈M . Indeed, let x ∈M and consider the curve
α(t) = etx. Note that α(0) = 1 and α̇(0) = x. Then

(T ΠE)1(x) =
d

dt
(ΠE(etx))|t=0

=
d

dt

(
Ad(etx) ◦ E ◦Ad(e−tx)

)
|t=0

=
(
(Ad(etx))′ ◦ E ◦Ad(e−tx) + Ad(etx) ◦ E ◦ (Ad(e−tx))′

)
|t=0

=
(
(Ad(etx))([x,E ◦Ad(e−tx)]) + Ad(etx) ◦ E ◦ (Ad(e−tx)([·, x])

)
|t=0

= [x,E(·)]− E([x, ·]).

An interesting computation using this formula shows, as it must, that

ker(T ΠE)1 = ME +N = L(IE).

On the other hand, if KE = ker ∆ is the horizontal space at E of S(E),
then

(T ΠE)1 |KE : KE → T (S(E))E

is an isomorphism. It is usual to consider the inverse map KE : T (S(E))E →
KE in order to identify tangent vectors with elements of M (see, for instance,
[23]). With this convention we now describe the torsion and curvature tensors,
T and R, respectively. Let V,W and Z ∈ T (S(E))E . Then we have:

(1) T (V,W ) = (T ΠE)1([KE(V ),KE(W )]).
(2) R(V,W )Z = (T ΠE)1([KE(Z),∆([KE(V ),KE(W )])).
(3) The unique geodesic γ at E such that γ̇(0) = V is given by

γ(t) = LetKE(V )E.

(4) The exponential map of S(E) is given by

expE(X) = LeKE(X)E for X ∈ T (S(E))E .
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