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TOPOLOGICAL 0-1 LAWS FOR SUBSPACES OF A
BANACH SPACE WITH A SCHAUDER BASIS

VALENTIN FERENCZI

Abstract. For a Banach space X with an (unconditional) basis, topo-
logical 0-1 law type dichotomies are stated for block-subspaces of X as

well as for subspaces of X with a successive finite-dimensional decom-
position on its basis. A uniformity principle for properties of block-

sequences, results about block-homogeneity, and a possible method to
construct a Banach space with an unconditional basis which has a com-
plemented subspace without an unconditional basis, are deduced.

1. Introduction and notation

The second topological 0-1 law (Theorem 8.47 in [13]) states that in an
infinite product space of Polish spaces, a set with the Baire Property which is a
tail set (i.e., invariant with respect to changing a finite number of coordinates)
is either meager or comeager.

It is tempting to prove a principle of topological 0-1 law in Banach space
theory, as many natural properties of Banach spaces (for example, all proper-
ties preserved by isomorphism) are invariant by a finite dimensional pertur-
bation, and therefore correspond to tail sets in appropriate product spaces.

A natural setting is given by a Banach space with a Schauder basis and
the set of its block-subspaces. This is motivated by [10], where W.T. Gowers
considered different topologies on the set of block-sequences, with the aim of
proving his famous dichotomy theorem. In this article, we obtain a principle
of topological 0-1 law for the set of block-sequences of a Banach space with a
Schauder basis (Theorem 2.1). With a little extra care in the proof, we also
obtain a uniform version of this principle (Theorem 2.2). These results extend
those of [9], where isomorphism classes of block-subspaces of a space with a
Schauder basis were studied.
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The correct topological space in which to state this principle is the space
bbd(X) of “rational normalized block-sequences” of a Banach space X with
a Schauder basis, equipped with the product of the discrete topology on X.
Indeed, this space is Polish, and the definition of its basic open sets do not in-
volve small perturbations. Furthermore, by perturbation arguments, rational
block-sequences capture enough of the structure of block-sequences on X.

A characterization of comeager sets in bbd(X) was obtained in [9]; we derive
from it an explicit version of the principle of topological 0-1 law for block-
sequences in bbd(X) as a dichotomy theorem (Theorem 2.4). From this we
deduce two consequences regarding questions related to a conjecture by H. P.
Rosenthal. Rosenthal asked if a Schauder basis (en)n∈N of a Banach space,
such that every normalized block-sequence has a subsequence equivalent to
(en)n∈N, must be equivalent to the unit vector basis of c0 or some `p, 1 ≤
p < +∞. This question remains unsolved. However we show some ways of
strengthening his definition to obtain a positive answer (Proposition 3.2 and
Corollary 3.3), as a consequence of some general theorem about equivalence
relations between block-sequences (Theorem 3.1).

We also state a particularly simple form of our topological 0-1 law theorem
when the concerned property of block-sequences is stable by taking subse-
quences (Theorem 4.1).

Recall that, due to the work of W.T. Gowers [10] and of R. Komorowski and
N. Tomczak-Jagermann [15], it is known that a homogeneous Banach space
(i.e., one that is isomorphic to its closed infinite dimensional subspaces) must
be isomorphic to `2. Their solution to this problem leaves many questions
unanswered. If a Banach space has an unconditional basis and is isomorphic
to its subspaces with an unconditional basis, must it be isomorphic to `2?
If a Banach space has an unconditional basis and is isomorphic to its block-
subspaces (call such a space block-homogeneous), must it be isomorphic to
c0 or `p, 1 ≤ p < +∞? We give a positive answer in some special case
(Proposition 5.3). Is there a direct proof that a homogeneous Banach space
must be uniformly homogeneous (this was asked in [10])? Theorem 4.1 also has
a uniform version, Theorem 4.2, and we deduce from this principle a general
uniformity theorem. This gives a partial answer to the uniform homogeneity
question, Proposition 5.5.

In the last section, we prove a principle of 0-1 topological law in a Banach
space X with a Schauder basis, for subspaces with a successive finite dimen-
sional decomposition on the basis (Proposition 6.4), again continuing some
work from [9]. We derive a possible application to a long-standing open ques-
tion in Banach space theory: does a complemented subspace of a Banach space
with an unconditional basis necessarily have an unconditional basis (Corollary
6.5)?

The following notation will be used in this paper. Let X be a Banach
space with a normalized Schauder basis (en)n∈N. We shall use some standard
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notation about finitely supported vectors on (en)n∈N; for example, we shall
write x < y, and shall say that x and y are successive when max(supp(x)) <
min(supp(y)). A block-sequence (or block-basis) is a sequence of successive
vectors in X; see, e.g., [17] for basic facts about block-sequences.

It will be necessary to restrict our attention to normalized block-bases in
X to use compactness properties. We denote by bb(X) the set of normalized
block-bases on X. Let Q(X) be the set of normalized blocks of the basis
that are a multiple of some block with rational coordinates (or coordinates in
Q+ iQ in the complex case). We denote by bbd(X) the set of block-bases of
vectors in Q(X). (Here “d” stands for “discrete”, this notation was introduced
in [8].) We consider bbd(X) as a topological space, equipped with the product
topology of the discrete topology on Q(X), which turns it into a Polish space.

The notation bb<ωd (X) will denote the set of finite block-sequences with
blocks in Q(X). For a finite block sequence x̃ = (x1, . . . , xn) ∈ bb<ωd (X),
we denote by N(x̃) the set of elements of bbd(X) whose first n vectors are
(x1, . . . , xn); this is the basic open set associated to x̃.

If (xn)n∈J is a finite or infinite block-sequence of X, then [xn]n∈N will
stand for its closed linear span. If s is a finite block-basis and y is a finite or
infinite block-basis supported after s, denote by s_y the concatenation of s
and y. The notation x = (xn)n∈N will be reserved to denote an infinite block-
sequence, and [x] will denote its closed linear span; x̃ will denote a finite
block-sequence, and |x̃| its length as a sequence, supp(x̃) the union of the
supports of the terms of x̃. For two finite block-sequences x̃ = (x1, . . . , xn)
and ỹ = (y1, . . . , ym), write x̃ < ỹ to mean that they are successive, i.e.,
xn < y1. For a sequence of successive finite block-sequences (x̃i)i∈I , we denote
the concatenation of the block-sequences by x̃_1 . . ._ x̃n if the sequence is
finite with I = {1, . . . , n}, or x̃_1 x̃

_
2 . . . if it is infinite, and we denote by

supp(x̃i, i ∈ I) the support of the concatenation, by [x̃i]i∈I the closed linear
span of the concatenation.

We shall identify a block-sequence (xk)k∈K indexed on some infinite subset
K = {k1, k2, . . .} of N (where (kn)n∈N is increasing) with the block-sequence
(xkn)n∈N indexed on N. Thus, given an infinite block-sequence, we may always
choose the most convenient way to index it. We make a similar identification
for finite block-sequences. The range ran(x0) of x0 ∈ X is the smallest interval
of integers containing the support of x0. If x = (xn)n∈I is a finite or infinite
block-sequence, ran(x) will denote the union

⋃
n∈I ran(xn).

Finally, we shall sometimes use the classical fact that any normalized block-
basic sequence in X is an arbitrarily small perturbation of a basic sequence in
bbd(X), and, in particular, is 1 + ε-equivalent to it, for arbitrarily small ε > 0.
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2. Topological 0-1 laws for block-sequences

Let (xn)n∈N and (yn)n∈N be block-sequences and let n0 ∈ N. When for
some N ∈ N, xn = yn for all n > N and the set {n ≤ N : ∀m ≤ N,xn 6= ym}
is of cardinality at most n0, we shall say that (yn)n∈N is an n0-modification
of (xn)n∈N. Note that in this case, there exist permutations σ and σ′ of the
integers such that xσ(n) = yσ′(n) for all n > n0, and so (xn) and (yn) span
subspaces which are isomorphic with a constant c(n0) which depends only on
n0.

A finite modification of (xn)n∈N is a block-sequence (yn)n∈N which is an n0-
modification of (xn)n∈N for some n0; this is the same as saying that xn = yn
for all n ≥ m0, for some m0 (which could be much larger than n0).

We are now ready to state our principle of topological 0-1 law for block-
sequences.

Theorem 2.1 (Topological 0-1 law for block-sequences). Let X be a Ba-
nach space with a Schauder basis. Assume A ⊂ bbd(X) has the Baire Property
and is invariant by finite modifications. Then A is either meager or comeager
in bbd(X).

This is a corollary of the following uniform version:

Theorem 2.2 (Uniform topological 0-1 law for block-sequences). Let X
be a Banach space with a Schauder basis. Let (AN )N∈N be an increasing
sequence of subsets of bbd(X) with the Baire Property, and let A =

⋃
N∈NAN .

Assume that for any N ∈ N and n0 ∈ N, there exists K(N,n0) ∈ N such that
whenever (xn)n∈N belongs to AN , then any n0-modification of (xn)n∈N belongs
to AK(N,n0). Then either A is meager in bbd(X), or there exists K ∈ N such
that AK is comeager in bbd(X).

Proof. We assume that A is non-meager. Then for some N ∈ N, AN is non-
meager. Our proof is similar to a proof from [9] for classes of isomorphism.
As AN has the Baire property, it is comeager in some basic open set U , of the
form N(x̃), for some finite block-sequence x̃ ∈ bb<ωd (X).

We now prove that AK is comeager in bbd(X) if we choose K =
K(N, 2 max(supp(x̃))). So let us assume V = N(ỹ) is some basic open set
in bbd(X) such that AK is meager in V . We may assume that |ỹ| > |x̃|
and write ỹ = x̃′_z̃ with x̃ < z̃ and |x̃′| ≤ max(supp(x̃)). Choose ũ and
ṽ in bb<ωd (X) such that ũ, ṽ > z̃, |ũ| = |x̃′| and |ṽ| = |x̃|, and such that
max(supp(ũ)) = max(supp(ṽ)). Let U ′ be the basic open set N(x̃_z̃_ũ) and
let V ′ be the basic open set N(x̃′_z̃_ṽ). Again AN is comeager in U ′, while
AK is meager in V ′.

Now let T be the canonical map from U ′ to V ′. For all u in U ′, T (u) is an
(|x̃| + |x̃′|)-modification of u. As |x̃| + |x̃′| ≤ 2 max(supp(x̃)), it follows that
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for any u ∈ AN ∩ U ′, T (u) belongs to AK(N,2 max(supp(x̃))) = AK . So AK is
comeager in V ′ ⊂ V . By the choice of V this gives a contradiction. �

If A is a subset of bbd(X) and ∆ = (δn)n∈N is a sequence of positive
real numbers, we denote by A∆ the ∆-expansion of A in bbd(X), that is,
x = (xn) ∈ A∆ iff there exists y = (yn) ∈ A such that ‖yn − xn‖ ≤ δn,∀n ∈ N.
Such an element y will be called a ∆-perturbation of x.

For a block-sequence (xn)n∈N of X, a pair ((xn)n∈I , (xn)n∈J) of block-
sequences associated to a partition of N in two infinite sets I and J will be
called a partition of (xn)n∈N. Conversely, when x = (xn)n∈I , y = (yn)n∈J are
infinite block-sequences whose ranges are disjoint, we call concatenation of x
and y the unique (up to the choice of K) block-sequence z = (zn)n∈K such
that {zn, n ∈ K} = {xn, n ∈ I} ∪ {yn, n ∈ J}.

Finally, if ã ∈ bb<ω(X) and x ∈ bb(X), we say that x passes through ã if it
can be written

x = ỹ_ã_z,

for some ỹ ∈ bb<ω(X) and some z ∈ bb(X).
We recall a characterization of comeager subsets of bbd(X) which was

proved in [9].

Proposition 2.3 (V. Ferenczi and C. Rosendal [9]). Let X be a Banach
space with a Schauder basis. Let A be a comeager subset in bbd(X). Then for
all ∆ > 0, there exists a successive sequence (ãn)n∈N ∈ (bb<ωd (X))ω such that
any block-sequence of bbd(X) passing through infinitely many of the ãn’s is in
A∆.

As was noted in [9], the property in the conclusion of this proposition
is essentially (i.e., up to perturbation) a characterization of comeager sets
in bbd(X). Indeed, it easily implies that A∆ is comeager. Combining this
observation with the principle of 0-1 topological law, we obtain the following
dichotomy theorem.

Theorem 2.4. Assume A ⊂ bbd(X) has the Baire Property, is invariant
by finite modifications and by ∆-perturbations for some ∆ > 0. If A is not
meager in bbd(X) (i.e., for any successive sequence (ãn) ∈ (bb<ωd (X))ω, there
exists x ∈ bbd(X) passing through ãn for infinitely many n’s, such that x is
in A), then A is comeager in bbd(X) (i.e., there exists a successive sequence
(ãn) ∈ (bb<ωd (X))ω, such that any x ∈ bbd(X), passing through ãn for infinitely
many n’s must belong to A).

3. Applications to isomorphism and permutative equivalence

In this section, we deduce from Theorem 2.4 a general result about equiv-
alence relations on bbd(X). Its proof is inspired in part by the classical de-
composition method of Pe lczyński for isomorphisms between Banach spaces.
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If R is an equivalence relation on bbd(X), we say that R is compatible with
concatenation if for all (x, y) ∈ bbd(X)2, for all z ∈ bbd(X) whose range is
disjoint from the ranges of x and y, we have

xRy ⇒ x_zRy_z.

Theorem 3.1. Let R be an equivalence relation on bbd(X) which is in-
variant by finite modifications and ∆-perturbations for some ∆ > 0. Assume
also that R is compatible with concatenation. If there is some R-class A with
the Baire Property such that every successive sequence (x̃n)n∈N ∈ (bb<ωd (X))ω

has a subsequence (x̃nk)k∈N such that x̃_n1
x̃_n2

. . . is in A, then bbd(X) = A.

Proof. We first note that by our assumption and Theorem 2.4, we have that
A is comeager in bbd(X), which means that there exists a sequence of succes-
sive finite normalized block-sequences (ãn)n∈N ∈ (bb<ωd (X))ω such that every
block-sequence in bbd(X) passing through infinitely many (ãn)n∈N’s must be-
long to A. In particular, ã_n1

ã_n2
. . . is in A for any subsequence (nk)k∈N of the

integers.
Let (yn)n∈N be arbitrary in bbd(X). We may find two block-sequences

(y1
n)n∈N and (y2

n)n∈N which partition (yn)n∈N and a subsequence (nk) of the
integers such that (y1

n) (resp. (y2
n)) and ã_n2

ã_n4
. . . (resp. ã_n1

ã_n3
. . .) have

disjoint ranges. We let (a1
n)n∈N be the sequence ã_n1

ã_n3
. . ., and (a2

n)n∈N be
the sequence ã_n2

ã_n4
. . ..

Applying the hypothesis about A, we see that (y1
n) has a subsequence (zn)

which is in A. We may assume (y1
n) = (zn)_(wn) for some infinite block-

sequence (wn). We deduce by R-compatibility

(y1
n)R(a2

n)_(wn).

As the sequence (a2
n)_(wn) passes through all the ãn2k for k ∈ N, it must

belong to A. We deduce that (y1
n) is in A. The same reasoning gives that

(y2
n) is in A.
Finally, using R-compatibility again, we obtain

(yn)n∈N = (y1
n)_(y2

n)R(a1
n)_(a2

n) = a_n1
a_n2

. . . .

So (yn)n∈N is in the R-class A. �

Recall that two basic sequences (xn)n∈N and (yn)n∈N are said to be per-
mutatively equivalent if there is a permutation σ on N such that (xn)n∈N is
equivalent to (yσ(n))n∈N, in which case we shall write (xn)n∈N ∼perm (yn)n∈N.

A Schauder basis (en)n∈N of a Banach space is said to be a Rosenthal basis
if every normalized block-sequence of (en)n∈N has a subsequence equivalent to
(en)n∈N. As mentioned in the introduction, it is an open conjecture whether
any Rosenthal basis is equivalent to the canonical basis of c0 or `p. This
question is motivated by Zippin’s theorem ([17], Theorem 2.a.9), according to
which a Schauder basis (en)n∈N of a Banach space which is equivalent to all
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its normalized block-sequences must be equivalent to the canonical basis of c0
or `p.

The question can also be asked for permutative equivalence, or isomorphism
of the closed linear span, instead of equivalence. The question for permutative
equivalence, however, turns out to be the same as the original question (by
Proposition 6.2 from [1]). It is also open for isomorphism. (In this case one
has to replace, in the conclusion, equivalence with the unit vector basis of c0
or `p, by isomorphism with c0 or `p.)

The form of Theorem 3.1 suggests strengthening the Rosenthal hypothesis
by considering successive finite sequences of block-sequences instead of block-
sequences. In this case, we shall obtain a positive answer for permutative
equivalence as a non-trivial application of Theorem 2.4.

Recall that a constant coefficient block on (ei)i∈N is a finitely supported
vector of the form λ(

∑
i∈I ei). The set of normalized sequences of successive

constant coefficient blocks is a subset of bbd(X) that we shall denote ccb(X).
A Schauder basis (en)n∈N of a Banach space X is said to be unconditional

if there is some C ≥ 1 such that for any I ⊂ N, any norm 1 vector x =∑
n∈N anen ∈ X,

∥∥∑
n∈I anen

∥∥ ≤ C. In particular, any subspace generated
by a subsequence of (en)n∈N is complemented in X.

Proposition 3.2. Let X be a Banach space with an unconditional basis
(en)n∈N such that every successive sequence (x̃n)n∈N ∈ (bb<ω(X))ω has a sub-
sequence (x̃nk)k∈N with x̃_n1

x̃_n2
. . . permutatively equivalent to (en)n∈N. Then

(en)n∈N is equivalent to the canonical basis of c0 or `p.

Proof. We give two different proofs of the result.
For the first proof, we note that every subsequence of (en)n∈N has a further

subsequence which is permutatively equivalent to (en)n∈N. By [1], Proposition
6.2, it follows that some permutation of (en)n∈N is subsymmetric. Passing to a
subsymmetric subsequence and up to renorming, we may assume that (en)n∈N
is normalized, 1-unconditional, 1-subsymmetric.

Now by Krivine’s Theorem [16], we may find some p ∈ [1,+∞] and a
successive sequence (x̃n)n∈N in (bb<ω(X))ω such that each x̃n is of length n
and 2-equivalent to the unit basis of `np . For some subsequence (x̃nk)k∈N,
x̃_n1

x̃_n2
. . . is C-permutatively equivalent to (en)n∈N for some constant C. In

particular, each x̃nk is C-permutatively equivalent to some subsequence of
(en)n∈N of length nk, or by subsymmetry, to (ei)i≤nk . We deduce that the
unit basis of `nkp is 2C-equivalent to (ei)i≤nk , for any k ∈ N, which proves the
result.

The second proof uses Theorem 3.1. It implies a stronger version of this
proposition as we will only consider sequences of constant coefficient blocks.
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We recall that ccb(X) is the set of constant coefficient block-sequences in X.
We let c̃cb(X) be the set of sequences in bbd(X) which are equivalent to some
sequence in ccb(X).

For (xn) and (yn) in bbd(X), we define an equivalence relation R by letting
(xn)R(yn)⇔ (xn) ∼perm (yn) if (xn) and (yn) are in c̃cb(X), and (xn)R(en)
whenever (xn) 6∈ c̃cb(X). The R-class of (en) is analytic, and so has the
Baire Property, and R is stable by ∆-perturbations for small enough ∆ > 0,
and by finite modifications. It is also compatible with concatenation, by
the unconditionality of the basis. By Theorem 3.1, we deduce that there is
only one R-class. In particular, all constant coefficient block sequences are
permutatively equivalent. So (en)n∈N is equivalent to the unit basis of c0 or
`p, by [1] Proposition 6.2. �

In the case of isomorphism, we recall that a Banach space with a Schauder
basis, which is isomorphic to its block-subspaces, is said to be block-homoge-
neous. We have the following immediate corollary of Theorem 3.1:

Corollary 3.3. Let X be a Banach space with an unconditional basis
(en)n∈N. Assume that there exists some Banach space Y such that every
sequence of successive finite normalized block-sequences (x̃n)n∈N has a subse-
quence (x̃nk)k∈N such that [x̃_n1

x̃_n2
. . .] is isomorphic to Y . Then X is block-

homogeneous.

Proof. We apply Theorem 3.1 to the relation of isomorphism, which is
compatible with concatenation by the unconditionality of the basis. �

It is an open question whether a block-homogeneous Banach space must
be isomorphic to c0 or `p, 1 ≤ p < +∞. In Section 5, we shall obtain more
results about this property.

4. Topological 0-1 law for properties which are stable by taking
subsequences

When a set A of block-sequences is stable by taking subsequences, we obtain
a simpler version of the principle of the topological 0-1 law for A:

Theorem 4.1. Let X be a Banach space with a Schauder basis. Let A be
a subset of bbd(X) with the Baire Property, which is stable by ∆-perturbations
for some ∆ > 0, by finite modifications, and by taking subsequences. Assume
that any sequence (x̃n)n∈N ∈ (bb<ωd (X))ω of successive finite block-sequences
admits a subsequence (x̃nk)k∈N such that the block-sequence x̃_n1

x̃_n2
. . . belongs

to A. Then every block-sequence in bbd(X) admits a partition in a pair of
elements of A. If, furthermore, the set A is stable by concatenation of pairs
of block-sequences, then bbd(X) = A.
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Once again this is a corollary of a uniform version:

Theorem 4.2. Let X be a Banach space with a Schauder basis. Let
(AN )N∈N be an increasing sequence of subsets of bbd(X) with the Baire Prop-
erty, satisfying:

(a) There exists ∆ > 0 such that for any N ∈ N, there exists K1(N) ∈ N
such that (AN )∆ ⊂ AK1(N).

(b) For any N ∈ N and n0 ∈ N, there exists K2(N,n0) ∈ N such that
whenever (xn)n∈N belongs to AN , then any n0-modification of (xn)n∈N
belongs to AK2(N,n0).

(c) For any N ∈ N, there exists K3(N) ∈ N such that whenever (xn)n∈N
belongs to AN then any subsequence of (xn)n∈N belongs to AK3(N).

Let A =
⋃
N∈NAN . Assume that for any sequence (x̃n)n∈N ∈ (bb<ωd (X))ω

of successive finite block-sequences, there is a subsequence (x̃nk)k∈N such that
the block-sequence x̃_n1

x̃_n2
. . . belongs to A. Then there exists N ∈ N such

that every block-sequence in bbd(X) has a partition in two elements of AN . If
furthermore,

(d) for any N ∈ N, there exists K4(N) ∈ N such that any concatenation
of a pair of block-sequences in A2

N belongs to AK4(N),
then bbd(X) = AN for some N ∈ N.

Proof. The part which is a consequence of (d) is obvious once we prove
the first part of the proposition. We note that by Proposition 2.2, either A
is meager, or AN is comeager for some N ∈ N. By (a), there is some ∆ > 0
such that A = A∆. It follows that A∆ ∩AC = ∅, that is, (AC)∆ ∩A = ∅.

If A is meager, Proposition 2.3 gives us a sequence of successive finite block-
sequences (x̃n)n∈N such that, in particular, x̃_n1

x̃_n2
. . . is in (AC)∆ for every

subsequence (x̃nk)k∈N. So for no subsequence (x̃nk)k∈N, x̃_n1
x̃_n2

. . . is in A.
So AN is comeager for some N ∈ N. Applying Proposition 2.3, and up

to modifying N , let (ãn)n∈N be a sequence of successive block-sequences such
that every block-sequence passing through infinitely many of the ãn’s is in
AN .

Let now (xn)n∈N be an arbitrary block-sequence in bbd(X). We note that
we may find a partition of (xn)n∈N in two subsequences (xn)n∈I and (xn)n∈J ,
and a subsequence (ãnk)k∈N of (ãn)n∈N such that (xn)n∈I and (ãn2k)k∈N have
disjoint ranges (let (in)n∈N denote their concatenation) and such that (xn)n∈J
and (ãn2k−1)k∈N have disjoint ranges (let (jn)n∈N denote their concatenation).

Now (in)n∈N belongs to AN , so by (c), for some N ′ ∈ N, (xn)n∈I belongs
to AN ′ , and likewise (xn)n∈J belongs to AN ′ . �

In particular, we deduce a uniformity principle from Proposition 4.2. Under
its hypotheses, and if every block-sequence of bbd(X) is in A, there exists
N ∈ N such that every block-sequence of bbd(X) is in AN . This method was
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first used in [9] to study the property of complementable embeddability ([9],
Proposition 17).

To conclude this section, it is worth noting the form that our topological
0-1 law takes when A is really an isomorphic property of the span of a block-
sequence in bbd(X).

Theorem 4.3. Let X be a Banach space with an unconditional basis
(en)n∈N. Let P be an isomorphic property of Banach spaces such that A =
{(xn)n∈N ∈ bbd(X) : [xn]n∈N has P} has the Baire Property, and which is
stable by taking complemented subspaces.

Assume that for any sequence of successive finite block-sequences (x̃n)n∈N,
there is a subsequence (x̃nk)k∈N such that the block-subspace [x̃_n1

x̃_n2
. . .] satis-

fies P . Then every block-subspace of X is the sum of two disjointly supported
block-subspaces satisfying P .

Assume furthermore that any direct sum of two spaces with P satisfies P .
Then every block-subspace of X satisfies P .

5. Applications to homogeneity and uniformity problems

The following homogeneity question remains unsolved:

Question 5.1. Let X be a Banach space with an unconditional basis which
is isomorphic to all its subspaces with an unconditional basis. Does it follow
that X is isomorphic to `2?

We recall that a Banach space X with a basis is block-homogeneous if X
is isomorphic to all its block-subspaces. The following question is also still
open:

Question 5.2. Let X be a Banach space with an unconditional basis
(en)n∈N, which is block-homogeneous. Does it follow that X is isomorphic
to c0 or `p?

Note that an unconditional basis (en)n∈N of a block-homogeneous Banach
space X need not be equivalent to the canonical basis of c0 or `p: for 1 <
p < +∞, X = (⊕n∈N`n2 )p is isomorphic to `p, and every block-subspace of X
(with the associated canonical basis) is complemented in X ([17], Proposition
2.a.12) and thus isomorphic to `p as well.

Note also that a positive answer to Question 5.2 would imply a positive
answer to Question 5.1. Indeed it is known that each space c0 or `p, p 6= 2,
contains a subspace with an unconditional basis which is not isomorphic to the
whole space. This is easy for c0 and `p, p < 2, and in this case a continuum of
non-isomorphic subspaces with this property can be obtained [7]; for `p, p > 2,
this requires results of Szankowski about the Approximation Property; see
[17], p. 91.
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Question 5.2 is motivated by the fact that (en)n∈N must be equivalent to
the basis of c0 or `p when all block-sequences are equivalent (Zippin), or even
permutatively equivalent (Bourgain, Casazza, Lindenstrauss, Tzafriri). The
problem seems to be much harder for isomorphism.

We first show how, in a special case, some results of uniqueness of an
unconditional basis will allow us to pass from isomorphism to permutative
equivalence and deduce a positive answer. We recall some definitions and
results from [5]. A sequence space X is said to be left (resp. right) dominant
if there exists a constant C ≥ 1 such that whenever (ui)i≤n and (vi)i≤n are
finite block-sequences, with ‖ui‖ ≥ ‖vi‖ (resp. ‖ui‖ ≤ ‖vi‖) and vi > ui for
all i ≤ n, then ‖

∑n
i=1 vi‖ ≤ C ‖

∑n
i=1 ui‖ (resp. ‖

∑n
i=1 ui‖ ≤ C ‖

∑n
i=1 vi‖).

When X is left or right dominant, then there exists exactly one r = r(X) such
that lr (or c0 if r = +∞) is finitely disjointly representable in X, and we call
r the index of X.

We refer to [17], [12] for definitions and background on Banach lattices.
If X and Y are Banach lattices, a bounded linear operator V : X → Y is
called a lattice homomorphism if V (x1 ∨ x2) = V x1 ∨ V x2 for all x1, x2 ∈ X.
Following [5], we define a Banach lattice X to be sufficiently lattice-euclidean
if there exists C ≥ 1 such that for all n ∈ N, there exist operators S : X → `n2
and T : `n2 → X such that ST = I`n2 , ‖S‖ ‖T‖ ≤ C and such that S is a lattice
homomorphism. This is equivalent to saying that `2 is finitely representable
as a complemented sublattice of X. A Banach lattice which is not sufficiently
lattice-euclidean is said to be anti-lattice euclidean.

For an unconditional basis (xn)n∈N of a Banach space (viewed as a Banach
lattice), being sufficiently lattice-euclidean is the same as having, for some
C ≥ 1 and every n ∈ N, a C-complemented, C-isomorphic copy of `n2 whose
basis is disjointly supported on (xn)n∈N.

Proposition 5.3. Let X be a Banach space with a normalized uncondi-
tional basis (en)n∈N such that all subsequences span isomorphic subspaces of
X. Assume (en)n∈N is right or left dominant with r(X) 6= 2 and that (en)n∈N
is equivalent to (e2n)n∈N. Then (en)n∈N is equivalent to the canonical basis of
lr(X) (or c0 if r(X) = +∞).

Proof. Let (yn)n∈N be any subsequence of (en)n∈N, and Y = [yn]n∈N. The
sequence (yn)n∈N is equivalent to an unconditional basis (un)n∈N of X. It is
enough to note now that the proof of [5], Theorem 5.7, is still valid as long
as we prove that (un)n∈N is anti-lattice euclidean. But this is clear because
r(Y ) = r(X) 6= 2. So (yn)n∈N must be permutatively equivalent to (en)n∈N.

It follows from [1], Proposition 6.2, that some subsequence (vn)n∈N of
(en)n∈N is subsymmetric. By [5], X is asymptotically c0 or `p for some p 6= 2,
so (vn)n∈N is equivalent to the canonical basis of c0 or `p, p 6= 2, and (en)n∈N
as well. �



850 VALENTIN FERENCZI

The right or left dominant hypothesis in Proposition 5.3 cannot be removed:
the canonical basis (en)n∈N of Schlumprecht’s space S [19] is unconditional,
subsymmetric, but S does not even contain a copy of c0 or `p.

It is of interest to note that S is however quite homogeneous in some
sense: any constant coefficient block-subspace of S is isomorphic to S (see
[14], Remark before Proposition 9). So S is an example of a non c0 or `p, yet
“constant coefficient block-homogeneous” sequence space. This is in contrast
to the theorem of Zippin (resp. the theorem of Bourgain, Casazza, Linden-
strauss, Tzafriri) for equivalence (resp. permutative equivalence), which can
be proved using only constant coefficient block-sequences in X; see [1].

The question of uniformity in the homogeneous Banach space problem was
raised by Gowers [10]. Since a homogeneous Banach space must be isomorphic
to `2, it is trivial that if X is homogeneous, then there exists a constant C ≥ 1
such that X is C-isomorphic to any of its subspaces. However, there does not
seem to be a direct proof of this fact. Note also that uniformity is the first step
in the proof of the theorem of Zippin. So the following question is natural:

Question 5.4. Let X be a Banach space with an unconditional basis
(en)n∈N. Assume X is block homogeneous. Does there exist C ≥ 1 such
that X is C-block homogeneous?

A Banach space with a Schauder basis is C-block homogeneous when it is
C-isomorphic to its block-subspaces.

As a partial result, we may use the primeness of the spaces c0 and `p and
Theorem 4.2 to get a positive answer to Question 5.4 when X is isomorphic
to `p or c0:

Proposition 5.5. Let p ≥ 1. Let X be a Banach space with an uncon-
ditional basis. Assume X is block-homogeneous and isomorphic to `p. Then
there exists C ≥ 1, such that all block-subspaces of X are C-isomorphic to `p.
A similar result holds for c0.

Proof. We may assume that the unconditional basis of X is 1-unconditional
(so that all canonical projections on subspaces spanned by subsequences are
of norm 1), and we give the proof for the case of `p. The set AN = {(xn)n∈N ∈
bbd(X) : [xn]n∈N 'N `p} is analytic and so has the Baire Property. (This is
true of any isomorphism class in bbd(X); see [9] about this.) We check the
hypotheses of Theorem 4.2. Given ε > 0, there exists ∆ > 0 such that the
∆-perturbation of a block-sequence (xn)n∈N in bbd(X) spans a space which is
1+ε isomorphic to [xn]n∈N, so (a) follows. (b) is true withK(N,n0) = Nc(n0).
(Here c(n) is a constant such that in any Banach space, any two subspaces of
codimension n are c(n)-isomorphic; see the observation following the definition
of an n0-modification.) If [xn]n∈N is C-isomorphic to `p, and if (xnk)k∈N is
a subsequence of (xn)n∈N, then as [xnk ] is 1-complemented in [xn]n∈N, it is
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C-isomorphic to a C-complemented subspace of `p, so is K(C)-isomorphic to
`p, for some constant K(C). (This a consequence of the use of Pe lczyński’s
Decomposition Method to prove the isomorphism of [xnk ] with lp.) Finally,
it is easy to check that if x, y in bbd(X) are disjointly supported, and [x] and
[y] are C-isomorphic to `p, then the concatenation of x and y will span a
subspace which is k(C) isomorphic to `p, for some constant k(C). �

6. Topological 0-1 law for subspaces with a finite dimensional
decomposition

We now turn to subspaces of a space X with a Schauder basis, which have
a successive finite dimensional decomposition on the basis. There is a natural
discretization of the set of such spaces, introduced in [9], where their classes
of isomorphism were studied.

Let Fin(X) be the set of finite-dimensional subspaces of X of dimension
at least 1. We say that F and G in Fin(X) are successive, and write F < G,
if for any 0 6= x ∈ F , 0 6= y ∈ G, x and y are successive. A space with
a successive finite dimensional decomposition (or successive FDD) in X is a
subspace of X of the form ⊕k∈NFk, with successive subspaces Fk in Fin(X).
The associated sequence (Fk)k∈N will be called a sequence of successive finite
dimensional subspaces. The set of such infinite sequences is denoted fdd(X).

Let FinQ(X) be the set of finite-dimensional subspaces in Fin(X) which
have a basis of vectors of Q(X). We let fddd(X) be the Polish space of infi-
nite sequences of successive finite-dimensional subspaces in FinQ(X), equipped
with the product of the discrete topology on FinQ(X). The set of finite
sequences of successive finite-dimensional subspaces in FinQ(X) will be de-
noted by fdd<ωd (X). F̃ will denote a finite sequence of successive finite-
dimensional spaces, and (F̃n)n∈N an infinite sequence of such finite sequences.
The usual notation about concatenation of finite sequences will be used. For
S ∈ fddd(X), [S] will denote the linear span of S.

For E,F in Fin(X), we let dH(E,F ) be the Hausdorff distance between
the unit spheres SE of E and SF of F (i.e., dH(E,F ) = maxx∈SE d(x, SF ) ∨
maxy∈SF d(y, SE)).

We define a distance d on Fin(X) by d(E,F ) = 1 if dimE 6= dimF , and
d(E,F ) = min(1, 4k

√
kdH(E,F )) if dimE = dimF = k. When δ < 1 and

dimE = dimF = k, the inequality dH(E,F ) ≤ δ/(4k
√
k) implies that we can

find a map T from E onto F such that for all x ∈ E, ‖Tx− x‖ ≤ δ ‖x‖. (Use
[17], Prop. 1.a.9, together with the fact that any k-dimensional space has a
Schauder basis with constant

√
k.) So we observe that for δ < 1, d(E,F ) ≤ δ

will imply the existence of T : E → F with for all x ∈ E, ‖Tx− x‖ ≤ δ ‖x‖.
Let ∆ = (δn)n∈N > 0. Let A be a subset of fddd(X). The ∆-expansion A∆

of A is the set of sequences of successive finite dimensional spaces (Fk)k∈N ∈
fddd(X) such that there exists (Ek)k∈N in A with d(Ek, Fk) ≤ δk for all k ∈ N.
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Lemma 6.1. Let K be the constant of the basis of X. If ε < 1 and∑
n∈N δn ≤ ε/(8K), then any ∆-perturbation of a sequence (Fk)k∈N ∈ fdd(X)

spans a subspace which is 1 + ε-isomorphic to ⊕k∈NFk.

Proof. Denote (Gk)k∈N ∈ fdd(X) a ∆-perturbation of (Fk)k∈N. By the
observation, we find for each k an onto map Tk : Ek → Fk such that, for all
x ∈ Ek, ‖Tkx− x‖ ≤ δk ‖x‖.

For x =
∑
k∈N xk, with xk ∈ Ek, let Tx =

∑
k∈N Tkxk. Then

‖x− Tx‖ ≤
∑
k∈N

‖xk − Tkxk‖ ≤ max
k∈N
‖xk‖

∑
k∈N

δk,

so

‖x− Tx‖ ≤ 2K

(∑
k∈N

δk

)
‖x‖ ≤ ε/4 ‖x‖ ,

and it follows that ‖T‖
∥∥T−1

∥∥ ≤ 1 + ε. �

This lemma shows that by choosing a ∆-net for small enough ∆ > 0, we
shall always be able to capture the properties of sequences in fdd(X) up to
some arbitrary constant ε > 0.

A sequence (Fk)k∈N ∈ fdd(X) passes through a finite sequence of successive
finite dimensional subspaces (Ai)1≤i≤I if there exists k ∈ N such that Fk+i =
Ai for all 1 ≤ i ≤ I. If the sequence (Ai)i is a length 1 sequence (A), we shall
just say that (Fk)k∈N passes through A.

The following theorem was essentially proved in [9].

Theorem 6.2. Let X be a Banach space with a Schauder basis. If A is
comeager in fddd(X), then for any ∆ > 0, there exists a successive sequence
(F̃n)n∈N ∈ (fdd<ωd (X))ω, such that all elements of fddd(X) passing through
infinitely many F̃n’s are in A∆.

Proof. The proof is verbatim the same as that given for the case of block-
sequences in [9] (which corresponds to Proposition 2.3 in this article), if we
replace blocks in Q(X) by finite-dimensional spaces in FinQ(X), and block-
sequences in bbd(X) by sequences of successive finite-dimensional subspaces
in fddd(X). �

We shall use this theorem when A is in fact a property of [xn]n∈N. In this
case, each sequence F̃n can be chosen to be of length 1, and the formulation
becomes a bit more tractable. We have:

Theorem 6.3 (Topological 0-1 law for FDD subspaces). Let X be a
Banach space with an unconditional basis. Let P be a property of Banach
spaces which is preserved by isomorphism. Assume that the set of (Fn)n∈N in
fddd(X) such that [Fn]n∈N satisfies P has the Baire Property. Assume that
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for every sequence (Fn)n∈N in fdd(X), there exists a sequence which passes
through infinitely many Fn’s and whose closed linear span satisfies P . Then
there exists a sequence (Fn) such that any sequence of fdd(X) passing through
infinitely many Fn’s has a closed linear span satisfying P .

Proof. Let A = {(Fn)n∈N ∈ fddd(X) : [Fn]n∈N has P}. Let ∆ > 0 be small
enough so that A∆ = A and (AC)∆ = AC . In Theorem 6.2 applied with ∆ to
A or AC , the sequence F̃n may be chosen to be of length 1 for each n ∈ N. It
follows from our hypotheses about P that A cannot be meager. (Otherwise
apply Theorem 6.2 with ∆ to AC .) For Ẽ = (E1, . . . , Ep) ∈ fdd<ωd (X), denote
by N(Ẽ) the set of sequences (Fn)n∈N ∈ fddd(X) such that Fn = En for all
n ≤ p. As A has the Baire Property, it is comeager in some open set N(Ẽ),
and without loss of generality Ẽ is a length 1 sequence (E1). We now prove
that A is comeager in fddd(X). Then our result follows from Theorem 6.2.

Otherwise, A is meager in some open set N(F̃ ), F̃ ∈ fdd<ωd (X), and
without loss of generality F̃ is a length 1 sequence (F1). Now we may
find E2 and F2 in FinQ(X), with E1 < E2, dimE2 = dimF1, F1 < F2,
dimF2 = dimE1, and max(supp(E2)) = max(supp(F2)). Let f be the
canonical bijection between the sets N((E1, E2)) and N((F1, F2)), defined
by f((E1, E2)_S) = (F1, F2)_S for all S ∈ fddd(X). It is routine to check
that f is an homeomorphism, and that for all S ∈ N((E1, E2)), [f(S)] is
isomorphic to [S]; in particular, S ∈ A if and only if f(S) ∈ A. This gives
a contradiction to the fact that A is meager in N((F1, F2)) and comeager in
N((E1, E2)). �

Corollary 6.4. Let X be a Banach space with an unconditional basis.
Let P be an isomorphic property of Banach spaces. Assume that the set
{(Fn)n∈N ∈ fdd(X) : [Fn]n∈N has P} has the Baire Property, and that P
is stable by passing to complemented subspaces and by squaring. If every se-
quence in fdd(X) has a subsequence whose closed linear span satisfies P , then
all subspaces with a successive FDD in X satisfy P .

Proof. Let A = {(Fn)n∈N ∈ fdd(X) : [Fn]n∈N has P}. By the previous
theorem, there exists a sequence (Fn) such that any sequence of fdd(X) pass-
ing through infinitely many Fn’s has a closed linear span satisfying P . By the
properties of P , and because the basis of X is assumed to be unconditional, A
is stable by taking subsequences and by concatenation of disjoint sequences.
Using the same method as at the end of the proof of Theorem 4.2, we obtain
that A = fddd(X). �

One important open question in Banach space theory is whether any com-
plemented subspace of a Banach space with an unconditional basis must have
an unconditional basis (or even an unconditional finite-dimensional decom-
position, also noted UFDD). Note that it is known that a complemented
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subspace of a space with a UFDD does not necessarily have a Schauder basis
(this is due to Szarek), or even a FDD (due to Read). We refer to [3] for more
on this.

The following corollary gives a possible approach towards answering the
first question in the negative. (Here we use that “spanning a subspace with an
unconditional basis” is analytic and thus has the Baire Property in fddd(X).)

Corollary 6.5. Let X be a Banach space with an unconditional basis.
Assume:

(1) Every sequence in fdd(X) has a subsequence which spans a subspace
with an unconditional basis.

(2) There exists a sequence in fdd(X) which spans a subspace without an
unconditional basis.

Then there exists a subspace F = ⊕n∈NFn of X with a successive FDD on
the basis, which has an unconditional basis, and a subsequence (Gk)k∈N of
(Fn)n∈N, such that G = ⊕k∈NGk, though complemented in F , does not have
an unconditional basis.

Note that, by construction, a counterexample produced by Corollary 6.5
will be equipped with a UFDD. We conclude this paper by discussing some of
the properties that a Banach space X with (1) and (2) must have, supposing
it exists.

Recall that a Banach space X is said to have Gordon-Lewis l.u.st. if there
is a constant C ≥ 1 such that for every finite dimensional subspace E of X,
there exists a finite dimensional space F with a 1-unconditional basis, and
maps T : E → F , U : F → X, such that UT (x) = x for all x ∈ E and
such that ‖T‖ ‖U‖ ≤ C. We note that having l.u.st. is an analytic property
of Banach spaces, which is stable by passing to complemented subspaces and
squaring. As (1) implies that every sequence in fddd(X) has a subsequence
which spans a subspace with l.u.st., it follows from Theorem 6.4 that if X
satisfies (1) and (2), then every subspace of X with a successive FDD must
have l.u.st..

By the theorem of Komorowski and Tomczak-Jaegermann [15] mentioned
in the introduction, it follows that X must be `2-saturated. Also by [4],
Theorem 3.8, every subspace of X with a uniform FDD on the basis must
have an unconditional basis.

Another interesting fact is that the unconditional basis for the space
(⊕Fn)n∈N in the conclusion of Corollary 6.5 cannot be obtained in the obvious
way, that is, by constructing in each Fn a C-unconditional basis, and proving
that the sequence which is the reunion of each basis is a K(C)-unconditional
basis for (⊕Fn)n∈N, for some constant K(C). In this case, any subspace
(⊕Gk)k∈N associated to a subsequence (Gk)k∈N of (Fn)n∈N would inherit an
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unconditional basis (which is just a subsequence of the unconditional basis of
(⊕Fn)n∈N).

A natural candidate for X is the Orlicz sequence space lF considered by
P. Casazza and N.J. Kalton in [4]. It is reflexive, has cotype 2 and type 2− ε
for any ε > 0, and is `2-saturated. Among other interesting properties, every
subspace of lF with a uniform UFDD has an unconditional basis. We do not
know whether lF satisfies the hypotheses of Corollary 6.5.
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