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UNIFORM APPROXIMATION ON RIEMANN SURFACES
BY HOLOMORPHIC AND HARMONIC FUNCTIONS

B. JIANG

Abstract. Let K be a compact subset of an open Riemann surface. We
prove that if L is a peak set for A(K), then A(K)|L = A(L). We also

prove that if E is a compact subset of K with no interior such that each
component of Ec intersects Kc, then A(K)|E is dense in C(E). One
consequence of the latter result is a characterization of the real-valued
continuous functions that when adjoined to A(K) generate C(K).

1. Introduction

In this paper, we are concerned with some problems involving uniform
algebras on sets in an arbitrary open Riemann surface. The original idea
comes from the related problems in the complex plane. Let K be a compact
set in the complex plane. Let A(K) denote the algebra of functions in C(K)
that are holomorphic on the interior of K and let R(K) denote the algebra of
the functions in C(K) that can be approximated uniformly on K by rational
functions with poles off K.

Wermer’s maximality theorem [9, Theorem II.5.1] states that the algebra
A(D̄) (where D denotes the open unit disk) is not a maximal subalgebra of
C(D̄). In other words, there is a function f in C(D̄), but not in A(D̄), such
that the norm-closed subalgebra A(D̄) [f ] of C(D̄) generated by A(D̄) and f is
not equal to C(D̄). It is natural to ask for a characterization of the functions
f in C(D̄) for which A(D̄) [f ] = C(D̄).

In 1965, J. Wermer [18] showed that when f is continuous differentiable on
a neighborhood of D̄, then A(D̄) [f ] = C(D̄) if and only if the graph of f is
polynomially convex in C2 and R(E) = C(E), where E is the zero set of ∂̄f .

In 1969, E.M. Čirca [8], using Wermer’s technique, obtained the following
theorem.

Theorem A. Let K be a compact set in the plane and suppose that every
point of ∂K is a peak point for R(K). Let f ∈ C(K) be harmonic on the
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interior of K, but nonholomorphic on each component of the interior of K.
Then the norm-closed subalgebra of C(K) generated by R(K) and f is equal
to C(K).

Suppose Ω is an open set on the Riemann sphere, C̄, and let H∞(Ω) de-
note the algebra of bounded holomorphic functions on Ω. If f is any bounded
measurable function on Ω we let H∞(Ω) [f ] denote the subalgebra of L∞(Ω)
generated by H∞(Ω) and f . Let C(Ω̄) denote the uniformly continuous func-
tions on Ω (i.e., those with continuous extension to Ω̄, the closure of Ω). The
following theorem is due to C.J. Bishop [4].

Theorem B. Suppose that Ω is an open set in the Riemann sphere and
that f ∈ H∞(Ω) is nonconstant on each component of Ω. Then C(Ω̄) ⊂
H∞(Ω)

[
f̄
]
.

In 1991, A.J. Izzo [13] obtained the following result:

Theorem C. Let K be a compact set in the plane, and let u ∈ C(K)
be real-valued and harmonic on the interior of K, but nonconstant on each
component of the interior of K. Then A(K) [u] = C(K).

In this paper, we will obtain analogous results on open Riemann surfaces.
Some of the techniques are similar to those used by A.J. Izzo in the complex
plane.

2. Preliminaries

Let R be an open Riemann surface and let K be a compact subset of R.
Let C(K) be the class of complex-valued continuous functions on K. Let
A(K) be the class of functions in C(K) which are holomorphic in the interior
of K, and let M(K) be the class of functions in C(K) which can be uniformly
approximated on K by meromorphic functions on R with poles off K. If
f ∈ C(K), A(K) [f ] denotes the algebra of functions in C(K) generated by
A(K) and f .

We use the following notation: R∗ denotes the one point compactification
of R; for E ⊂ R, ∂E denotes the boundary of E in R, E0 denotes the interior
of E, and EC denotes the complement of E in R.

In 1967, R. C. Gunning and R. Narasimhan [12] showed that every non-
compact Riemann surface can be realized in a very concrete way. More pre-
cisely, they proved the following theorem.

Theorem 2.1. There exists a globally defined holomorphic function ρ :
R→ C which is locally a homeomorphism.

Thus ρ is a global uniformizing parameter on R. In this article, every local
coordinate system will always be defined only in terms of ρ (without further
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notice). For example, a parametric disk D on R will be an open connected
set on R on which ρ is one to one and ρ(D) is a disk {z : |z − z0| < r} in C; if
ρ(p) = z0, then p and r will be called, respectively, the center and the radius
of the parametric disk D. For convenience we write this disk as D(p, r).

Using ρ, S. Scheinberg [15] and P.M. Gauthier [11] constructed a Cauchy
kernel F (p, q), which is a meromorphic function on R×R satisfying:

(1) F (q, p) = −F (p, q).
(2) The only singularities of F are simple poles with residues ±1 on the

diagonal.
Using this kernel, A. Boivin [6] extended to Riemann surfaces the definition
of the localization operator Tφ of A.G. Vitushkin.

Definition 2.2. Whenever φ is a smooth function with compact support,
we define the operator Tφ on the space of bounded Borel functions f by the
formula

(Tφf)(q) = φ(q)f(q) +
1

2πi

∫∫
f(p)F (p, q)∂̄φ(p) ∧ ∂ρ(p).(2.1)

Boivin proved the following result.

Proposition 2.3. Let f and φ be as above. Then:
(i) Tφf is continuous wherever f is continuous.
(ii) Tφf is analytic wherever f is analytic.
(iii) Tφf is analytic off the closed support of φ.
(iv) f − Tφf is analytic on the interior of the level set φ−1(1).

Definition 2.4. If A is a uniform algebra on a compact Hausdorff space
X, a subset Y of X is said to be a peak set for A if there is a function f ∈ A
such that f(y) = 1 for y ∈ Y , and |f(x)| < 1 for x ∈ X\Y . In this situation,
the function f is said to peak on Y . A point x ∈ X is said to be a peak point
for A if {x} is a peak set for A.

If µ is a measure on the complex plane with compact support, the Cauchy
transform µ̂ of µ is defined by

µ̂(z) =
∫
dµ(w)
w − z

for all z such that the integral converges absolutely. Analogously, we have
(see [6] and [14]):

Definition 2.5. If µ is a finite complex Borel measure on R with compact
support, then the Cauchy transform µ̂ of µ is defined by

µ̂(q) =
∫
F (p, q)dµ(p).
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Lemma 2.6 ([6, Lemma 3.2]). If µ is a measure of the form µ = hω, where
ω is the area measure on R and h ∈ L∞(ω) has compact support, then µ̂ is
continuous.

Lemma 2.7. If µ is a measure of the form µ = hω, where ω is the area
measure on R and h ∈ L∞(ω) has compact support, then µ̂ is holomorphic off
the compact support of h.

Proof. Suppose E is the compact support of h. Given any point p0 ∈ Ec,
let G be an open subset of R such that E ⊂ G, and p0 ∈ Ḡc. Pick a smooth
function φ with compact support on Ḡ satisfying

φ(p) = ρ(p), for p ∈ E.
Then we have

µ̂(q) = 2πi(Tφh)(q), for any q ∈ Ḡc.
So, by Proposition 2.3, µ̂ is holomorphic on Gc. Hence µ̂ is holomorphic at
p0. This means that µ̂ is holomorphic off the compact support of h. �

Lemma 2.8. Let G be a Borel set on an open Riemann surface R and let
µ be a finite complex measure on R with compact support. Then µ̂ = 0 a.e.
on G if and only if µ annihilates all functions of the form

f(q) =
∫
h(p)F (p, q)∂ρ(p) ∧ ∂̄ρ(p),

where h is a bounded Borel function on R with compact support vanishing off
G.

Proof. If µ̂ = 0 a.e. on G, then by applying Fubini’s theorem we have∫
f(q)dµ(q) =

∫∫
h(p)F (p, q)∂ρ(p) ∧ ∂̄ρ(p)dµ(q)

=
∫
G

h(p)
∫
F (p, q)dµ(q)∂ρ(p) ∧ ∂̄ρ(p)

=
∫
G

h(p)µ̂(p)∂ρ(p) ∧ ∂̄ρ(p)

= 0.

On the other hand, if we pick h(p) = µ̂(p) |G, then
∫
f(q)dµ(q) = 0 implies

that∫∫
h(p)F (p, q)∂ρ(p) ∧ ∂̄ρ(p)dµ(q) =

∫
h(p)

∫
F (p, q)dµ(q)∂ρ(p) ∧ ∂̄ρ(p)

=
∫
G

|µ̂(p)|2 ∂ρ(p) ∧ ∂̄ρ(p)

= 0.
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But dA = (−2i)−1∂ρ(p) ∧ ∂̄ρ(p) is a (positive 2-form) area element, so µ̂ = 0
a.e. on G. �

Lemma 2.9. Suppose that K is a compact subset of an open Riemann
surface, and µ is a measure on K that annihilates A(K). Then µ̂ = 0 a.e. off
K0.

Proof. Suppose h is an arbitrary bounded Borel function on R with com-
pact support vanishing on K0. Then, by Lemma 2.7, we conclude that the
function

f(q) =
∫
h(p)F (p, q)∂ρ(p) ∧ ∂ρ̄(p)

is holomorphic on K0, so f ∈ A(K). Because µ annihilates A(K), by Lemma
2.8 we have that µ̂ a.e. off K0. �

Lemma 2.10. Let K be a compact subset of an open Riemann surface.
Then a measure µ on K is orthogonal to M(K) if and only if µ̂ = 0 on Kc.

This is just [14, Lemma 5] and [6, Theorem 2.1].

3. The restriction of A(K) to a peak set

The following theorems are the main results of this section.

Theorem 3.1. If K is a compact subset of an open Riemann surface R
and L is a peak set for A(K), then A(K)|L = A(L).

Theorem 3.2. If K is a compact subset of an open Riemann surface R
and L is a peak set for M(K), then M(K)|L = M(L)

Before proving Theorem 3.1, we need some preliminaries. Let K be a
compact set on an open Riemann surface R and U an open set in R contained
in K. Let A(K,U) denote the algebra of continuous functions on K that are
holomorphic on U .

The following lemma, which is a generalization of [13, Lemma 1.2], will be
proved using Lemma 2.8.

Lemma 3.3. Suppose that K is a compact set on an open Riemann surface
R, U is an open set in R contained in K and N is a relatively closed subset of
U which has area measure zero (i.e.,

∫
N
dA(p) = 0). Then C((K\U) ∪N) is

the closed linear span of A(K,U) and the functions p→ F (p, q0), q0 ∈ U\N.

Proof. Suppose that µ is a measure on (K\U)∪N that annihilates A(K,U)
and the functions p→ F (p, q0), q0 ∈ U\N . Then obviously µ̂(q0) = 0 for every
q0 ∈ U\N . If h is a bounded Borel function on R with compact support such
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that h is zero on U , then using Lemma 2.7 we conclude that the function f
defined on K by

f(q) =
∫
h(p)F (p, q)∂ρ(p) ∧ ∂ρ̄(p)

is in A(K,U), and hence is annihilated by µ. Consequently, using Lemma 2.8,
we have that µ̂ = 0 a.e. on U c. Since

∫
N
dA(p) = 0, we conclude that µ̂ = 0

a.e., so µ is the zero measure. This implies that C((K\U) ∪N) is the closed
linear span of A(K,U) and the functions F (p, q0), q0 ∈ U\N. �

Lemma 3.3 will not be used in its full generality. For convenience we state
here the two special cases that will be used.

Corollary 3.4. If Ω is a bounded (i.e., relatively compact) open subset
of an open Riemann surface, then C(∂Ω) is the closed linear span of A(Ω)
and the functions F (p, q0), q0 ∈ Ω.

Corollary 3.5. If K is a compact set on an open Riemann surface R
and N is a relatively closed subset of K0 having area measure zero, then
C(∂K ∪ N) is the closed linear span of A(K) and the functions F (p, q0),
q0 ∈ K0\N.

Lemma 3.6. If K is a compact set on an open Riemann surface R and L
is a peak set for M(K), then ∂L ⊂ ∂K.

This is an immediate consequence of the maximum modulus principle and
the definition of peak sets.

Lemma 3.7. If K is a compact set on an open Riemann surface and L is
a peak set for A(K), then each component of Lc intersects Kc.

Proof. Assume, to get a contradiction, that some component U of Lc lies
entirely in K. Since L is a closed set, each component of Lc is open. It follows
that ∂U is contained in L. Now let f in A(K) be a function that peaks on
L. Then f |Ū is in A(Ū) and is 1 on ∂U . Consequently, by the maximum
principle, f is 1 on all of Ū . Hence, Ū is contained in L, contradicting our
assumption that U is a component of Lc. �

S. Scheinberg obtained the following generalization of Runge’s theorem to
Riemann surfaces.

Lemma 3.8 ([16, Corollary 3]). If E is a compact subset of a Riemann
surface R and P contains a point from each bounded component of Ec, then
every holomorphic function on E is the uniform limit on E of meromorphic
functions on R all of whose poles lie in P .
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Lemma 3.9. Let K be a compact subset of an open Riemann surface, L
be a peak set for A(K), and let X = K\L ∩ L. Then A(K\L)|X = C(X).

Proof. Let f ∈ A(K) be a function that peaks on L. Then f |(K\L) is in
A(K\L) and peaks on K\L ∩ L = X. Thus, X is a peak set for A(K\L).
Therefore, A(K\L)|X is closed in C(X) [17, Lemma 12.3]. In addition, us-
ing Lemma 3.7, we conclude that each component of the complement of X
intersects the complement of K\L. Note that X is contained in ∂L. Hence
X is contained in ∂K (by Lemma 3.6), and consequently X is contained in
∂(K\L). So by Corollary 3.5 we see that the linear span of A(K\L)|X and the
functions F (p, q0), q0 ∈ (K\L)0, is dense in C(X). Because each component
of the complement of X intersects the complement of K\L, Lemma 3.8 shows
that each of the functions F (p, q0), q0 ∈ (K\L)0, can be approximated uni-
formly on X by meromorphic functions with poles off K\L. Thus, A(K\L)|X
is dense in C(X). �

Proof of Theorem 3.1. Obviously A(K)|L ⊂ A(L). To prove the reverse
inclusion, let f ∈ A(L) be arbitrary. By Lemma 3.9, there exists a function g
in A(K\L) that agrees with f on K\L∩L. Hence, the function h on K given
by

h(p) =

{
f(p) if p ∈ L,
g(p) if p ∈ K\L,

is well defined. Now h is continuous on K and holomorphic on K0 (since
∂L ⊂ ∂K by Lemma 3.6). Thus, h is in A(K) and clearly h|L = f. Hence,
A(L) ⊂ A(K)|L. �

Corollary 3.10. If E is a peak set for A(K) contained in ∂K, then
A(K)|E = C(E).

This is an immediate consequence of Theorem 3.1 and Theorem 2.6 in [6].

If A is a uniform algebra on a compact Hausdorff space X, a subset Y of
X is said to be an interpolation set for A if A|Y = C(Y ). The set Y is said
to be a peak-interpolation set for A if for each nonzero f ∈ C(Y ) there is an
F ∈ A such that F |Y = f and |F (x)| < ‖f‖Y for all x ∈ X\Y . It can be
shown that a set is a peak-interpolation set if and only if it is simultaneously
a peak set and an interpolation set [18, Lemma 20.1]. Thus, Corollary 3.10
can be reformulated as follows.

Corollary 3.10
′
. If E is a peak set for A(K) contained in ∂K, then E

is a peak-interpolation set for A(K).

Proof of Theorem 3.2. Let G be a bounded component of Lc. Then G
meets Kc, for if G ⊂ K, and f peaks on L, f ∈M(K), then f is holomorphic
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in G and equals 1 on the boundary of G, and hence f = 1 inG, a contradiction.
It follows from Lemma 3.8 that M(K)|L is dense in M(L). Since L is a peak
set, M(K)|L is closed [7, Theorem 2.4.3], and the proof is complete. �

The next result is an immediate consequence of Theorem 3.1 and Theo-
rem 3.2.

Corollary 3.11. If K is a compact set in the open Riemann surface for
which A(K) and M(K) coincide, and L is a peak set for this common algebra,
then A(L) and M(L) also coincide.

4. The main theorems

For u ∈ C(K), let A(K) [u] denote the norm-closed subalgebra of C(K)
generated by A(K) and u. This section is devoted primarily to proving the
following two theorems, which generalize the results of Izzo [13] to open Rie-
mann surfaces.

Theorem 4.1. Let K be a compact subset of an open Riemann surface.
Let u ∈ C(K) be real-valued and harmonic on the interior of K, but non-
constant on each component of interior of K. Then A(K) [u] = C(K).

Theorem 4.2. If K is a compact subset of an open Riemann surface and
E is a compact subset of K with no interior such that each component of Ec

intersects Kc, then A(K)|E is dense in C(E).

Using a reasoning similar to that used by S. Axler and A. Shields [2] and
by Izzo [13] in the complex plane, we see that Theorem 4.1 follows from
Theorem 4.2. However, Theorem 4.1 does not require the full strength of
Theorem 4.2. To illustrate this, we first give an independent proof of Theo-
rem 4.1. The general idea of the proof is taken from Axler and Shields [2].
We shall make use of the following lemmas.

Lemma 4.3. Let K be a compact subset of an open Riemann surface. Let
u ∈ C(K) be real-valued and harmonic on the interior of K, but nonconstant
on each component of K0. Let E be a level set of u. Then E ∩K0 has area
measure zero.

Proof. Assume, to get a contradiction, that E ∩K0 has nonzero area mea-
sure. Because K is compact, there are finite open parametric disks ∆j such
that K ⊂ ∪∆j . Hence, there is at least one parametric disk (which we may
suppose to be ∆1) such that E ∩ ∆1 ∩ K0 has nonzero measure. Also, we
notice that u is harmonic on ∆1 ∩K0 and nonconstant on each component of
∆1 ∩K0.

Let τ = (ρ|∆1)−1. Then u◦ τ is harmonic on ρ(∆1∩K0), and nonconstant
on each component of ρ(∆1∩K0). Moreover, E1 = ρ(E∩∆1∩K0) is a subset,
with nonzero planar area measure, of the level set of u ◦ τ .
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Now we observe that ρ(∆1 ∩ K0) is a bounded open set in the complex
plane and thus has at most countably many components. Hence there is at
least one component (which we may suppose to be V ) such that E1 ∩ V has
nonzero measure. Because u ◦ τ is harmonic on V , this implies that u ◦ τ is
constant on V . This contradicts the fact that u ◦ τ is nonconstant on each
component. �

Denote by AR(K) the uniform limits on K of functions holomorphic on R.
E. Bishop obtained the following generalization of Mergelyan’s theorem.

Lemma 4.4 ([5, Corollary 2]). Let K be compact in R. If R∗\K is con-
nected, then A(K) = AR(K).

Suppose A is a uniform algebra on a compact Hausdorff space X. A subset
Y of X is said to be a set of antisymmetry for A if every function in A that
is real-valued on Y is in fact constant on Y . We say that A is antisymmetric
if every real-valued function in A is constant.

Proof Theorem 4.1. Let E be a maximal set of antisymmetry for A(K) [u].
The closure of every antisymmetric set is antisymmetric, so E is compact.
Moreover, since u is a real-valued function in A(K) [u], it must be constant
on E, and Lemma 4.3 shows that E ∩K0 has area measure zero.

We claim that each component of Ec intersects Kc. To prove this, let F
be a component of Ec and assume, to get a contradiction, that F is contained
in K. Then u is continuous on F̄ and harmonic on F . Moreover, ∂F is
contained in E, so u is constant on ∂F . Consequently, u is constant on F ,
which contradicts the hypothesis that u is nonconstant on each component of
K0. Thus each component of Ec intersects Kc.

Since E ∩K0 has measure zero, Corollary 3.4 shows that the linear span
of A(K)|E and the functions F (p, q0), q0 ∈ K0\E, is dense in C(E). Since
each component of Ec intersects Kc, Lemma 3.8 shows that each of the func-
tions F (p, q0), q0 ∈ K0\E, can be approximated by meromorphic functions
with poles off K. Thus, A(K)|E is dense in C(E). Hence, A(K) [u] |E is cer-
tainly dense in C(E). Since E is a maximal set of antisymmetry for A(K) [u],
we know by [17, Theorem 12.1] that A(K) [u] |E is closed in C(E), and so
A(K) [u] |E = C(E). The Bishop antisymmetric decomposition (see [17, The-
orem 12.1]) now implies that A(K) [u] = C(K). �

In view of Theorem A, it should be noted that the existence of compact
sets K with no interior and with M(K) 6= C(K) implies that Theorem 4.1
does not remain valid if A(K) is replaced by M(K).

Proof of Theorem 4.2. Let f in C(E) be arbitrary and fix ε > 0. By Corol-
lary 3.4, the linear span of A(K) and the functions F (p, q0), q0 ∈ K0, is dense
in C(∂K), and hence dense in C(E∩∂K). Since E is has empty interior, each
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component of (E ∩ ∂K)c contains a component of Ec, and hence intersects
Kc. Therefore, by Lemma 3.8, each of the functions F (p, q0), q0 ∈ K0, can be
approximated uniformly on E ∩ ∂K by meromorphic functions with poles off
K. Consequently, A(K)|(E ∩ ∂K) is dense in C(E ∩ ∂K). So we can choose
g in A(K) such that

‖f − g‖(E∩∂K) <
ε

2
.

By the Tietze extension theorem, there is a continuous function φ on E that
agrees with f − g on a neighborhood of E ∩ ∂K in E, and satisfies

‖φ‖E ≤
ε

2
.

Now f−g−φ is a continuous function on E that vanishes on a neighborhood
of E ∩ ∂K. For each point p lying in E but not on the boundary of K,
choose an open parametric disk Dp that is contained in K. The hypothesis
that each component of Ec intersects Kc implies that E ∩ D̄p has connected
complement. Hence, recalling that E has empty interior, Lemma 4.4 shows
that M(E∩D̄p) = C(E∩D̄p). In particular, the restriction f−g−φ to E∩D̄p

is in M(E ∩ D̄p). Since f − g−φ vanishes on a neighborhood of E ∩∂K in E,
the localization theorem [14] now implies that f−g−φ is in M(E). Therefore,
since each component of Ec intersects Kc, Lemma 3.8 shows that f − g − φ
can be approximated (on E) by meromorphic function with poles off K, and
hence certainly by elements of A(K). So we can choose h in A(K) such that

‖(f − g − φ)− h‖E <
ε

2
.

Then we have

‖f − (g + h)‖E ≤ ‖(f − g − φ)− h‖E + ‖φ‖E <
ε

2
+
ε

2
= ε.

Since g and h are both in A(K), we are done. �

As mentioned earlier, Theorem 4.2 enables us to give another proof of The-
orem 4.1. One shows that if E is a maximal set of antisymmetry for A(K) [u],
then E satisfies the hypotheses of Theorem 4.2, so A(K)|E is dense in C(E).
Consequently, A(K) [u] |E = C(E), and the conclusion of Theorem 4.1 fol-
lows from the Bishop antisymmetric decomposition. Moreover, using now
Theorem 4.2, we obtain the following characterization of those real-valued
continuous functions on K that when adjoined with A(K) generate all of
C(K).

Corollary 4.5. Suppose that K is a compact subset of an open Riemann
surface and u ∈ C(K) is real-valued. Then A(K) [u] = C(K) if and only if u
is nonconstant on the boundary of each open set contained in K.

Proof. The proof of the ‘if’ part is similar to the proof of Theorem 4.1
suggested above. To prove the ‘only if’ part, suppose u is constant on the
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boundary of an open set contained in K. There exists a connected open set U
such that u is constant on ∂U . Since the maximum modulus principle implies
that A(Ū)|∂U is closed in C(Ū), it is easy to see that

A(K) [u] |(∂U) ⊂ A(K)|(∂U) ⊂ A(Ū)|(∂U).

Moreover, A(Ū)|(∂U) is not equal to C(∂U) since the connectedness of U im-
plies that every real-valued function in A(Ū)|(∂U) is constant. So A(K) [u] 6=
C(K), and we are done. �

Corollary 4.6. Suppose that K is a compact subset of an open Riemann
surface, and E is a compact subset of K. Then A(K)|E is dense in C(E) if
and only if E has empty interior and each component of Ec intersects Kc.

Proof. The ‘if’ statement is Theorem 4.2. To prove the ‘only if’ statement,
suppose some component U of Ec does not intersect Kc. Then Ū ⊂ K and
∂U ⊂ E. Now, A(K)|(∂U) ⊂ A(Ū)|(∂U), and A(Ū)|(∂U) is closed in C(∂U)
(by the maximum modulus principle) and is not equal to C(∂U), since every
real-valued function in A(Ū)|(∂U) is constant. Thus A(K)|(∂U) is not dense
in C(∂U), so A(K)|E is not dense in C(E). �

We can also use duality to prove Theorem 4.2, as we now illustrate.

Lemma 4.7. Let K be a compact subset of an open Riemann surface,
and E a compact subset of K such that each component of Ec intersects Kc.
Suppose µ is a measure on E that annihilates A(K). Then µ̂ = 0 a.e. off E0.

In the proof we will need the following lemma.

Lemma 4.8 ([14, Lemma 7]). Let µ be a complex measure supported on
K and orthogonal to M(K). For any covering {Uj} of K by the coordinate
neighborhoods, we can find measures µj, each supported on Uj and orthogonal
to M(K ∩ Ūj), such that µ =

∑
µj.

Proof of Lemma 4.7. By Lemma 2.9, µ̂ = 0 a.e. off K0. The Cauchy trans-
form of a measure is holomorphic off the closed support of the measure, so µ̂
is holomorphic off E. In view of the hypothesis on the components of Ec, it
follows that µ̂ = 0 off E. Thus it suffices to show that µ̂ = 0 a.e. on (∂E)∩K0.

For each p ∈ (∂E) ∩K0 choose an open parametric disk Dp centered at p
and contained inK. Then E∩D̄p has connected complement, so by Lemma 4.4
we have M(E ∩ D̄p) = A(E ∩ D̄p). Let D′p be the parametric disk center at
p with radius half that of Dp.

Now fix q ∈ (∂E) ∩K0, and let U1 = E ∩Dq and U2 = E ∩ (D̄′q)
c. Since

µ̂ = 0 off E, by Lemma 2.10 we have that µ ⊥M(E). Hence, by Lemma 4.8,
there exist measures µ1 and µ2 such that µ = µ1 + µ2, µj ⊥M(Ūj), and the
closed support of µj is contained in Uj (j = 1, 2). Now, µ1 ⊥ M(E ∩ D̄p) =
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A(E∩D̄p), so by Lemma 2.9, µ̂1 = 0 a.e off M ∩D̄q. In particular, µ̂1 = 0 a.e.
on ∂E. Moreover, µ̂2 = 0 off Ū2 (since µ2 ⊥ M(Ū2)), so µ̂2 = 0 on D′w. We
conclude that µ̂ = µ̂1 + µ̂2 = 0 a.e. on ∂E∩D′q. Since there exists a countable
collection E of points in ∂E ∩K0 such that the parametric disks D′p, p ∈ ∂E,
cover (∂E) ∩K0, it follows that µ̂ = 0 a.e. on (∂E) ∩K0, and the proof is
complete. �

We can use this lemma to prove Theorem 4.2, because if L has no interior,
the conclusion of the lemma is that µ̂ = 0 a.e. whenever µ is a measure on L
that annihilates A(K). Thus, the zero functional is the only linear functional
that annihilates A(K)|L, and hence A(K)|L is dense in C(L).

5. A generalization of a result of C. Bishop

Theorem 5.1. Suppose that Ω is a bounded open subset of an open Rie-
mann surface R and that f ∈ H∞(Ω) is nonconstant on each component of
Ω. Then C(Ω̄) ⊂ H∞(Ω)

[
f̄
]
.

Following Bishop’s original proof [4], we first obtain the following lemma.

Lemma 5.2. If Ω is a bounded open subset of an open Riemann surface
and g ∈ C(Ω̄), then g can be approximated uniformly on Ω̄ by continuous
functions on Ω̄ that are smooth on Ω and holomorphic on Ω ∩ U , for some
neighborhood U of ∂Ω.

Proof. Fix ε > 0. By Corollary 3.4, there exist a function h ∈ A(Ω), points
q1, q2, · · · , qn in Ω, and complex numbers a1, a2, · · · , an such that∣∣∣∣∣g(p)−

(
h(p) +

N∑
i=1

aiF (p, qi)

)∣∣∣∣∣ < ε, ∀p ∈ ∂Ω.(5.1)

Let V be a neighborhood of ∂Ω such that (5.1) holds with V ∩ Ω̄. Let φ, ψ, τ
be smooth functions on the Riemann surface satisfying:

(i) suppφ ⊂ V , suppψ ⊂ Ω, and supp τ ⊂ Ω̄c;
(ii) 0 ≤ φ, ψ, τ ≤ 1;
(iii) φ+ ψ + τ = 1.

Let ` be a smooth function on Ω such that

sup
p∈Ω
|g(p)− `(p)| < ε.

Then the function

λ(p) = φ(p)(h(p) +
n∑
i=1

aiF (p, qi)) + ψ(p)`(p)
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is a continuous function on Ω̄ that is smooth on Ω, holomorphic on Ω ∩
(suppψ)c, and satisfies

‖g(p)− λ(p)‖ < ε for p ∈ Ω̄,

so we are done. �

We are now ready to prove Theorem 5.1. Much of the proof is similar to
Bishop’s proof of the same theorem in the complex plane (see [4]) .

Proof of Theorem 5.1. Take g ∈ C(Ω̄) and suppose f = u+ iv ∈ H∞(Ω) is
nonconstant on each component of Ω. We wish to prove that g ∈ H∞(Ω)

[
f̄
]
.

By Lemma 5.2, we can approximate g on Ω̄ by a function which is continuous
on R and of compact support, smooth on Ω and holomorphic on Ω ∩ U , for
some neighborhood U of ∂Ω. Hence we may assume that g has this form.

We may also assume that ‖f‖∞ ≤ 1. For each complex number λ with
|λ| < 1, notice that

{p ∈ Ω : f(p) = λ} ∩ supp(∂̄g)

is a finite subset of Ω. Let us modify g continuously to be constant in a
neighborhood of each such point. Thus we obtain a function gλ which ap-
proximates g and which is holomorphic on Ω ∩ U and in a neighborhood of
{f = λ}. Therefore,

∂̄gλ
f − λ

is a smooth differential with compact support.
Let

hλ(q) =
1

2πi

∫
1

f(p)− λ
F (p, q)∂̄gλ(p) ∧ ∂ρ(p).

From Lemma 2.6 we conclude that hλ is continuous on R. Moreover, if we
also let µ be the “measure”

1
f − λ

∂̄gλ ∧ ∂ρ(p),

then hλ = µ̂ · (1/2πi), and (see [6, equation (8)])

∂̄(hλdρ) = ∂(
µ̂

2πi
dρ) = −µ = − 1

f − λ
∂̄gλ ∧ ∂ρ

in terms of currents. Therefore gλ + hλ(f − λ) is a bounded holomorphic
function on Ω and approximates g near the set {f = λ}.

Fix ε small. Let D = {(x, y) : x2 + y2 < 1} be the unit disk in the complex
plane. We choose a finite collection of points {λj} such that the corresponding
disks

Bj =
{

(x, y) :
√

(x− Re(λj))2 + (y − Im(λj))2 < ε/‖hλj‖∞,Ω̄
}
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cover D̄, where ‖hλj‖∞,Ω̄ denotes the supremum of hλj on Ω̄, and also choose
continuously differentiable function φj with the following properties:

(i) φj is supported on Bj .
(ii)

∑
φj(x, y) = 1 for all (x, y) ∈ D̄.

(iii) 0 ≤ φj(x, y) ≤ 1.
(iv) No point z ∈ D̄ is contained in more than N of the disks Bj , where

N is a universal constant.
Since f ∈ H∞(Ω), clearly u = (f + f̄)/2, v = (f − f̄)/(2i) ∈ H∞(Ω)

[
f̄
]
.

Now, we define

G(p) =
∑
j

(gλj (p) + hλj (p)(f(p)− λj))φj(u, v)

=
∑

{j:f(p)∈Bj}

(gλj (p) + hλj (p)(f(p)− λj))φj(u, v).

Since φj can be uniformly approximated by polynomials, we have that G ∈
H∞(Ω)

[
f̄
]
. To see that G approximates g on Ω̄, write

|g −G| ≤
∑

{j:f(p)∈Bj}

∣∣g − gλj ∣∣ |φj |+ ∑
{j:f(p)∈Bj}

∣∣hλj ∣∣ |f − λj | |φj | .
The first term is small since g−gλ was chosen small and

∑
{j:f(p)∈Bj} |φj | ≤ 1.

The second term is small because∑
{j:f(p)∈Bj}

∣∣hλj ∣∣ |f(p)− λj | |φj | ≤
∑

{j:f(p)∈Bj}

‖hλj‖∞,Ω̄
ε

‖hλj‖∞,Ω̄
≤ Nε.

This completes the proof of Theorem 5.1. �

The following result can be proved by making minor changes in the proof
of Theorem 5.1 given above.

Theorem 5.3. Suppose Ω is a bounded open set and f ∈ A(Ω) is noncon-
stant on each component of Ω. Then C(Ω̄) = A(Ω)

[
f̄
]
.
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