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ON CONVERGENCE TO THE DENJOY-WOLFF POINT

P. S. BOURDON, V. MATACHE, AND J. H. SHAPIRO

Abstract. For holomorphic selfmaps of the open unit disc U that are

not elliptic automorphisms, the Schwarz Lemma and the Denjoy-Wolff
Theorem combine to yield a remarkable result: each such map ϕ has a
(necessarily unique) “Denjoy-Wolff point” ω in the closed unit disc that

attracts every orbit in the sense that the iterate sequence (ϕ[n]) con-
verges to ω uniformly on compact subsets of U. In this paper we prove

that, except for the obvious counterexamples—inner functions having

ω ∈ U—the iterate sequence exhibits an even stronger affinity for the
Denjoy-Wolff point; ϕ[n] → ω in the norm of the Hardy space Hp for

1 ≤ p <∞. For each such map, some subsequence of iterates converges
to ω almost everywhere on ∂U, and this leads us to investigate the ques-
tion of almost-everywhere convergence of the entire iterate sequence.

Here our work makes natural connections with two important aspects
of the study of holomorphic selfmaps of the unit disc: linear-fractional

models and ergodic properties of inner functions.

1. Introduction

We study the dynamics of holomorphic selfmaps ϕ of the open unit disc U
of the complex plane, i.e., properties of the iterate sequence (ϕ[n]), where ϕ[n]

denotes the composition of ϕ with itself n times (n = 1, 2, . . . ). If ϕ has a
fixed point ω ∈ U and is not an automorphism of U then an argument based
on the Schwarz Lemma shows that the sequence (ϕ[n]) converges, uniformly
on compact subsets of U, to the constant function ω. A much deeper result
establishes that (ϕ[n]) behaves similarly when ϕ has no fixed point in U. This
is the

Denjoy-Wolff Theorem. Suppose that ϕ is a holomorphic selfmap of
U that fixes no point in U. Then there is a point ω ∈ ∂U such that (ϕ[n])
converges to ω uniformly on compact subsets of U.
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The (necessarily unique) point ω to which the iterate sequence of ϕ con-
verges—whether in U or on ∂U—is called the Denjoy-Wolff point of ϕ.

In Section 3 we show that, except for the obvious class of counter-examples
(inner functions with Denjoy-Wolff point in U), the iterate sequence of ϕ ex-
hibits a stronger form of convergence to the Denjoy-Wolff point: convergence
in the norm of the Hardy space Hp for 1 ≤ p <∞ (Theorem 3.1). In this case
the iterate sequence has a subsequence that converges almost everywhere on
∂U with respect to Lebesgue measure, and this raises the question, treated
in Section 4, of a.e. convergence of the entire sequence on ∂U (which, by the
Dominated Convergence Theorem, is even stronger than convergence in Hp).
This in turn leads to interesting connections with established work on linear-
fractional models for holomorphic selfmaps of the unit disc. We show that for
a selfmap ϕ with Denjoy-Wolff point ω the iterate sequence converges a.e. to
ω whenever

(a) ω ∈ U and ϕ is not inner, or
(b) ω ∈ ∂U and ϕ is of either hyperbolic or parabolic automorphic type.

The remaining case, ω ∈ ∂U and ϕ of parabolic non-automorphic type,
is more complicated. Even within the subclass of inner functions there are
examples of maps whose iterates converge a.e. to the Denjoy-Wolff point, and
other examples where they do not. We explore this issue in Sections 4 and 5.

It is known that inner functions of parabolic nonautomorphic type act er-
godically on ∂U, and we discuss in Section 5 the connections our work has with
this area of investigation. In particular, we are able to complete work of Kim
and Kim [15] on the ergodic behavior of atomic singular inner functions, and
we modify ideas of Aaronson [2] to produce ergodic singular inner functions
with iterate sequences converging a.e. to the Denjoy-Wolff point.

In the next section we outline, for the convenience of the reader, the pre-
requisites needed to understand what follows.

2. Background material

This section consists entirely of reference material intended to be consulted
as needed.

2.1. Hardy Spaces ([13, Chapter 2], [24, Chapter 17]). For 1 ≤ p < ∞,
the Hardy space Hp(U) consists of those functions f holomorphic on U that
satisfy the growth condition

(2.1) ‖f‖p :=
(

sup
0≤r<1

1
2π

∫ π

−π
|f(reiθ)|p dθ

)1/p

<∞,

where dθ denotes Lebesgue measure. The norm ‖ · ‖p makes Hp(U) into a
Banach space. It is a simple matter to check that for p = 2 and f(z) =
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0 f̂(n)zn definition (2.1) can be rewritten as

‖f‖22 =
∞∑
0

|f̂(n)|2 <∞,

hence the norm ‖ · ‖2 makes H2 into a Hilbert space.
Each Hardy-space function f has a radial limit

f∗(ζ) = lim
r→1−

f(rζ),

at a.e. ζ ∈ ∂U. The Hardy norm may be computed by a boundary integral
involving this limit function:

(2.2) ‖f‖pp =
1

2π

∫ π

−π
|f∗(eiθ)|p dθ

(see, e.g., [13, Theorem 2.2, page 17] or [24, Theorem 17.11, page 340]). From
this point on we will drop the superscript “∗” used to denote the radial limit
function, so that given ζ ∈ ∂U, f(ζ) denotes the radial limit of f at ζ (provided
the limit exists).

As a companion to the boundary calculation of the Hp norm, each function
in Hp can be represented as both a Poisson and a Cauchy integral; either of
these quickly shows that the Hp norm is “natural” in the sense that conver-
gence in Hp implies uniform convergence on compact subsets of U. This in
turn provides the crucial step in showing that Hp is a Banach space (see, e.g.,
[13, §3.1–3.3]).

2.2. Inner functions. Holomorphic functions that are bounded on U be-
long to every Hp space, so each has a radial limit at a.e. point of ∂U. If this
radial limit function has modulus one a.e. on ∂U, the holomorphic function
in question is called an inner function. Two fundamental examples of inner
functions are:

(a) “Standard” conformal automorphisms of the disc. These are functions
of the form

αb(z) =
b− z
1− bz

(z ∈ C\{1/b}),

for b ∈ U, and
(b) The “unit singular function:”

S(z) = exp
{
−1 + z

1− z

}
(z ∈ C\{1}).

αb is a conformal automorphism of U (i.e., a 1-1 holomorphic map of U onto
itself) that takes the value zero at b, and is its own inverse: αb ◦ αb(z) ≡ z
for all z ∈ U. Every conformal automorphism of U is a unimodular multiple
of some αb. The unit singular function, which is highly non-univalent, is an



408 P. S. BOURDON, V. MATACHE, AND J. H. SHAPIRO

example of an inner function that never takes the value zero. More generally,
each non-constant inner function on U with no zero has the form

Sµ(z) = exp
{
−
∫
ζ + z

ζ − z
dµ(ζ)

}
(z ∈ U)

where µ is a finite positive Borel measure on ∂U singular with respect to
Lebesgue measure. Inner functions with zeros can be formed as (finite or
infinite) products of appropriate conformal automorphisms—the so called
Blaschke products

B(z) =
∏
n≥1

ωnαbn(z) (z ∈ U),

where ωn ∈ ∂U is chosen to make the value of the n-th factor positive at the
origin (important only if there are infinitely many factors), and where the
zero-sequence (bn) satisfies the Blaschke condition

(2.3)
∑
n≥1

(1− |bn|) <∞.

The Blaschke condition insures that the product converges uniformly on com-
pact subsets of U to a non-constant holomorphic function with zeros only at
the points bn (with multiplicity equal to the number of times αbn is repeated
in the product). See [13, §2.1–2.4] or [24, §15.21–15.24] for the details.

A remarkable fact about inner functions is that—up to multiplication by
a unimodular constant—each one that vanishes nowhere in U is singular, and
each one that has zeros in U is either a Blaschke product or a Blaschke product
times a singular inner function. In particular, if (bn) is the zero sequence of
any inner function, then (bn) satisfies the Blaschke condition [24, Theorem
17.15, page 342]. More generally, this is true of the zero sequence of any
Hp-function [24, Theorem 17.10, page 339].

Crucial for our purposes is the fact that the composition of two inner
functions is again inner. While this might at first glance seem trivial, it does
require some proof; for example it follows readily from Lindelöf’s theorem [25,
page 163, Lemma 3] that if f and g are bounded holomorphic functions, then
the radial limit function of f ◦ g coincides a.e. on ∂U with the corresponding
composition of radial limit functions on ∂U.

2.3. The Denjoy-Wolff Theorem (see, e.g., [25, Chapters 4 and 5]). If
a holomorphic selfmap ϕ of U has a fixed point ω in U and is not an auto-
morphism, then an argument based on the Schwarz Lemma shows that this
point attracts orbits, in the sense that the iterate sequence (ϕ[n]) converges
to ω uniformly on compact subsets of U. The Denjoy-Wolff Theorem makes
the striking assertion that, even if ϕ has no fixed point in U, there is still a
(necessarily unique) point ω, this time on ∂U, that attracts orbits (ϕ[n] → ω
uniformly on compact sets of U) and behaves like a fixed point in that ϕ has
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radial (in fact non-tangential) limit ω at ω. In either case we call this unique
attracting point the Denjoy-Wolff point of ϕ.

Fundamental to the proof of the Denjoy-Wolff Theorem is Julia’s Lemma,
a sort of “boundary Schwarz lemma” which, assuming ϕ has no fixed point
in U, asserts the existence of a point ω ∈ ∂U such that each disc in U with
boundary tangent to ∂U at ω is taken into itself by ϕ. This point turns out to
be the Denjoy-Wolff point; in addition to attracting orbits and being a “radial
limit fixed point” it is also a “point of conformality” for ϕ in the sense that
all of the radial limits below exist and are equal, with their common value
lying in the positive interval (0, 1]:

lim
r→1−

1− |ϕ(rω)|
1− r

, lim
r→1−

ω − ϕ(r)
ω − rω

, lim
r→1−

ϕ′(rω).

This follows from the Julia-Carathéodory Theorem (see [25, Chapter 4 and
§5.5]), which implies that if ω is any radial-limit fixed point of ϕ for which
one of the above limits exists, then they all exist, and their values are the
same. The common value of these limits is denoted by ϕ′(ω), and called the
angular derivative of ϕ at ω.

Julia’s Lemma can be stated more generally in terms of the angular deriv-
ative. For ω any point of ∂U and 0 < λ <∞, let

H(ω, λ) := {z ∈ C : |ω − z|2 < λ(1− |z|2)},

so H(ω, λ) is the Euclidean disc centered at ω/(1 + λ) with radius λ/(1 + λ).
The resulting discs lie in U, have boundaries tangent to ∂U at ω, and expand
to exhaust U as λ ↗ ∞. With this notation in hand, Julia’s Lemma asserts
that if ϕ has a finite angular derivative at a radial-limit fixed point ω, then:

(2.4) ϕ(H(ω, λ)) ⊂ H(ω, ϕ′(ω)λ) (0 < λ <∞)

(see, e.g., [25, §4.4, page 63]).
A particularly pleasing restatement of this result follows upon mapping the

unit disc to the right half-plane via the linear-fractional map w = (ω+z)/(ω−
z), which sends the “H-discs” to half-planes P (δ) = {w ∈ C : Rew > δ} where
δ > 0. In this setting, with Φ the selfmap of the right half-plane corresponding
to ϕ, statement (2.4) simplifies to:

Φ(P (δ)) ⊂ P (δ/ϕ′(ω)) (δ > 0).

Note that if ϕ′(ω) ≤ 1 then ϕ(H(ω, λ)) ⊂ H(ω, λ); this implies that ω is the
Denjoy-Wolff point of ϕ (see [25, §5.5], for example). To summarize:

2.4. Proposition. A point ω ∈ ∂U is the Denjoy-Wolff point of ϕ iff:
(i) ω is a radial-limit fixed point of ϕ,
(ii) the angular derivative of ϕ exists at ω, and
(iii) ϕ′(ω) ≤ 1.
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2.5. The Linear-Fractional Model Theorem. This result asserts that
every holomorphic selfmap of U without interior fixed point is modelled by a
linear-fractional map. More precisely, let ω ∈ ∂U be the Denjoy-Wolff point of
the holomorphic selfmap ϕ of U, and recall that the angular derivative ϕ′(ω)
exists, and lies in the positive interval (0, 1]. Valiron proved in 1931 [27] that
if ϕ′(ω) < 1 then there is a holomorphic mapping σ on U, with values in the
right half-plane, such that σ ◦ϕ = ϕ′(ω)σ (see also [28]). This complemented
an 1884 result of Koenigs [16] who proved that if ϕ has an interior fixed point
ω ∈ U with ϕ′(ω) 6= 0, then there is a holomorphic function σ on U obeying
the same functional equation.

Pommerenke and Baker showed in 1979 ([5], [21]) that for ω ∈ ∂U the case
ϕ′(ω) = 1 separates into two subcases, distinguished by the behavior of orbits
relative to the pseudo-hyperbolic metric, defined on U by

(2.5) ρ(z, w) := |αw(z)| = |w − z|
|1− wz|

(z, w ∈ U).

They showed that there exists a holomorphic function σ on U such that either
σ ◦ ϕ = σ + ib for some real b 6= 0, or σ ◦ ϕ = σ + 1. The former case arises
when the orbits of ϕ are pseudo-hyperbolically separated in the sense that

inf
n
ρ(ϕ[n+1](z), ϕ[n](z)) > 0,

and the latter arises when they are not:

inf
n
ρ(ϕ[n+1](z), ϕ[n](z)) = 0 (∀z ∈ U).

In both cases “infn” is the same as “limn” because ϕ decreases the pseudo-
hyperbolic metric ρ. In the first case (separated orbits) the image of σ can be
taken to lie in the right half-plane.

It turns out that this separation dichotomy is independent of the “base
point:” if it holds for one z ∈ U then it holds for all of them.

Given this result it seems natural to say that ϕ is of hyperbolic type if
ϕ′(ω) < 1 (since in that case ϕ is intertwined by σ with a hyperbolic auto-
morphism of the right half-plane), and of parabolic type if ϕ′(ω) = 1. The
maps of parabolic type then fall into two subclasses: automorphic type if
orbits are separated and non-automorphic type if they are not.

The distinction between automorphic and non-automorphic parabolic type
is the most subtle aspect of the linear-fractional model theorem. We will need
two known sufficient conditions for non-automorphic type; for completeness
we present their proofs.

2.6. Lemma. Suppose ϕ is a holomorphic selfmap of U that is of parabolic
type. If either:

(a) ϕ takes the interval (0, 1) into itself, or
(b)

∑
n(1− |ϕ[n](0)|) =∞,
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then ϕ is of non-automorphic type.

Proof. (a) The hypothesis here is that ϕ(r) > 0 whenever 0 < r < 1. Let
rn := ϕ[n](0). Then the sequence (rn) converges to the Denjoy-Wolff point
which, since ϕ is assumed to be of parabolic type, lies on ∂U, and so must be
at 1 (in fact, by Julia’s Lemma, (rn) must increase to 1). From the discussion
of §2.3 we therefore have

lim
r→1−

1− ϕ(r)
1− r

= 1,

so in particular

(2.6) lim
n

1− rn+1

1− rn
= 1.

With the notation qn := 1−rn+1
1−rn the definition (2.5) of pseudo-hyperbolic

metric yields after a little algebraic manipulation:

(2.7) ρ(rn+1, rn) =
1− qn

qn + rn+1
,

hence by (2.6), limn ρ(rn+1, rn) = 0, as desired.
(b) We prove the contrapositive statement. Suppose ϕ is of parabolic au-

tomorphic type. The Linear-Fractional Model Theorem (§2.5) then provides
a function σ holomorphic on U with values in the right half-plane such that
σ ◦ ϕ = σ + ib for some real b 6= 0. Hence more generally

(2.8) σ ◦ ϕ[n] = σ + nbi (n = 1, 2, . . .).

Now the Blaschke condition for a sequence (zn) in U is equivalent, via the
map w = (1 + z)/(1 − z) to the condition

∑
n Rewn/(|1 + wn|)2 < ∞ for

sequences (wn) in the right half-plane; this is easily seen to be satisfied by
the sequence (σ(0)+nbi)∞1 , which is therefore the zero-sequence of a bounded
holomorphic function F on the right half-plane (see [13, Theorem 11.3, page
191]). The function f = F ◦ σ is thus a non-constant bounded holomorphic
function on U, and for each n:

f(ϕ[n](0)) = F (σ(ϕ[n](0))) = F (σ(0) + nbi) = 0,

where the second equality comes from evaluating (2.8) at the origin. Thus
some nonconstant bounded holomorphic function on U vanishes at each point
of (ϕ[n](0)), so that sequence satisfies the Blaschke condition. �

We remark that in part (a) of Lemma 2.6, the hypothesis can be restated
as saying that (ϕ[n](0)) converges to the Denjoy-Wolff point along the radius
from the origin to that point. In fact, it is enough to assume only that this
orbit stays within an angular sector with vertex at the Denjoy-Wolff point
(see [9, Theorem 3.5] and [8, Theorem 6.1, page 97]). We will see in §5.1
that the converse of part (b) need not hold, i.e., it is possible for ϕ to be of
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parabolic non-automorphic type yet have orbits that are Blaschke sequences.
Indeed in [10, Proposition 4.9] Cowen shows that for maps of parabolic type
the ones of automorphic type are characterized by orbits being interpolating
sequences—in general a strictly smaller class of sequences than the Blaschke
sequences. Our proof of part (b) of Lemma 2.6 follows Cowen’s.

2.7. Composition operators. Each holomorphic selfmap ϕ of U induces
on H(U), the space of all functions holomorphic on U, a linear composition
operator Cϕ by means of the definition

Cϕf = f ◦ ϕ (f ∈ H(U)).

The interest in composition operators arises from the remarkable fact that
they restrict to bounded operators on Hardy spaces. This results from Little-
wood’s Subordination Theorem which asserts that if ϕ(0) = 0 then ‖Cϕf‖2 ≤
‖f‖2 for each f ∈ H2, i.e., that Cϕ is a contraction on H2. In fact the same
is true for all the spaces Hp, but the case p = 2 will suffice for what we do
here. If ϕ(0) 6= 0 then Cϕ is no longer a contraction, but it is still bounded
on H2; this follows from Littlewood’s Theorem and the easily proven fact
that conformal automorphisms of U induce bounded composition operators
on H2. Littlewood’s Theorem and the estimate that leads to the boundedness
of automorphism-induced composition operators show that for any holomor-
phic selfmap ϕ of U, the norm of Cϕ on H2 has this upper bound:

(2.9) ‖Cϕ‖ ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)1/2

(see, e.g., [25, §1.3] for the details).
If ϕ(0) = 0 then the above norm estimate gives ‖Cϕ‖ ≤ 1, in accor-

dance with Littlewood’s Theorem. In fact, there is equality here, since clearly
Cϕ1 = 1 (where here “1” denotes the constant function). If we rule out con-
stant functions by restricting Cϕ to the invariant subspace of functions in H2

that vanish at the origin, then the norm of this restriction is < 1, except when
ϕ is an inner function. The first part of this statement comes from [26, The-
orem 5.1], while the fact that inner functions that vanish at the origin induce
composition operators that have norm-one restrictions is a consequence of a
much stronger statement: such inner functions induce isometric composition
operators on H2 (see [19]).

2.8. Poisson Integrals. For f ∈ L1(∂U) and z = reiθ ∈ U, the Poisson
integral of f at z is:

P [f ](z) :=
∫
∂U

Re
{
ζ + z

ζ − z

}
f(ζ) dm(ζ) =

∞∑
n=−∞

f̂(n)r|n|einθ,
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where m denotes normalized Lebesgue measure on ∂U and f̂(n) is the n-th
Fourier coefficient of f :

f̂(n) =
∫
∂U

f(ζ)ζ−n dm(ζ) (n ∈ Z).

P [f ] is harmonic on U and has radial limit equal to f at almost every point
of ∂U. Note that P [f ](0) =

∫
f dm.

Here is the key to all our applications of Poisson integrals:

2.9. Lemma ([19, Lemma 1]). If ϕ is an inner function then for every
f ∈ L1(∂U),

(2.10) P [f ◦ ϕ](z) = P [f ](ϕ(z)) (z ∈ U).

Proof. The proof consists of noting that if f(ζ) = ζn with ζ ∈ ∂U and
n a non-negative integer, then for each z ∈ U the left-hand side of (2.10) is
P [ϕn](z) = ϕn(z), which is also the right-hand side. Upon taking complex
conjugates and using the fact that |ϕ| = 1 a.e. on ∂U we get the same result
for n < 0, thus the desired equation holds for all trigonometric monomials,
hence by linearity for all trigonometric polynomials and therefore, by taking
L1-limits, for each f ∈ L1(∂U). �

This Lemma can be interpreted as a statement about how inner functions
transform the “Poisson measures” on ∂U:

dmz(ζ) := Re
{
ζ + z

ζ − z

}
dm(ζ)

for z ∈ U. With this notation Lemma 2.9 asserts that:

(2.11) dmzϕ
−1 = dmϕ(z) (ϕ inner, z ∈ U).

In particular, if an inner function ϕ has its Denjoy-Wolff point ω in U, i.e.,
ϕ(ω) = ω ∈ U, then dmω is invariant for ϕ on ∂U in the sense that dmωϕ

−1 =
dmω. As an important special case we have: if ϕ is inner and fixes the origin,
then Lebesgue measure on ∂U is invariant for ϕ.

For general inner functions ϕ the case z = 0 of (2.11) is also of special
interest. It asserts that dmϕ−1 = dmϕ(0); in particular: dmϕ−1 and Lebesgue
measure are mutually absolutely continuous on ∂U.

3. Norm convergence to the Denjoy-Wolff point

It is well known, and easy to prove, that if a sequence of functions in Hp is
bounded in norm and converges uniformly on compact subsets of U, then it
converges in the weak-star topology. This applies in particular to holomorphic
selfmaps of U, so the Denjoy-Wolff Theorem can be rephrased:

Suppose ϕ is a holomorphic selfmap of U with Denjoy-Wolff
point ω. Then for 1 ≤ p < ∞ the iterate sequence (ϕ[n])
converges to ω in the weak-star topology of Hp.
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This re-interpretation of the Denjoy-Wolff Theorem suggests that one should
inquire about norm convergence of the iterate sequence to the Denjoy-Wolff
point. Clearly norm convergence does not always happen: if ϕ is inner and
has its Denjoy-Wolff point in U (e.g., ϕ(z) = z2), then each iterate is inner
(see the comment at the end of §2.2), and so has norm one in every Hp space.
Thus, in this case, the iterate sequence cannot converge to the Denjoy-Wolff
point of ϕ. As the following result shows, this is the only exceptional case.

3.1. Theorem. For all holomorphic selfmaps ϕ of U except the inner
functions with Denjoy-Wolff point in U, the iterate sequences converge in the
Hp-norm (1 ≤ p <∞) to the Denjoy-Wolff point.

Proof. This proceeds in several steps. Let ω denote the Denjoy-Wolff point
of ϕ.

Step I. It suffices to consider the case p = 2.

Proof. What we mean here is that if 1 ≤ p < q <∞, then (ϕ[n]) converges
to ω in Hp if and only if it converges to ω in Hq. Since (on Hq) the Hq-norm
is larger than the Hp norm, we need only show that Hp convergence of the
iterate sequence implies Hq convergence. Since |ϕ[n] − ω| < 2 on U we have,
after making a simple estimate of the integrals (2.1) that define the norms in
question:

‖ϕ[n] − ω‖qq ≤ 2q−p‖ϕ[n] − ω‖pp
which gives the desired result. �

From now on we drop the subscript “2” when referring to the H2 norm.

Step II. The Theorem holds if ϕ has its Denjoy-Wolff point ω in U.

Proof. If ω = 0 this follows quickly from the restriction theorem for compo-
sition operators mentioned at the end of §2.7: If ϕ fixes the origin and is not
inner, then the norm of Cϕ|H2

0
(the restriction of Cϕ to the subspace H2

0 of
H2 consisting of functions that vanish at the origin) is < 1. Now Cnϕz = ϕ[n],
and the monomial z is a unit vector in H2

0 , hence

(3.1) ‖ϕ[n]‖ = ‖Cnϕz‖ ≤ ‖(Cϕ|H2
0
)n‖‖z‖ ≤ ‖Cϕ|H2

0
‖n → 0

as n→∞.
If ω 6= 0 then we use the automorphism αω introduced in §2.2 above to get

back to the previous case. Recall that αω interchanges the origin with ω and
is self-inverse. Thus ψ := αω ◦ ϕ ◦ αω is a holomorphic selfmap of U that has
the origin as its Denjoy-Wolff point, so by the result of the last paragraph,

(3.2) ‖ψ[n]‖ → 0 as n→∞.
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For each positive integer n we have ψ[n] = αω◦ϕ[n]◦αω, which for our purposes
is best rewritten:

(3.3) Cαω (ψ[n]) := ψ[n] ◦ αω = αω ◦ ϕ[n].

Since Cαω is a bounded operator on H2, (3.2) and (3.3) combine to yield

(3.4) ‖αω ◦ ϕ[n]‖ = ‖Cαω (ψ[n])‖ ≤ ‖Cαω‖ ‖ψ[n]‖ → 0 (n→∞).

Now at each point of U:

|αω ◦ ϕ[n]| = |ω − ϕ[n]|
|1− ωϕ[n]|

≥ |ω − ϕ
[n]|

2
,

so by (3.4) and the case p = 2 of the integral formula (2.1) for Hardy-space
norms,

‖ω − ϕ[n]‖ ≤ 2‖αω ◦ ϕ[n]‖ → 0 (n→∞)

as desired. �

Step III. The Theorem holds if ϕ has its Denjoy-Wolff point on ∂U.

Proof. As noted (somewhat more generally) at the beginning of this sec-
tion, the iterate sequence of ϕ converges to the Denjoy-Wolff point weakly in
H2. Thus the result we are asserting here is a special case of the following
elementary Hilbert-space theorem:

Suppose (xn) is a sequence in the unit ball of a Hilbert space
H that converges weakly to a vector x of norm one. Then
xn → x in the norm of H.

For the proof note that for each n,

(3.5) ‖xn − x‖2 = ‖xn‖2 − 2 Re〈xn, x〉+ ‖x‖2 ≤ 2(1− Re〈xn, x〉).

Moreover by weak convergence, 〈xn, x〉 → ‖x‖2 = 1, hence ‖xn − x‖ → 0 as
n→∞. �

Remark. Using (2.1) one may extend the definition of Hp to the range
0 < p < 1, thus obtaining a family of F -spaces that are not locally convex [13,
§7.5]. If now 0 < p ≤ q <∞ then convergence in Hq still implies convergence
in Hp, so Theorem 3.1 is true for the full range of p: 0 < p <∞.
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4. Almost everywhere convergence to the Denjoy-Wolff point

In §2.1 we pointed out that for each f ∈ H2 the H2-norm of f coincides
with its L2-norm on the unit circle (as in §2.1 we continue to rely on context
rather than notation in distinguishing between an H2 function on U and its
radial limit function on ∂U). Thus the results of the last section imply that
unless ϕ is an inner function with Denjoy-Wolff point in U, some subsequence
of the iterate sequence converges to the Denjoy-Wolff point a.e. (with respect
to Lebesgue measure) on ∂U. In this section we address the question of a.e.
convergence for the entire iterate sequence—a mode of convergence which,
thanks to the Dominated Convergence Theorem, is even stronger than norm
convergence.

If ϕ has its Denjoy-Wolff point in U then, as the next result shows, the
desired a.e. convergence is an easy consequence of the norm estimates of the
previous section.

4.1. Theorem. If ϕ is a non-inner holomorphic selfmap of U with Denjoy-
Wolff point ω ∈ U then ϕ[n] → ω a.e. on ∂U.

Proof. Suppose first that ω = 0 and let M denote the norm of the restric-
tion of Cϕ to the subspace H2

0 . In the last section we exploited the fact that
M < 1; now we do so more fully. Upon squaring both sides of the inequality
that results from (3.1) of the last section we obtain∫

∂U

( ∞∑
n=1

|ϕ[n]|2
)
dm =

∞∑
n=1

∫
∂U

|ϕ[n]|2 dm =
∞∑
n=1

‖ϕ[n]‖2 ≤
∞∑
n=1

M2n <∞,

hence
∑∞
n=1 |ϕ[n]|2 <∞ a.e. on ∂U, so in particular ϕ[n] → 0 a.e.

In case ω 6= 0 we recall from the last section that ϕ[n] = αω ◦ ψ[n] ◦ αω,
where ψ := αω ◦ϕ◦αω has its Denjoy-Wolff point at the origin. Then ψ[n] → 0
a.e., and it follows readily (since αω(0) = ω) that ϕ[n] → ω a.e. �

Here is the main result of this section; part (a) extends a result of Doering
and Mañe [12] who considered only inner functions.

4.2. Theorem. Suppose ϕ is a holomorphic selfmap of U with Denjoy-
Wolff point ω ∈ ∂U.

(a) If
∑
n(1− |ϕ[n](0)|) <∞ then ϕ[n] → ω a.e. on ∂U.

(b) If ϕ is inner and ϕ[n] → ω a.e. on ∂U then
∑
n(1− |ϕ[n](0)|) <∞.

Proof. (a) Without loss of generality we may take ω = 1. By Julia’s Lemma
(see §2.3), ϕ takes the closed disc of radius 1/2 centered at 1/2 into itself, thus

|z|2 ≤ Re z =⇒ |ϕ(z)|2 ≤ Reϕ(z) (z ∈ U).
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Upon applying this inequality successively to 0, ϕ(0), ϕ[2](0) . . . , we see that
for each positive integer n, |ϕ[n](0)|2 ≤ Reϕ[n](0), thus

(4.1) 1− Re〈ϕ[n], 1〉 = 1− Reϕ[n](0) ≤ 1− |ϕ[n](0)|2 ≤ 2(1− |ϕ[n](0)|).

This estimate along with inequality (3.5) yields

∞∑
n=1

‖ϕ[n] − 1‖2 ≤ 2
∞∑
n=1

[1− Reϕ[n](0)] ≤ 4
∞∑
n=1

[1− |ϕ[n](0)|] <∞,

so ϕ[n] → 1 a.e. on ∂U by the argument used to finish the proof of Theorem
4.1.

(b) We begin with an argument from ergodic theory. Let ∆ be the open
disc of radius 1/2 centered at ω. By Egorov’s Theorem there is a compact
set K ⊂ ∂U\∆ of positive measure such that ϕ[n] → ω uniformly on K.
Thus ϕ[n](K) ∩K = ∅ for all sufficiently large n, and so the same is true for
K ∩ ϕ[−n](K) (since for any sets A and B and any map T we have T (A ∩
T−1(B)) = T (A) ∩B)).

Thus there is a least non-negative integer N for which

(4.2) m{K ∩ ϕ[−n](K)} = 0 for each n > N.

Let W = K ∩ ϕ[−N ](K). Then m(W ) > 0 and for each positive integer k:

W ∩ ϕ[−k](W ) ⊂ K ∩ ϕ−[N+k](K),

hence m{W ∩ ϕ[−k](W )} = 0.
Recall from the discussion following the proof of Lemma 2.9 that the mea-

sures dmϕ−1 and dm are mutually absolutely continuous, hence (4.2) yields
for each positive integer k and non-negative integer n

0 = m{ϕ[−n](W ∩ ϕ[−k](W ))} = m{ϕ[−n](W ) ∩ ϕ[−(n+k)](W )},

i.e., the sequence of sets (ϕ[−k](W ) : k ≥ 0) is “essentially pairwise disjoint,”
and each has positive measure. (In the parlance of ergodic theory, W is called
a “wandering set” for ϕ; and ϕ, being the possessor of a wandering set, is
called “dissipative”.)

For convenience write Wn = ϕ[−n](W ), and set E =
⋃∞

0 Wn. Some cal-
culations with Poisson integrals now finish the proof; here IA will denote the
indicator function of the set A (≡ 1 on A and ≡ 0 off A).
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P [IE ](0) = P

[ ∞∑
n=0

IWn

]
(0) (ess. disjointness of Wn’s)

=
∞∑
n=0

P [IWn
](0)

=
∞∑
n=0

P [IW ](ϕ[n](0)) (eqn. 2.10 above)

≥
∞∑
n=0

m(W )
1− |ϕ[n](0)|
1 + |ϕ[n](0)|

(Harnack’s inequality)

≥ 1
2
m(W )

∞∑
n=0

(1− |ϕ[n](0)|),

so, because m(W ) > 0 and P [IE ](0) = m(E) ≤ 1, we see that
∞∑
n=0

(1− |ϕ[n](0)|) <∞,

as desired. �

4.3. Remark. The conclusion of part (b) can fail for non-inner maps ϕ.
Perhaps the simplest such examples arise from translation mappings on half-
planes. Fix a complex number t with Re t ≥ 0 and let ϕt be the linear-
fractional map that corresponds to the translation w → w + t via the trans-
formation w = (1 + z)/(1 − z) of U onto the right half-plane. A calculation
shows that

ϕt(z) =
t+ (2− t)z
(2 + t)− tz

,

from which it is clear that ϕt(z) → 1 for each z ∈ ∂U, as t → ∞. From
its origins as a translation it’s clear that the n-th iterate of ϕt is just ϕnt,
hence 1 is the Denjoy-Wolff point of each ϕt, and ϕ

[n]
t → 1 pointwise on ∂U

as n → ∞. However ϕ[n]
t (0) = nt/(2 + nt), from which it is easy to check

that (ϕ[n]
t (0)) is a Blaschke sequence if and only if Re t = 0. In this case ϕt

is an inner function that illustrates part (b) of our theorem. When Re t > 0,
however, ϕ = ϕt is not inner, and the orbit of 0 is not a Blaschke sequence,
yet nevertheless ϕ[n] → 1 at each point of ∂U. �

Recall from our discussion in §2.5 of linear-fractional models that the holo-
morphic selfmaps of U with Denjoy-Wolff point ω split into three disjoint
classes: hyperbolic if ϕ′(ω) < 1, parabolic automorphic if ϕ′(ω) = 1 and or-
bits are separated, and parabolic non-automorphic if ϕ′(ω) = 1 and orbits
are not separated. The next result shows that Blaschke orbits (and hence a.e.
convergence of iterates to the Denjoy-Wolff point) are guaranteed for two of
these three classes.
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4.4. Theorem. Suppose ϕ is a holomorphic selfmap of U with Denjoy-
Wolff point ω ∈ ∂U. If ϕ is of either hyperbolic type or of parabolic-automor-
phic type then

∑
n(1− |ϕ[n](0)|) <∞, hence ϕ[n] → ω a.e. on ∂U.

Proof. The result about parabolic-automorphic type has already been pro-
ved as part (b) of Lemma 2.6.

Suppose ϕ is of hyperbolic type. Recall that Julia’s Lemma (§2.3) tells us
that for each λ > 0

ϕ(H(ω, λ)) ⊂ H(ω, ϕ′(ω)λ),
thus for each λ > 0 and z ∈ U:

|ω − z|2 ≤ λ(1− |z|2) =⇒ |ω − ϕ(z)|2 ≤ ϕ′(ω)λ(1− |ϕ(z)|2) .

Now the origin lies in the closure of H(ω, 1), so an induction shows that for
each positive integer n, the point ϕ[n](0) lies in the closure of H(ω, ϕ′(ω)n),
i.e.,

|ω − ϕ[n](0)|2 ≤ ϕ′(ω)n(1− |ϕ[n](0)|2) ≤ ϕ′(ω)n.
Thus for n = 1, 2, . . . :

1− |ϕ[n](0)| ≤ |ω − ϕ[n](0)| ≤ ϕ′(ω)n/2,

hence (because ϕ′(ω) < 1)
∑
n(1− |ϕ[n](0)|) <∞, as desired. �

4.5. Remark. One might hope that if ϕ is of parabolic type and is in
some sense twice differentiable at its Denjoy-Wolff point ω ∈ ∂U, then ϕ′′(ω)
would determine whether or not ϕ is of automorphic or non-automorphic type.
If enough extra smoothness is assumed at ω then this does indeed happen,
as shown in [8, Theorem 4.4, page 52]. This result is most easily stated if
ϕ has Denjoy-Wolff point at 1, in which case if ϕ ∈ C3+ε(1) with ϕ′(1) = 1
and ϕ′′(1) non-zero and pure imaginary, then ϕ is of parabolic automorphic
type. The C3+ε hypothesis at 1 means that, for some disc ∆ centered at 1,
ϕ is approximated in U ∩∆ by a polynomial of degree three, with error term
bounded uniformly in magnitude there by a constant multiple of |z − 1|3+ε

(see [8, page 50]). Surprisingly, the smoothness hypothesis cannot be reduced
to C3−ε (see [8, page 98]).

We close this section by applying the preceding ideas to an interesting class
of inner functions, generalizations of which we will meet in Section 5.

4.6. Example. Recall the unit singular function S defined in §2.2(b). For
a > 0 let

ϕa(z) = S(−z)a = exp
{
−a1− z

1 + z

}
(z ∈ U);

this is the singular inner function induced by the atomic measure of mass a
concentrated at the point −1. Clearly ϕa is holomorphic on C\{−1} with
ϕa(1) = 1 and ϕ′a(1) = a/2. Since ϕa maps the interval (−1, 1) into (0, 1), its
Denjoy-Wolff point ω, being the limit of each orbit, must lie in (0, 1]. If a ≤ 2
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then ϕ′a(1) ≤ 1 so, by Proposition 2.4, ω = 1; moreover ϕa is of parabolic type
when a = 2, and is of hyperbolic type when a < 2. If a > 2 then ϕ′a(1) > 1, so
the Denjoy-Wolff point cannot be at 1, and must therefore lie in (0, 1). Thus
the iterate sequence (ϕ[n]

a ) converges a.e. to the Denjoy-Wolff point of ϕa if
a < 2, but not if a > 2.

The remaining case, a = 2, is more delicate:

4.7. Proposition. ϕ2 is of non-automorphic type and has non-Blaschke
orbits.

Thus ϕ2 is an inner function of parabolic non-automorphic type whose
iterate sequence does not converge a.e. on ∂U to the Denjoy-Wolff point. In
the next section we will show how to produce singular inner functions of
parabolic non-automorphic type whose iterate sequences do converge a.e. to
the Denjoy-Wolff point.

Proof. For simplicity write ϕ2 = ϕ. Since ϕ maps the unit interval into
itself it is of non-automorphic type by Lemma 2.6(a). It remains to show that
the orbit (ϕ[n](0)) does not satisfy the Blaschke condition.

A computation shows that ϕ′′(1) = 0 and ϕ′′′(1) = −1/2. Thus the Taylor
expansion of ϕ with center at 1 looks like this:

ϕ(z) = 1 + (z − 1)− 1
12

(z − 1)3 + (O(z − 1)4) as z → 1,

which we rewrite as

(4.3) 1− 1− ϕ(z)
1− z

=
1
12

(1− z)2 +O((1− z)3) as z → 1.

Let’s write rn := ϕ[n](0) and yn := 1/(1 − rn). As noted in the proof of
Lemma 2.6(a), rn ↗ 1, hence yn ↗ ∞. Upon setting z = rn in (4.3) we
obtain:

(4.4) 1− yn
yn+1

=
1
12
y−2
n +O(y−3

n ) as n→∞.

This will insure that (rn) does not satisfy the Blaschke condition. To see why,
rewrite (4.4) as

yn+1 − yn =
1
12
y−1
n +O(y−2

n ) as n→∞,

where we have used the fact that yn/yn+1 → 1 (because ϕ has angular de-
rivative equal to 1 at the point 1). Upon adding yn to both sides of the last
equation, squaring both sides of the result, and subtracting y2

n from both sides
of the final expression we see that

y2
n+1 − y2

n →
1
6

as n→∞.
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A little argument with telescoping sums shows that y2
n/n → 1/6 as n → ∞,

which is equivalent to saying that
√
n(1− rn)→

√
6, hence

∑
n(1− rn) =∞,

as promised. �

4.8. Remarks. (a) A theorem of Burns and Krantz [6] (see also [7, The-
orem 2.4(4)]) implies that if a holomorphic selfmap of U is of class C3 at 1,
in the sense that it has a Taylor expansion

ϕ(z) = 1 + (z − 1) + a(z − 1)2 + b(z − 1)3 + o(z − 1)3 as z → 1 in U,

and if a = b = 0, then ϕ(z) ≡ z in U. Suppose ϕ is real on the real axis
with Denjoy-Wolff point at 1 and is of class C3 at 1. If a = 0 in the above
expansion then the fact that ϕ(x) > x for each x ∈ [0, 1) implies that b ≤ 0,
so, by Burns-Krantz, b < 0. The argument we just applied to ϕ2 shows that√
n(1 − ϕ[n](0)) → 1/

√
−2b. If a 6= 0 then the argument is even easier (see

below), and shows that n(1 − ϕ[n](0)) → 1/a. Thus in either case the orbit
(ϕ[n](0)) is not Blaschke. In summary:

Theorem. If ϕ is a holomorphic selfmap of U of parabolic type that is
real on the real axis and of class C3 at its Denjoy-Wolff point then ϕ is of
non-automorphic type and its orbits do not satisfy the Blaschke condition.

(b) In the arguments above the restriction that ϕ be real on the real axis
can be relaxed. Suppose, for example, that ϕ is of class C2 at 1, so that

ϕ(z) = 1 + (z − 1) + a(z − 1)2 + o(z − 1)2 as z → 1 in U,

and suppose that Re a 6= 0. Then, repeating the previous arguments:

yn+1 − yn = (a+ o(1)) so yn/n→ a, i.e., n(1− ϕ[n](0))→ 1/a as n→∞.

By Julia’s Lemma each of the points zn := ϕ[n](0) lies in the closed disc ∆
of radius 1/2, centered at the point 1/2, so a second application of inequality
(4.1) provides:

n(1− |zn|2) ≥ n Re(1− zn)→ Re(1/a) as n→∞.

Since ∆ lies in the right half-plane, Re(1 − zn) > 0 for each n = 1, 2, . . . ,
hence Re(1/a) ≥ 0; actually > 0 since we are assuming Re a 6= 0. Thus

lim inf
n→∞

n(1− |zn|2) ≥ Re(1/a) > 0,

so once again the orbits of ϕ are not Blaschke sequences.
Although we have not shown it in this case, ϕ is again of non-automorphic

type (see [8, Theorem 4.4, page 52]). In summary:
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Theorem (see also [8, Theorem 4.4 and Lemma 4.5]). Suppose ϕ is of
parabolic type and of class C2 at its Denjoy-Wolff point ω ∈ ∂U. If Reϕ′′(ω) 6=
0 (thus necessarily > 0) then ϕ is of non-automorphic type and has non-
Blaschke orbits.

(c) The ideas used in the proof of Theorem 4.7 to estimate the rate at
which orbits approach the Denjoy-Wolff point are modifications of ones used
by Aaronson in [1]. They will appear again in the next section.

5. Connections with ergodic theory

The setting for ergodic theory is a quadruple (X,B, µ, T ), where (X,B, µ) is
a sigma-finite measure space and T : X → X is B-measurable and nonsingular
in the sense that if E ∈ B and µ(E) = 0 then µ(T−1(E)) = 0 (i.e., µT−1 is
absolutely continuous with respect to µ). In our setting the measure space will
be ∂U with Lebesgue measure m on the Borel sets of ∂U. The transformation
T will be the (radial limit) restriction of an inner function ϕ to ∂U. It was
noted in §2.8 that ϕ on ∂U is nonsingular for m, and even “quasi-invariant”
in the sense that mϕ−1 and m are mutually absolutely continuous.

Since in this section we will be studying the dynamics of inner functions
on the unit circle, we note once again that, as discussed at the end of §2.2, if
ϕ is an inner function then ϕ[n] is also inner and, in fact, the n-th iterate of
the radial limit function of ϕ is equal a.e. on ∂U to the radial limit function
of ϕ[n].

5.1. Ergodicity. Returning to our general setting, we say that two B-
measurable sets are “equal mod µ” if their symmetric difference has µ-measure
zero. Thus, for example, the definition of “nonsingular” for T can be rephrased:
“If E is empty mod µ then so is T−1(E).” We call E ∈ B invariant for T (and
µ) if T−1(E) = E mod µ. If the only T -invariant sets are (mod µ) X and ∅
then T is said to be ergodic. Upon replacing sets by their indicator functions
and using standard arguments there emerges this function-space characteriza-
tion of ergodicity: T is ergodic if and only if the only T -invariant measurable
functions are the (µ a.e.) constants. Here “T -invariant” for a function f
means that f ◦ T = f (µ a.e.). In this statement “measurable” can just as
well be replaced by “integrable” or “bounded measurable.”

The ergodic theory of inner functions has been much studied, and exhibits
beautiful connections with the theory of linear-fractional models. Work of
Aaronson [1], [2] and Neuwirth [18], building on foundations laid by Valiron
[27] (see also [22]) combine to show that:

An inner function is ergodic if and only if its orbits are non-
separated,

or equivalently (see §2.5):
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An inner function ϕ is ergodic if and only if either its Denjoy-
Wolff point is in U or the Denjoy-Wolff point is on ∂U and
the function is of parabolic non-automorphic type.

For a complete exposition of this see [3, Chapter 6].
To get a feeling for this result, suppose ϕ has its Denjoy-Wolff point ω in

U, so each orbit (ϕ[n](z)) (for z ∈ U) converges to ω; clearly these orbits are
not separated. To see that ϕ acts ergodically on ∂U suppose f ∈ L1(∂U) is
ϕ-invariant. Then for z ∈ U:

P [f ](z) = P [f ◦ ϕ[n]](z) = P [f ](ϕ[n](z))→ P [f ](ω),

where the first equality follows from the ϕ-invariance of f , and the second
from Lemma 2.9. Thus P [f ] is constant on U, and hence f , which agrees
almost everywhere with the radial limit function of P [f ], must be constant
a.e. on ∂U. Thus ϕ is ergodic.

The key to this little argument is the attracting nature of the interior
Denjoy-Wolff point, which arises from the Schwarz Lemma. In case ω ∈
∂U a harmonic version of the Schwarz Lemma (see [4, Chapter 6]) plays a
similar role in relating non-separation of orbits to ergodicity; for details see
[3, Theorem 6.1.5, page 204].

5.2. Ergodicity and a.e. convergence. According to the Birkhoff Er-
godic Theorem [29, §1.6, Theorem 1.14, page 34], if T is ergodic for a finite
measure µ that is invariant for T (i.e., µT−1 = µ), then for any f ∈ L1(µ)
the Cesaro means of the sequence (Tnf) converge a.e. to the constant

∫
f dµ.

If ϕ is an inner function with Denjoy-Wolff point ω ∈ U, then ϕ preserves
the Poisson probability measure mω, as discussed near the end of §2.8. Upon
choosing f to be the identity map in the Birkhoff theorem we see that the
Cesaro means of the sequence (ϕ[n]) converge a.e. on ∂U to

∫
∂U
ζ dmω(ζ) = ω.

Since the iterate sequence cannot converge a.e. to any point of U, it therefore
cannot converge a.e. to any function.

Suppose now that ω ∈ ∂U. Can ϕ be ergodic, yet a.e. convergent on ∂U?
That this sort of thing can happen in general is illustrated by the simple
example of the “translation-by-one” map Tx = x + 1 on the set of integers,
endowed with the counting measure. If we adjoin∞ to this set, give it measure
zero, and make it fixed by T , then it is easy to see that T is ergodic, even
though Tn →∞ a.e. For inner functions, Aaronson [2, page 241] proved that
the same thing can happen: there are ergodic inner functions whose iterate
sequences converge a.e. on ∂U to the Denjoy-Wolff point.

In view of Theorem 4.2 above, Aaronson’s result can be stated in concrete
function-theoretic terms:

There exists an inner function of parabolic non-automorphic
type (i.e., Denjoy-Wolff point ω ∈ ∂U, ϕ′(ω) = 1, and orbits
non-separated) whose orbits satisfy the Blaschke condition.
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Aaronson used exactly this kind of function-theoretic characterization to con-
struct his examples as inner functions on the upper half-plane. However it is
not clear, when those examples are transferred to the unit disc, just what kind
of inner functions result. In the next result we modify Aaronson’s method to
produce the desired examples as singular inner functions. We then show how
such examples can also arise as Blaschke products.

5.3. Theorem. There exist singular inner functions on U that are ergodic,
yet whose iterate sequences converge a.e. on ∂U to the Denjoy-Wolff point.

Proof. We break the proof into several steps.

Step I. Overall strategy.
We focus on positive, finite singular Borel measures on ∂U that are sym-

metric about 1, i.e., µ(E) = µ(E) for every Borel set E, where E is the set of
complex conjugates of points in E. For such a measure the associated inner
function ϕ is positive on the interval (−1, 1), indeed

ϕ(r) = exp{−P [µ](r)} (−1 < r < 1).

We will exhibit such measures µ for which ϕ is of parabolic type with Denjoy-
Wolff point (necessarily) at 1, and for which ϕ has a first order Taylor expan-
sion about 1 that looks like this:

(5.1) ϕ(z) = 1 + (z − 1)− (z − 1)h(z) (z ∈ U)

where, for some constants c > 0 and 0 < γ < 1,

(5.2) c(1− r)γ ≤ h(r) (0 ≤ r < 1).

The fact that ϕ is of non-automorphic type follows immediately from part
(a) of Lemma 2.6.

To show that the iterate sequence of ϕ converges a.e. to 1 we use (5.2) to
conclude that

∑
n(1 − rn) < ∞, where rn := ϕ[n](0). The argument here is

a straightforward modification of the ones discussed in §4.8. In particular,
since 1 is the Denjoy-Wolff point of ϕ, Julia’s Theorem shows that rn ↗ 1 as
n↗∞. From (5.1) we have

h(r) = 1− 1− ϕ(r)
1− r

(0 ≤ r < 1),

so that
h(rn) = 1− 1− rn+1

1− rn
(n = 1, 2, . . .).

Now set yn := 1
1−rn , so that yn ↗ ∞ as n ↗ ∞. The last equation then

becomes, for each positive integer n:

(5.3) 1− yn
yn+1

= g(yn) where g(yn) := h

(
1− 1

yn

)
≥ c

yγn
,

where c and γ are the constants occurring in (5.2).
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Now we proceed as in §4.8, borrowing again from the work of Aaronson [1,
page 250]. From (5.3) and the monotonicity of the sequence (yn) we have for
each positive integer n:

yn+1 − yn = yn+1g(yn) ≥ yng(yn),

whereupon

yn+1 ≥ yn(1 + g(yn)), so yγn+1 ≥ yγn(1 + g(yn))γ .

Since g(yn)→ 0 the Binomial Theorem applies, and shows that, as n→∞:

(1 + g(yn))γ = 1 + γ g(yn) +O(g(yn)2),

hence

yγn+1 − yγn = yγn (γ + o(1)) g(yn) ≥ c yγn
1
yγn

= c.

As in §4.8, a telescoping series argument shows that (for a possibly different
positive constant c) yγn ≥ cn, from which it follows that 0 < 1−rn ≤ (cn)−1/γ ,
which implies, since 0 < γ < 1, that

∑
n(1 − rn) < ∞, as desired. This

completes Step I.

Step II. Insuring parabolic type.
We claim that:

(5.4)
∫
∂U

dµ(ζ)
|1− ζ|2

=
1
2

=⇒ lim
r→1−

1− ϕ(r)
1− r

= 1.

The result follows from a characterization, due to M. Riesz [23], of points at
which singular inner functions have angular derivatives. Following Riesz, the
key to the argument is the identity:

(5.5) |r − ζ|2 = (1− r)2 + r|1− ζ|2 (ζ ∈ ∂U, 0 ≤ r < 1),

which shows that
r

|r − ζ|2
≤ 1
|1− ζ|2

(ζ ∈ ∂U, 0 ≤ r < 1),

whereupon the integrability hypothesis in (5.4) and Dominated Convergence
yield

(5.6)
1
2

= lim
r→1−

∫
∂U

r dµ(ζ)
|r − ζ|2

= lim
r→1−

∫
∂U

dµ(ζ)
|r − ζ|2

.

In particular this implies P [µ](r) = O(1 − r) as r → 1−, so, upon recalling
that ϕ(r) = exp{−P [µ](r)} (due to the symmetry of µ) and doing some ma-
nipulations with the MacLaurin series of the exponential function, we obtain,
as r → 1−,

(5.7)
1− ϕ(r)

1− r
=
P [µ](r)
1− r

+O(1− r) =
(1− r2)

1− r

∫
∂U

dµ(ζ)
|r − ζ|2

+O(1− r),
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from which (5.6) gives the desired result. Thus the integrability condition on
the left-hand side of (5.4) insures that ϕ has its Denjoy-Wolff point at 1 and
is of parabolic type.

Step III. Insuring the lower estimate (5.2).

For this we make a “second order refinement” of the arguments of Step II.
To review our hypotheses: we are assuming that µ is a positive finite Borel
measure on ∂U singular with respect to Lebesgue measure and symmetric
about 1, and that ϕ is the associated singular inner function. Now let’s
assume further that

(5.8)
∫
∂U

|1− ζ|−2 dµ(ζ) = 1/2,

so that by Step II, ϕ is of parabolic type with Denjoy-Wolff point at 1.
We make one final assumption: there exist constants c > 0 and 2 < α < 3

such that

(5.9) c δα ≤ µ{ζ ∈ ∂U : |1− ζ| < δ} (0 ≤ δ ≤ 2).

We claim that under these conditions ϕ is of parabolic non-automorphic type
with orbits that obey the Blaschke condition.

To get started with the proof, rewrite (5.7) as

1− ϕ(r)
1− r

= [2− (1− r)]
∫
∂U

dµ(ζ)
|r − ζ|2

+O(1− r)

= 2
∫
∂U

dµ(ζ)
|r − ζ|2

+O(1− r),

where the last line uses (5.6). Use this and (5.8) to obtain

h(r) := 1− 1− ϕ(r)
1− r

= 2
∫
∂U

[
1

|1− ζ|2
− 1
|r − ζ|2

]
dµ(ζ) +O(1− r)

= 2(1− r)2

∫
∂U

dµ(ζ)
|1− ζ|2|r − ζ|2

− 2
1 + r

P [µ](r) +O(1− r),

where one obtains the last line from the previous one thanks to some arith-
metic facilitated by (5.5). Since P [µ](r) = O(1 − r) as r → 1− the last
calculation simplifies to

(5.10) h(r) = 2(1− r)2

∫
∂U

dµ(ζ)
|1− ζ|2|r − ζ|2

+O(1− r) as r → 1− .

For 0 < r < 1 let I(r) = {ζ ∈ ∂U : |1− ζ| < (1− r)}. Then, calling once again
on (5.5), we see that the integral on the right-hand side of (5.10) is bounded
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below by ∫
I(r)

dµ(ζ)
|1− ζ|2|r − ζ|2

≥ µ(I(r))
2(1− r)4

≥ c

2
(1− r)α−4 ,

where c is the constant in the lower distribution hypothesis (5.9) on µ. Using
this in (5.10) we arrive at the estimate

h(r) ≥ c(1− r)α−2 +O(1− r) as r → 1− .
Since 2 < α < 3 we have 0 < γ := α − 2 < 1, so (after appropriate modifica-
tions to the constant c)

h(r) ≥ c(1− r)γ (0 ≤ r < 1),

where c > 0 and 0 < γ < 1, with neither depending on r. This completes
Step III.

Step IV. Producing the measure.
We have just shown that any positive finite singular measure on ∂U that is

symmetric about the point 1 satisfies the integral condition (5.8), and places
“sufficiently much” mass around 1 will do the job. Purely atomic measures
are the easiest ones to produce; here is one.

For n a non-zero integer let ζn = ei/n. Fix α with 2 < α < 3, and let ν
be the atomic measure that places mass |n|−(α+1) at ζn. Then µ is finite and
symmetric about 1, and if rn := 1− 1/n then, borrowing some notation from
Step III:

ν(I(rn)) = 2
∞∑
k=n

1
kα+1

∼ 1
nα

= (1− rn)α,

where we are using “∼” to mean that the quantity on the left is bounded above
and below by positive constant multiples of the one on the right (constants
independent of n). It’s easy to see that in fact ν(I(r)) ∼ (1 − r)α for all
0 ≤ r < 1. These inequalities insure that c :=

∫
∂U
|1− ζ|−2 dν(ζ) <∞, so the

measure µ := ν/2c satisfies the hypotheses of Step III, hence the associated
inner function is parabolic non-automorphic (hence ergodic) with Denjoy-
Wolff point at 1, and its orbits satisfy the Blaschke condition (so its iterates
converge a.e. on ∂U to 1). �

5.4. Corollary. There exist Blaschke products that are ergodic on ∂U, yet
have iterate sequences converging a.e. on ∂U to the Denjoy-Wolff point.

Proof. A theorem of Frostman ([14], see also [13, page 30]) asserts that if
ϕ is an inner function then for “quasi-every” standard automorphism αλ the
composition αλ ◦ ϕ is a Blaschke product! Here “for quasi-every αλ” means
“for all αλ with λ ∈ U lying outside a subset of U having capacity zero. For
our purposes all we need to know is that αλ is Blaschke for some λ ∈ U.

Suppose now that ϕ is one of the inner functions promised by Theorem 5.3
(ergodic, but with iterate sequence converging a.e. to the Denjoy-Wolff point).
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Then the same is true, by the self-inverse property of αλ, of ϕλ := αλ ◦ϕ◦αλ.
Choose λ ∈ U so that B := αλ ◦ ϕ is a Blaschke product. Then so is B ◦ αλ,
which equals ϕλ. �

5.5. Atomic singular inner functions. We conclude this section by
using our results to settle an issue raised in [15] concerning ergodicity for the
simplest family of singular inner functions, those whose singular measures are
point masses. Let Mζ,α denote the function induced by the measure that
places mass α at the point ζ ∈ ∂U:

(5.11) Mζ,α(z) = exp
(
−α ζ + z

ζ − z

)
α > 0, ζ ∈ ∂U.

Let us write ζ = eiθ. In Theorem 4.1 of [15], Kim and Kim prove that Mζ,α

is:
• ergodic if either α > 2 or if 0 < α ≤ 2 and
|θ| <

√
α(2− α) + 2 arcsin(

√
α/2);

• not ergodic if
√
α(2− α) + 2 arcsin(

√
α/2) < |θ| ≤ π.

Their characterization omits only the following “critical subfamily”

(5.12) θ = ±
(√

α(2− α) + 2 arcsin
√
α/2

)
and 0 < α ≤ 2.

The critical subfamily includes the mapping ϕ2 of Proposition 4.7 (α = 2,
ζ = −1) which we have already observed to be ergodic (Proposition 4.7 and
§5.2 above). The work we have done up to this point furnishes the last piece
of the puzzle.

5.6. Theorem. Except for ϕ2 = M−1,2 no member of the critical subfam-
ily is ergodic.

Proof. Without loss of generality we focus on the those members of the
critical subfamily for which θ = +

(√
α(2− α) + 2 arcsin

√
α/2

)
.

For 0 < α ≤ 2, define

ζα = exp[i
(√

α(2− α) + 2 arcsin
√
α/2

)
].

Kim and Kim show in [15] that the Denjoy-Wolff point of Mζα,α is given by

ω = exp
(
i
√
α(2− α)

)
.

The reader may check directly that Mζα,α(ω) = ω and M ′ζα,α(ω) = 1 so that
ω is indeed the Denjoy-Wolff point of Mζα,α and we are in one of the parabolic
cases. We will show that Mζα,α is of parabolic-automorphic type when α < 2
so that it is non-ergodic.

Let us simplify notation. Let Mα = Mζα,α, let ω be the Denjoy-Wolff point
of Mα, and let

ϕ(z) = ω̄Mα(ωz).
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Observe that ϕ has Denjoy-Wolff point 1, ϕ′(1) = 1, and Mα has non-
separated orbits if and only if the same is true for ϕ; in particular ϕ is of
parabolic automorphic type if and only if the same is true of Mα. Clearly ϕ
is analytic in a neighborhood of 1 and a calculation shows that

ϕ′′(1) =
−i
√

2α− α2

α
.

Thus by [8, Theorem 4.15], ϕ is of parabolic-automorphic type when 0 < α < 2
and we conclude that Mα is not ergodic for this range of α values. �

Concluding Note. After submitting this paper for publication we re-
ceived a message from Pietro Poggi-Corradini informing us of his paper [20],
in which he obtained (independently) the same a.e. convergence results we
did for the interior fixed-point case, and the boundary fixed-point hyperbolic
and parabolic automorphism cases. His arguments are different from ours,
utilizing potential-theoretic tools in the interior fixed-point case, and, in the
boundary fixed-point cases, exploiting properties of the intertwining map σ
of the applicable linear-fractional model. Our work in the parabolic non-
automorphism case settles in the negative a conjecture, stated in [20], that in
this case a.e. convergence takes place if and only if ϕ is not inner.
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Poincaré Sect. B (N.S.) 14 (1978), 233–253. MR 508928 (80b:28018)
[2] , A remark on the exactness of inner functions, J. London Math. Soc. (2) 23

(1981), 469–474. MR 616553 (82h:30018)
[3] , An introduction to infinite ergodic theory, Mathematical Surveys and Mono-

graphs, vol. 50, American Mathematical Society, Providence, RI, 1997. MR 1450400
(99d:28025)

[4] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, Graduate Texts in
Mathematics, vol. 137, Springer-Verlag, New York, 2001. MR 1805196 (2001j:31001)

[5] I. N. Baker and C. Pommerenke, On the iteration of analytic functions in a halfplane.
II, J. London Math. Soc. (2) 20 (1979), 255–258. MR 551452 (83j:30024)

[6] D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz
lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661–676. MR 1242454
(94j:32016)

[7] F. Bracci, R. Tauraso, and F. Vlacci, Identity principles for commuting holomorphic
self-maps of the unit disc, J. Math. Anal. Appl. 270 (2002), 451–473. MR 1916591

(2003f:30030)

[8] P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem.
Amer. Math. Soc. 125 (1997). MR 1396955 (97h:47023)

[9] C. C. Cowen, Iteration and the solution of functional equations for functions analytic
in the unit disk, Trans. Amer. Math. Soc. 265 (1981), 69–95. MR 607108 (82i:30036)

[10] , Composition operators on H2, J. Operator Theory 9 (1983), 77–106.

MR 695941 (84d:47038)
[11] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic

functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
MR 1397026 (97i:47056)



430 P. S. BOURDON, V. MATACHE, AND J. H. SHAPIRO
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