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GENERALIZED QUADRANGLES WITH A SPREAD OF
SYMMETRY AND NEAR POLYGONS

BART DE BRUYN AND KOEN THAS

Abstract. Let S be a finite generalized quadrangle of order (s, t),
s 6= 1 6= t. A spread is a set of st+1 mutually non-concurrent lines of S.

A spread T of S is called a spread of symmetry if there is a group of au-
tomorphisms of S which fixes T elementwise and which acts transitively

on the points of at least one (and hence every) line of T. From spreads
of symmetry of generalized quadrangles, there can be constructed near
polygons, and new spreads of symmetry would yield new near polygons.

In this paper, we focus on spreads of symmetry in generalized quad-
rangles of order (s, s2). Many new characterizations of the classical

generalized quadrangle Q(5, q) which arises from the orthogonal group

O−(6, q) will be obtained. In particular, we show that a generalized
quadrangle S of order (s, t), s 6= 1 6= t, containing a spread of symmetry

T is isomorphic to Q(5, s), under any of the following conditions: (i) S
contains a point which is incident with at least three axes of symmetry

(Theorem 6.4); (ii) t = s2 with s even and S has a center of transitivity

(Theorem 6.6); (iii) there exists a line L 6∈ T such that S is an EGQ
with base-line L (Theorem 6.8).

1. Introduction

1.1. Finite generalized quadrangles. A (finite) generalized quadrangle
(GQ) of order (s, t) is an incidence structure S = (P,B, I) in which P and
B are disjoint (nonempty) sets of objects called points and lines, respectively,
and for which I is a symmetric point-line incidence relation satisfying the
following axioms:

(1) Each point is incident with t+ 1 lines (t ≥ 1) and two distinct points
are incident with at most one line.

(2) Each line is incident with s + 1 points (s ≥ 1) and two distinct lines
are incident with at most one point.

(3) If p is a point and L is a line not incident with p, then there is a
unique point-line pair (q,M) such that pIMIqIL.
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If s = t, then S is also said to be of order s.
Generalized quadrangles were introduced by J. Tits [41] in his celebrated

work on triality as a subclass of a larger class of incidence structures, namely
the generalized polygons, in order to understand the Chevalley groups of rank
2. The main results, up to 1983, on finite generalized quadrangles are con-
tained in the monograph Finite Generalized Quadrangles by S. E. Payne and
J. A. Thas [18], denoted by FGQ in the sequel. For an extensive survey on
recent results on automorphisms and characterizations of GQ’s see K. Thas
[32].

Let S = (P,B, I) be a (finite) generalized quadrangle of order (s, t), s 6=
1 6= t. Then |P | = (s+ 1)(st+ 1) and |B| = (t+ 1)(st+ 1). Also, s ≤ t2 and,
dually, t ≤ s2, and s+ t divides st(s+ 1)(t+ 1).

There is a point-line duality for GQ’s of order (s, t) under which in any
definition or theorem the words “point” and “line”, as well as the correspond-
ing parameters, are interchanged. Normally, we assume without further notice
that the dual of a given theorem or definition has also been given. Also, some-
times a line will be identified with the set of points incident with it without
further notice.

A GQ is called thick if every point is incident with more than two lines and
if every line is incident with more than two points. Otherwise, a GQ is called
thin. If S is a thin GQ of order (s, 1), then S is also called a grid. Dual grids
are defined dually.

Let p and q be (not necessarily distinct) points of the GQ S; we write
p ∼ q and say that p and q are collinear, provided that there is some line L
such that pILIq (so p 6∼ q means that p and q are not collinear). Dually, for
L,M ∈ B, we write L ∼ M or L 6∼ M according as L and M are concurrent
or non-concurrent. If p 6= q ∼ p, the line incident with both is denoted by
pq, and if L ∼ M 6= L, the point which is incident with both is sometimes
denoted by L ∩M .

For p ∈ P , put p⊥ = {q ∈ P ‖ q ∼ p} (and note that p ∈ p⊥). For a pair of
distinct points {p, q}, the trace of {p, q} is defined as p⊥ ∩ q⊥, and we denote
this set by {p, q}⊥. Then |{p, q}⊥| = s + 1 or t + 1, according as p ∼ q or
p 6∼ q. More generally, if A ⊆ P , A⊥ is defined by A⊥ =

⋂
{p⊥ ‖ p ∈ A}. For

p 6= q, the span of the pair {p, q} is sp(p, q) = {p, q}⊥⊥ = {r ∈ P ‖ r ∈ s⊥ for
all s ∈ {p, q}⊥}. When p 6∼ q, then {p, q}⊥⊥ is also called the hyperbolic line
defined by p and q, and |{p, q}⊥⊥| = s+ 1 or |{p, q}⊥⊥| ≤ t+ 1 according as
p ∼ q or p 6∼ q. If p ∼ q, p 6= q, or if p 6∼ q and |{p, q}⊥⊥| = t+ 1, we say that
the pair {p, q} is regular. The point p is regular provided {p, q} is regular for
every q ∈ P \ {p}. Regularity for lines is defined dually. One easily proves
that either s = 1 or t ≤ s if S has a regular pair of non-collinear points.

Finally, if S is a GQ, then by SD we denote its point-line dual.
Consider a nonsingular quadric of Witt index 2, that is, of projective index

1, in PG(3, q), PG(4, q), PG(5, q), respectively. The points and lines of the
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quadric form a generalized quadrangle which is denoted by Q(3, q), Q(4, q),
Q(5, q), respectively, and has order (q, 1), (q, q), (q, q2), respectively. Next, let
H be a nonsingular Hermitian variety in PG(3, q2), respectively PG(4, q2).
The points and lines of H form a generalized quadrangle H(3, q2), respectively
H(4, q2), which has order (q2, q), respectively (q2, q3). The points of PG(3, q)
together with the totally isotropic lines with respect to a symplectic polarity
form a GQ W (q) of order q. The generalized quadrangles defined in this
paragraph are the so-called classical generalized quadrangles; see Chapter 3 of
FGQ. It is important to mention that W (q)D ∼= Q(4, q) and that H(3, q2)D ∼=
Q(5, q); see 3.2.1 and 3.2.3 of FGQ. Also, W (q) ∼= W (q)D if and only if q is
even [18, 3.2.1].

1.2. EGQ’s and TGQ’s. Let S = (P,B, I) be a GQ of order (s, t),
s, t > 1. An elation about the point p is a collineation of S that fixes p
linewise and fixes no point of P \p⊥. By definition, the identical permutation
is an elation (about every point). If p is a point of the GQ S for which there
exists a group G of elations about p which acts regularly on the points of
P \ p⊥, then S is said to be an elation generalized quadrangle (EGQ) with
elation point p and elation group (or base-group) G, and we sometimes write
(S(p), G) for S. An axis of symmetry L of S is a line for which there is a
full group of size s of collineations of S fixing L⊥ elementwise. Dually, one
defines a center of symmetry. If a GQ (S(p), G) is an EGQ with elation point
p, and if each line incident with p is an axis of symmetry, then we say that
S is a translation generalized quadrangle (TGQ) with translation point p and
translation group (or base-group) G. In such a case, G is uniquely defined; G
is generated by all symmetries about every line incident with p, and G is the
set of all elations about p; see FGQ.

TGQ’s were introduced by J. A. Thas in [23] for the case s = t and by S.
E. Payne and J. A. Thas in FGQ for the general case.

Theorem 1.1 (FGQ, 8.3.1). Let S = (P,B, I) be a GQ of order (s, t),
s, t > 1. Suppose each line through some point p is an axis of symmetry,
and let G be the group generated by the symmetries about the lines through p.
Then G is elementary abelian and (S(p), G) is a TGQ.

Suppose H = PG(2n+m− 1, q) is the finite projective (2n+m− 1)-space
over GF(q), and let H be embedded in a PG(2n+m, q), say H ′. Now define
a set O = O(n,m, q) of subspaces as follows: O is a set of qm + 1 (n − 1)-
dimensional subspaces of H every three of which generate a PG(3n − 1, q),
denoted by PG(n− 1, q)(i), and such that the following condition is satisfied:
for every i = 0, 1, . . . , qm there is a subspace PG(n + m − 1, q)(i) of H of
dimension n + m − 1, which contains PG(n − 1, q)(i) and which is disjoint
from any PG(n − 1, q)(j) if j 6= i. If O satisfies all these conditions for
n = m, then O is called a pseudo-oval or a generalized oval or an [n− 1]-oval
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of PG(3n − 1, q); a generalized oval of PG(2, q) is just an oval of PG(2, q).
For n 6= m, O(n,m, q) is called a pseudo-ovoid or a generalized ovoid or an
[n−1]-ovoid or an egg of PG(2n+m−1, q); a [0]-ovoid of PG(3, q) is just an
ovoid of PG(3, q). The spaces PG(n+m− 1, q)(i) are the tangent spaces of
O(n,m, q), or just the tangents. Generalized ovoids were introduced for the
case n = m by J. A. Thas in [22] for some particular cases. S. E. Payne and
J. A. Thas ([23], [18]) proved that from any egg O(n,m, q) there arises a GQ
T (n,m, q) = T (O) which is a TGQ of order (qn, qm), for some special point
(∞), as follows.

• The Points are of three types.
(1) A symbol (∞).
(2) The subspaces PG(n+m, q) of H ′ which intersect H in a PG(n+

m− 1, q)(i).
(3) The points of H ′ \H.

• The Lines are of two types.
(1) The elements of the egg O(n,m, q).
(2) The subspaces PG(n, q) of PG(2n+m, q) which intersect H in

an element of the egg.
• Incidence is defined as follows: the point (∞) is incident with all

the lines of type (1) and with no other lines; the points of type (2) are
incident with the unique line of type (1) contained in it and with all
the lines of type (2) which they contain (as subspaces), and finally, a
point of type (3) is incident with the lines of type (2) that contain it.

Conversely, any TGQ can be seen in this way (that is, as a T (n,m, q)) [18],
and thus the study of translation generalized quadrangles is equivalent to the
study of the generalized ovals and generalized ovoids.

By Chapter 8 of FGQ, each TGQ is either of order s or (s, s(k+1)/k), where
k is odd and s a prime power. Each TGQ S of order (s, s(k+1)/k), with
translation point (∞), where k is odd and s 6= 1, has a kernel K, which is a
field with a multiplicative group isomorphic to the group of all collineations of
S fixing the point (∞), and any given point not collinear with (∞), linewise.
We have |K| ≤ s; see FGQ. The field GF(q) is a subfield of K if and only if
S is of type T (n,m, q) [18]. The TGQ S is isomorphic to a T3(O) of Tits [18]
with O an ovoid of PG(3, s) if and only if |K| = s.

Completely similar remarks can be made for the case s = t, and in that
case, the TGQ is isomorphic to a T2(O) of Tits [18] with O an oval of PG(2, s)
if and only if |K| = s.

If n 6= m, then by 8.7.2 of [18] the qm + 1 tangent spaces of O(n,m, q)
form an O∗(n,m, q) in the dual space of PG(2n+m−1, q). So in addition to
T (n,m, q) there arises a TGQ T (O∗), also denoted by T ∗(n,m, q), or T ∗(O).
The TGQ T ∗(O) is called the translation dual of the TGQ T (O). The GQ’s
T3(O) and S(F)D, where F is a Kantor flock (see below), are the only known
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TGQ’s of order (qn, qm), n 6= m, which are isomorphic to their translation
dual. The TGQ T (O) and its translation dual T (O∗) have isomorphic kernels.

A TGQ T (O) of order (s, t), s 6= 1 6= t, with s 6= t is called good at an
element π ∈ O if for any two distinct elements π′ and π′′ of O \ {π} the
(3n−1)-space ππ′π′′ contains exactly qn+ 1 elements of O and is skew to the
other elements. If the egg O contains a good element, then the egg is called
good, and a good egg O(n,m, q) satisfies m = 2n (by [18, 8.7.2 (v)]).

2. The relation between spreads of symmetry, admissible triples
and near polygons

2.1. Some definitions. A near polygon is a partial linear space with the
property that for every point p and every line L there exists a unique point on
L nearest to p (with respect to the distance in the point graph G). If d is the
diameter of G, then the near polygon is called a near 2d-gon. A near 0-gon is
a point, a near 2-gon is a line, and the class of the near 4-gons coincides with
the class of the generalized quadrangles. Also, generalized 2d-gons and dual
polar spaces are examples of near polygons. Near polygons were introduced
by E. E. Shult and A. Yanushka in [21] because of the relationship with the
so-called ‘tetrahedrally closed systems of lines’ in Euclidean spaces. For a
survey on near polygons, see B. De Bruyn [7], and also F. De Clerck and H.
Van Maldeghem [8].

Two lines L and M of a near polygon are called parallel if d(L,m) is
independent of the chosen point mIM . Clearly, any two disjoint lines of a
generalized quadrangle are parallel. A spread of a near polygon is a set of
lines which partition the point set. A spread of symmetry of a near polygon
Γ is a spread T such that for every line L ∈ T and for any two points x and
y of L, there exists an automorphism of Γ fixing each line of T and mapping
x onto y. Clearly, any two lines of a spread of symmetry are parallel. If Γ is
a GQ, then dually one defines ovoids of symmetry.

Suppose T is a spread of the GQ S of order (s, t), s, t > 1. Then T is
Hermitian or regular or normal if for any two distinct lines L and M of T, the
pair {L,M} is regular (so |{L,M}⊥⊥| = s + 1) and {L,M}⊥⊥ ⊆ T. Let T
be a spread of S. Then T is locally Hermitian or semiregular or seminormal
with respect to the line L if for every line M 6= L of T, the pair {L,M} is
regular and {L,M}⊥⊥ ⊆ T.

2.2. Spreads of symmetry and admissible triples. By [4], every
spread of symmetry of a GQ can be derived from a so-called admissible triple
in the way we will describe now.

A triple T = (D,H,∆) is called admissible if the following conditions are
satisfied:

(1) D is a linear space of order (s, t − 1) with s and t nonzero positive
integers. Let P denote the point set of D.
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(2) H is a (multiplicative) group of order s+ 1. Let 1 denote its identity
element.

(3) ∆ is a map from P ×P to H such that x, y and z are collinear if and
only if ∆(x, y) ∆(y, z) = ∆(x, z).

Let Γ be the graph on the vertex set H×P; two vertices (h1, x) and (h2, y)
are adjacent if and only if

(i) x = y and h1 6= h2, or
(ii) x 6= y and h2 = h1 ∆(x, y).

It is proved in B. De Bruyn [4] that Γ is the point graph of a generalized
quadrangle S of order (s, t). The set T = {Lx ‖ x ∈ P} with Lx = {(h, x) ‖
h ∈ H} is a spread of S and we put Ω(T ) := (S,T). For every h ∈ H, the
map θh : (g, x) 7→ (h g, x), g ∈ H and x ∈ P, defines an automorphism of S
that fixes each line of T, proving that T is a spread of symmetry.

The following properties must be satisfied for an admissible triple:
(A) ∆(x, x) = 1 for all x ∈ P.
(B) ∆(y, x) = [∆(x, y)]−1 for all x, y ∈ P.
(C) If S is not a grid, then H = {∆(a, x) ∆(x, y) ∆(y, a) ‖ x, y ∈ P} for

every a ∈ P.

Proof. Property (A) is obtained by putting x = y = z in (3). Property (B)
is obtained by putting z = x in (3). Let h be an arbitrary element of H \{1},
and let a, x ∈ P, a 6= x. Since S is not a grid, (∆(a, x), x) and (h, a) have a
common neighbour (g, y) with a 6= y 6= x. We have g = ∆(a, x) ∆(x, y) and
h = g∆(y, a), proving Property (C). �

Admissible triples (AT’s for short) yield spreads of symmetry. It is possi-
ble, however, that two admissible triples, although different, yield equivalent
spreads. In the following section, we examine why this happens and introduce
the notion of equivalent AT’s.

2.3. Equivalence of admissible triples. Let Ti, i ∈ {1, 2}, be a spread
of a generalized quadrangle Si. Then we say that (S1,T1) and (S2,T2) are
equivalent if and only if there exists an isomorphism from S1 to S2 mapping
T1 onto T2.

Let T1 = (D1,H1,∆1) and T2 = (D2,H2,∆2) be two admissible triples. If
D1 and D2 are two lines of the same length, then T1 and T2 are said to be
equivalent. Otherwise, T1 and T2 are called equivalent if there exist:

(1) an isomorphism from D1 to D2 determined by α : P1 → P2;
(2) an isomorphism β from H1 to H2;
(3) a map γ from P1 to H1 such that, for all x, y ∈ P1, ∆2(α(x), α(y)) =

β(γ−1(x) ∆1(x, y) γ(y)) holds.

Theorem 2.1. Two admissible triples T1 and T2 are equivalent if and only
if Ω(T1) and Ω(T2) are equivalent.
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Proof. Put Ti = (Di,Hi,∆i) and Ω(Ti) = (Si,Ti) for every i ∈ {1, 2}.
We may suppose that S1 and S2 are not grids, or equivalently, that D1 and
D2 are not lines. If T1 and T2 are equivalent, let α, β and γ be as above.
Then the map (h, x) 7→ (β(h γ(x)), α(x)) defines an isomorphism from S1 to
S2 mapping T1 onto T2.

Conversely, suppose that (S1,T1) and (S2,T2) are equivalent. We will
freely use Properties (A), (B) and (C) of the previous section without further
notice. Let θ be an isomorphism from S1 to S2 mapping T1 to T2. For a point
xi of Pi, i ∈ {1, 2}, let L(i)

xi = {(h, xi) ‖ h ∈ Hi} ∈ Ti. There exists a bijection
α : P1 → P2 such that θ(L(1)

x1 ) = L
(2)
α(x1) for all x1 ∈ P1. Since sets of the form

{L,M}⊥⊥ with L,M ∈ T1 are mapped by θ onto sets of the form {L′,M ′}⊥⊥
with L′,M ′ ∈ T2, α induces an isomorphism from D1 to D2. For every x ∈ P1,
let βx be the bijection from H1 to H2 such that θ[(h, x)] = (βx(h), α(x))
for all x ∈ P1 and all h ∈ H1. Consider now the adjacent points (h, x)
and (h∆(x, y), y) of S1. Then (βx(h), α(x)) and (βy(h∆1(x, y)), α(y)) are
two adjacent points of S2. Hence βy(h∆1(x, y)) = βx(h)∆2(α(x), α(y)). Let
a ∈ P1 be fixed and put β̄ := βa. Then βy(k) = β̄(k∆1(y, a))∆2(α(a), α(y)).
Hence

β̄(h∆1(x, y)∆1(y, a))∆2(α(a), α(y))

= β̄(h∆1(x, a))∆2(α(a), α(x))∆2(α(x), α(y))

for all h ∈ H and all x, y ∈ P1. Putting h = ∆1(a, x), we find

β̄(∆1(a, x)∆1(x, y)∆1(y, a))

= β̄(1)∆2(α(a), α(x))∆2(α(x), α(y))∆2(α(y), α(a)).

Hence

β̄(h∆1(x, a)∆1(a, x)∆1(x, y)∆1(y, a))

= β̄(h∆1(x, a))[β̄(1)]−1β̄(∆1(a, x)∆1(x, y)∆1(y, a)).

Now, let h1, h
′
1 be arbitrary elements of H1. Since S1 is not a grid, we can

choose the points x and y such that ∆1(a, x)∆1(x, y)∆1(y, a) = h′1. Choose
now h such that h∆1(x, a) = h1. Hence β̄(h1h

′
1) = β̄(h1)[β̄(1)]−1β̄(h′1) for all

h1, h
′
1 ∈ H1. As a consequence the map β : H1 → H2, h 7→ β̄(h1)[β̄(1)]−1 is

an isomorphism from H1 to H2. Hence ∆2(α(x), α(y)) is equal to(
∆2(α(x), α(a))[β̄(1)]−1β(∆1(a, x))

)
·

· β(∆1(x, y))
(
β(∆1(y, a)β̄(1)∆2(α(a), α(y))

)
.

The theorem follows now if we put

γ : P1 → H1, x 7→ ∆1(x, a)β−1(β̄(1)∆2(α(a), α(x))). �
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2.4. The known admissible triples. Every known admissible triple is
equivalent to one of the following examples:

(1) Let D be the line of length s + 1 and let H be the cyclic group of
order s+ 1. Put ∆(x, y) equal to 1 for all points x and y of D.

(2) Let D be the complete graph on t+ 1 vertices and let H be the group
of order 2. Put ∆(x, y) equal to 1 if and only if x = y.

(3) Consider a nonsingular nondegenerate Hermitian form (·, ·) in the
vector space V (3, q2) and let U be the corresponding Hermitian unital
in PG(2, q2). With this unital there is associated the following linear
space D:
• The points of D are the points of U .
• The lines of D are all the sets of order q + 1 arising as an

intersection of U with lines of the projective plane.
Put H = {x ∈ GF(q2) ‖ xq+1 = 1}. Let α = 〈ā〉 be a fixed

point of U . For any two points β = 〈b̄〉 and γ = 〈c̄〉 of U , we define
∆(β, γ) = −(ā, b̄)q−1(b̄, c̄)q−1(c̄, ā)q−1 if α 6= β 6= γ 6= α; ∆(β, γ) = 1
otherwise.

In Examples (4), (5) and (6), the linear space D is the Desarguesian affine
plane AG(2, q) and H is the additive group of GF(q). In Examples (5) and
(6) a function f : GF(q)→ GF(q) occurs which satisfies one of the following
two equivalent properties:

(I) The set H := {(1, 0, 0), (0, 1, 0)} ∪ {(f(λ), λ, 1) ‖ λ ∈ GF(q)} is a
hyperoval [12] in PG(2, q) (and hence q is even; see [12]).

(II) We have

∣∣∣∣∣∣
f(λ1) λ1 1
f(λ2) λ2 1
f(λ3) λ3 1

∣∣∣∣∣∣ 6= 0⇔ λ1 6= λ2 6= λ3 6= λ1.

Now, let (α1, β1) and (α2, β2) be two arbitrary points of AG(2, q). Exam-
ples (4), (5) and (6) are then given as follows:

(4) We put ∆((α1, β1), (α2, β2)) = α1β2 − α2β1.
(5) We put ∆((α1, β1), (α2, β2)) = (α1 − α2)f

(
β1−β2
α1−α2

)
if α1 6= α2 and 0

otherwise.
(6) We put ∆((α1, β1), (α2, β2)) = (f(α1)− f(α2)) β1−β2

α1−α2
if α1 6= α2 and

0 otherwise.

2.5. Spreads of symmetry in the known GQ’s. If a generalized quad-
rangle S of order (s, t) has a spread of symmetry, then we have the following
restrictions on the parameters; see [4]:

(i) s+ 1 | t(t− 1);
(ii) s+ t | s(s+ 1)(t+ 1);
(iii) s+ 2 ≤ t ≤ s2 if s 6= 1 6= t.
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If S is one of the known GQ’s, then (i), (ii) and (iii) imply that either
s = 1, t = 1, (s, t) = (q − 1, q + 1) or (s, t) = (q, q2). Here q denotes an
arbitrary prime power. If t = 1, then S is a grid and the corresponding AT
is given in (1). If s = 1, then S is a dual grid and the corresponding AT is
given in (2). Every known GQ of order (q−1, q+1) has a spread of symmetry
and the corresponding admissible triples are given in (4), (5) and (6); they
correspond, respectively, to the GQ S = P(W (q), x) (where S ∼= AS(q) if q is
odd, and S ∼= T ∗2 (O), where O is a regular hyperoval of PG(2, q), if q is even),
T ∗2 (O) with O an arbitrary hyperoval in PG(2, q), with q even, and the GQ
(S−xy)D arising from a hyperoval in PG(2, q), q even. For more details, see B.
De Bruyn [4]. Two AT’s T1 and T2 of type (4), (5) or (6) are equivalent if
and only if Ω(T1) and Ω(T2) are equivalent, and by a result of Payne [16] we
know precisely when this happens. All spreads of symmetry in the classical
GQ’s of order (q, q2) (i.e., the GQ’s Q(5, q)) were determined in [4]. The
corresponding admissible triples are given in (3).

The problem that is still open today is whether there are known nonclassical
GQ’s of order (q, q2) with a spread of symmetry. This is the main concern of
this paper.

2.6. Glued near polygons and spreads of symmetry. Let k and s
be nonzero integers and let X be a set of size s+ 1. For every i ∈ {1, . . . , k}
consider the following objects:

(A) a near polygon Γi;
(B) a spread Ti = {L(i)

1 , . . . , L
(i)
ni } of Γi, consisting of lines which are two

by two parallel;
(C) a bijection θi : X 7→ L

(i)
1 .

Conditions (B) and (C) imply that all lines L(i)
j , i ∈ {1, . . . , k} and j ∈

{1, . . . , ni}, have the same length s+1. If x is a point of Γl and L(l)
m ∈ Tl, then

p
(l)
m (x) denotes the unique point of L(l)

m nearest to x. The following graph G

can now be defined. The vertices of G are the elements of X ×T1× . . .×Tk.
Two vertices (x, L(1)

i1
, . . . , L

(k)
ik

) and (y, L(1)
j1
, . . . , L

(k)
jk

) are adjacent if and only
if

(I) there exists an l ∈ {1, . . . , k} such that im = jm for allm ∈ {1, . . . , k}\
{l}, and

(II) for every l like in (I), p(l)
il
◦ θl(x) and p(l)

jl
◦ θl(y) are collinear points in

Γl.

The following incidence structure Γ can then be defined:

• The points of Γ are the vertices of G.
• The lines of Γ are the maximal cliques of G.
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Theorem 2.2 (B. De Bruyn [7]). The incidence structure Γ is a near
polygon if and only if the permutations θ−1

i ◦p
(i)
1 ◦p

(i)
α ◦p(i)

β ◦θi and θ−1
j ◦p

(j)
1 ◦

p
(j)
γ ◦ p(j)

δ ◦ θj commute for all possible α, β, γ, δ, i and j with i 6= j.

The group Gi := 〈p(i)
1 ◦ p

(i)
α ◦ p(i)

β ‖ α, β ∈ {1, . . . , ni}〉, i ∈ {1, . . . , k}, is

called the group of projectivities of L(i)
1 with respect to Ti. If Γ is a near

polygon, then it is called a glued near polygon. In this case the following
conditions necessarily are satisfied:

(i) Ti is a spread of symmetry of Γi.
(ii) There exists a group G such that Gi, i ∈ {1, . . . , k}, is either trivial

or isomorphic to G.
(iii) G is abelian if there exist at least three elements i ∈ {1, . . . , k} for

which Gi is not trivial.
Conversely, if for fixed X, Γi, Ti, L

(i)
1 , i ∈ {1, . . . , k}, (i), (ii) and (iii) are

satisfied, then there always exist maps θi, i ∈ {1, . . . , k}, such that Γ is a
glued near polygon.

Hence, generalized quadrangles with a spread T of symmetry always yield
glued near hexagons [5]. If the group of projectivities of a line L ∈ T with
respect to T is commutative, then near 2d-gons with d ≥ 4 can also be derived.
This is another motivation for our study of spreads of symmetry in generalized
quadrangles.

3. Spreads of symmetry in generalized quadrangles: basic
observations

Let T = {L1, . . . , L1+st} be a spread of a generalized quadrangle S of order
(s, t) and let HT be the group of automorphisms of S fixing each line of T. If
S is an (s+ 1)× (s+ 1)-grid, then |HT| = (s+ 1)! for both spreads of S.

Theorem 3.1. If S is not a grid, then each nontrivial element of HT

has no fixed points; hence |HT| = (s+ 1)/n with n some nonzero integer. In
particular, T is a spread of symmetry if and only if |HT| = s+ 1.

Proof. The fact that each nontrivial element of HT has no fixed point
readily follows from [18, 2.4.1]. This implies that |HT| = (s+ 1)/n since HT

acts semiregularly on the set of points of any line of T. �

Theorem 3.2. If a generalized quadrangle S of order (s, t) = (s, sα),
s 6= 1 and α ∈ Q \ {0}, contains a Hermitian spread, then α = 2.

Proof. Put s = qn and t = qm, where q, n and m are strictly positive
integers. Since s, t > 1 and t ≤ s2, we have that m ≤ 2n. For every Hermitian
spread T of S, one can define the following linear space L(T). The points of
L(T) are the elements of T, the lines of L(T) are the sets {L,M}⊥⊥ with
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L and M distinct lines of T, and incidence is containment. Counting the
number of lines of L(T), one finds s(s+ 1) | st(st+ 1) or s+ 1 | t(t−1). From
s = qn and t = qm with 0 < n,m ≤ 2n, it readily follows that m = 2n. �

4. Ovoids of symmetry and dual nets

4.1. Dual nets from GQ’s with a regular point. A (finite) net of
order k(≥ 2) and degree r(≥ 2) is an incidence structure N = (P,B, I) that
satisfies the following properties:

(1) Each point is incident with r lines and two distinct points are incident
with at most one line.

(2) Each line is incident with k points and two distinct lines are incident
with at most one point.

(3) If p is a point and L a line not incident with p, then there is a unique
line M incident with p and not concurrent with L.

A net of order k and degree r has k2 points and kr lines. Also, k ≥ r−1 with
equality if and only ifN is an affine plane. We refer to [1] for more information
on nets. Nets are also related to the theory of GQ’s in the following way.

Theorem 4.1 (FGQ, 1.3.1). Let p be a regular point of a GQ S = (P,B, I)
of order (s, t), s 6= 1 6= t. Then the incidence structure with point set p⊥ \{p},
with lineset the set of spans {q, r}⊥⊥, where q and r are non-collinear points
of p⊥ \ {p}, and with the natural incidence, is the dual N ∗p of a net Np of
order s and degree t+ 1.

4.2. Ovoids of symmetry through a regular point. Let S be a GQ
of order (s, t), s 6= 1 6= t, with a regular point (∞). A spread T of N ∗(∞) is
a set of lines partitioning the point set of N ∗(∞). Note that |T| = s. The
following observation was first made by J. A. Thas in [26], but we include a
proof for the sake of completeness.

Theorem 4.2. Let S = (P,B, I) be a GQ of order (s, t), s, t > 1, with a
regular point (∞). Let T = {L1, . . . , Ls} be a spread of N ∗(∞). Then OT =
{(∞)} ∪ {x ‖ x ∈ P \ (∞)⊥and {x, (∞)}⊥ ∈ T} is an ovoid of S.

Proof. Let x1 and x2 be two collinear points of OT. Then {x1, (∞)}⊥
and {x2, (∞)}⊥ have at least one point in common. Hence {x1, (∞)}⊥ =
{x2, (∞)}⊥ and x2 ∈ {x1, (∞)}⊥⊥. This implies that x1 and x2 are not
collinear, contradicting our assumption. Since OT is a set of st + 1 two by
two non-collinear points, the theorem follows. �

A spread T of N ∗(∞) is called regular if for every line M1 of N ∗(∞) not
belonging to T—so there exist t + 1 lines L1, . . . , Lt+1 of T intersecting M1

—there are t other lines M2, . . . ,Mt+1 such that Mi is disjoint from Mj for
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all i, j ∈ {1, . . . , t+ 1} with i 6= j, and so that Mi meets Lj in a point for all
i, j ∈ {1, . . . , t+ 1}.

Theorem 4.3. Let S be a GQ of order (s, t), s, t > 1, with a regular
point (∞) which is contained in an ovoid of symmetry O. Then there exists
a regular spread T of N ∗(∞) such that O = OT.

Proof. We first prove that {o1, (∞)}⊥ and {o2, (∞)}⊥ are equal or disjoint
for any two points o1, o2 of O \ {(∞)}. Suppose x ∈ {o1, (∞)}⊥ ∩ {o2, (∞)}⊥
and let θ be a nontrivial automorphism of S which fixes each point of O.
Then x, xθ ∈ {o1, (∞)}⊥ ∩ {o2, (∞)}⊥ and hence {o1, (∞)}⊥ = {o2, (∞)}⊥ =
{x, xθ}⊥⊥. Hence T = {{o, (∞)}⊥ ‖ o ∈ O \ {(∞)}} is a spread of N ∗(∞).
We now show that T is regular. Let M1 be an arbitrary line of N ∗(∞) not
belonging to T and let M1 = {(∞), x1}⊥. Let {x1, . . . , xt+1} denote the orbit
of x1 determined by the group of automorphisms fixing each point of O and
put Mi = {(∞), xi}⊥ for all i ∈ {1, . . . , t+ 1}. The above conditions are then
satisfied. �

Every automorphism θ of S which fixes (∞) induces an automorphism θ̄
of N ∗(∞). If θ fixes every point of OT, then θ̄ fixes every line of T.

Theorem 4.4. Let φ be an automorphism of N ∗(∞) fixing each line of a
spread T of N ∗(∞). Then there exists at most one automorphism θ of S, with
θ̄ = φ, which fixes each point of OT.

Proof. If θ and θ′ are two such automorphisms, then by [18, 2.2.2], θ[θ′]−1

is the identity on S. �

If θ exists, then it must be equal to the following map. Put (∞)θ = (∞)
and put zθ = zφ for every z ∈ (∞)⊥ \ {(∞)}. For z 6∈ (∞)⊥, let L1 and L2

denote two lines through z. The line Li, i ∈ {1, 2}, intersects (∞)⊥ in a point
zi and the ovoid OT in a point oi. Now, zθ is the intersection of the lines zθ1o1

and zθ2o2. This is another proof for Theorem 4.4.
To determine all ovoids of symmetry of S through the regular point (∞),

one could proceed as follows.
(i) Determine all regular spreads of N ∗(∞).
(ii) For each regular spread T of N ∗(∞), calculate the ovoid OT of S.
(iii) Determine all the automorphisms of N ∗(∞) fixing each line of T. There

have to be at least t+ 1 such automorphisms (including the identity);
otherwise OT cannot be an ovoid of symmetry.

(iv) Check for each of these automorphisms whether it corresponds to an
automorphism of S which fixes each point of OT. If we find t+1 such
automorphisms, then OT is an ovoid of symmetry.
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This method allows us to determine the group of automorphisms that fixes
each point of an ovoid of symmetry OT if the dual net N ∗(∞) satisfies the
Axiom of Veblen (i.e., if L1IxIL2, L1 6= L2,M1I\xI\M2, and if the line Li is
concurrent with the line Mj for all i, j ∈ {1, 2}, then M1 is concurrent with
M2).

Since s 6= t, it follows by J. A. Thas and F. De Clerck [28] that N ∗(∞)
∼= Hn

q ,
n > 2, where Hn

q is the dual net obtained as follows:

• The points of Hn
q are the points of PG(n, q) not in a given subspace

PG(n− 2, q) ⊆ PG(n, q).
• The lines of Hn

q are the lines of PG(n, q) which have no point in
common with PG(n− 2, q).
• incidence in Hn

q is the one derived from PG(n, q).

From s = qn−1, t = q and s ≤ t2, it then follows that n = 3. Adding
L = PG(n − 2, q) to the spread T of N ∗(∞), we then obtain a spread T̃ of
PG(3, q).

Theorem 4.5. The spread T̃ is a regular spread of PG(3, q) and the
group of automorphisms of S fixing each point of OT is isomorphic to the
cyclic group Cq+1.

Proof. Let θi, i ∈ {1, . . . , q+1}, denote the q+1 automorphisms of S fixing
each point of OT. The automorphism θi corresponds to an automorphism θ̃i
of N ∗(∞) which can be extended to an automorphism θ̃i of PG(3, q); see, e.g.,

Theorem 1.4.3 of [3]. The automorphism θ̃i fixes each line of T̃. Now, let
M be any line of PG(3, q) not belonging to T̃. Then M meets the lines
L1, . . . , Lq+1 of T̃. Put {M1, . . . ,Mq+1} = {θ̃i(M) ‖ i ∈ {1, . . . , q + 1}}.
Clearly L1, . . . , Lq+1 is a regulus of PG(3, q); hence T̃ is regular. The group
{θ̃i ‖ i ∈ {1, . . . , q + 1}} is a subgroup of the full group of automorphisms of
PG(3, q) which fix each element of T̃ and this latter group is isomorphic to
Cq+1; see, e.g., Section 1.4.3 of [3]. The theorem now follows from Theorem
3.1. �

In this section, we restricted our search to those ovoids of symmetry through
a fixed regular point (∞). These restrictions are justified if the GQ comes
from a flock F of the quadratic cone K in PG(3, q); this is just a partition of
K minus its vertex in q disjoint irreducible conics. From the work of W. M.
Kantor [13], S. E. Payne [15] and J. A. Thas [24], we know that each flock
F gives rise to an elation generalized quadrangle S(F) of order (q2, q) for
some special base-point (∞). If S(F) is not isomorphic to H(3, q2), then the
regular point (∞) is fixed by each nontrivial automorphism of S(F); see [19].



810 BART DE BRUYN AND KOEN THAS

This implies that (∞) is contained in every ovoid of symmetry. Also, the case
where the dual net is isomorphic to H3

q occurs, e.g., in the GQ’s arising from
the Kantor flocks. These GQ’s will be treated in the following section.

5. The nonexistence of ovoids of symmetry in nonclassical Kantor
flock quadrangles

In this section we will show that each Kantor flock generalized quadrangle
of order (q2, q) with an ovoid of symmetry is classical (i.e., isomorphic to
H(3, q2)). This will be a crucial observation for the next section.

5.1. Kantor generalized quadrangles. Let K be the quadratic cone of
PG(3, q), where q is odd, with equation X0X1 = X2

2 . Then the q planes πt
with equation tX0 − mtσX1 + X3 = 0, t ∈ GF(q), m a given non-square
in GF(q) and σ a given automorphism of GF(q), define a flock F of K;
see [24]. All the planes πt contain the exterior point (0, 0, 1, 0) of K. This
flock is linear, that is, all the planes πt contain a common line, if and only
if σ = 1. Conversely, every nonlinear flock F of K for which the planes of
the q conics share a common point, is of the type just described; see [24].
The corresponding GQ is called a Kantor (flock) generalized quadrangle. The
described quadrangle is a TGQ for some baseline, and the following was shown
by Payne in [17].

Theorem 5.1 (S. E. Payne [17]). The point-line dual of a Kantor flock
generalized quadrangle is a TGQ which is isomorphic to its translation dual.

Remark 5.2. (i) It is well-known (see, e.g., [25] and [29]) that if S(F) is
a Kantor flock GQ of order (q2, q), q > 1, with special point (∞), then there
are (precisely) q3 +q2 subGQ’s of order q which contain the point (∞). These
subGQ’s are all isomorphic to W (q). We will use this property (or its dual)
in the sequel without further notice.

(ii) By the main result of K. Thas [37], each TGQ S of order (q, q2), q > 1,
of which the translation dual is the point-line dual of a flock GQ S(F), has a
line [∞] of translation points. In particular, if F is a Kantor flock, the property
holds, and as S ∼= S∗ by Theorem 5.1, S∗ also has a line of translation points.

5.2. Nonexistence of ovoids of symmetry in nonclassical Kantor
flock GQ’s. We now come to the main result of this section; for the sake of
convenience, we will work with the dual of S(F), F a Kantor flock.

Theorem 5.3. Suppose S = S(F)D is the dual of the flock GQ S(F) of
order (q2, q), where F is a Kantor flock. If S admits a spread of symmetry
T, then F is linear, that is, S ∼= Q(5, q).

Proof. Let [∞] be the line of S(F)D which corresponds to the point (∞)
in S(F). Consider a (classical) subGQ S ′ of order q through [∞]. As S is the
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dual of a flock GQ, T must contain the line [∞] if S is not classical. Since S ′
is of order q, there are lines U and V of T so that {U, V }⊥⊥ ⊆ T∩S ′. If HT is
the group of automorphisms of S which fix T linewise, then |[S ′]HT | = q + 1.
This implies that the q3 + q2 subGQ’s of order q through [∞] are all in the
same Aut(S)-orbit as, since [∞] is a line of translation points by Remark
5.2, Aut(S)[∞] acts transitively on the pairs of non-concurrent lines in [∞]⊥.
This yields a contradiction since non-classical Kantor GQ’s have two such
Aut(S)-orbits of subGQ’s of order q [27]. �

6. TGQ’s and EGQ’s with a spread of symmetry

6.1. Span-symmetric generalized quadrangles. Suppose S is a GQ
of order (s, t), s, t 6= 1, and suppose L and M are distinct non-concurrent axes
of symmetry; then it is easy to see that every line of {L,M}⊥⊥ is an axis of
symmetry, and S is called a span-symmetric generalized quadrangle (SPGQ)
with base-span {L,M}⊥⊥.

Throughout the rest of this paper, we will use the following notation and
terminology.

First, the base-span will always be denoted by L. The group which is
generated by all the symmetries about the lines of L is G, and sometimes we
will call this group the base-group. This group clearly acts 2-transitively on
the lines of L, and fixes every line of L⊥. The set of all the points which are
on lines of {L,M}⊥⊥ is denoted by Ω. We will refer to Γ = (Ω,L ∪ L⊥, I ′),
with I ′ being the restriction of I to (Ω× (L ∪ L⊥)) ∪ ((L ∪ L⊥)× Ω), as the
base-grid.

Theorem 6.1 (K. Thas [33], W. M. Kantor [14]). A span-symmetric gen-
eralized quadrangle of order s, s 6= 1, is always isomorphic to Q(4, s).

The following theorem is a consequence of the classification of the finite
split BN-pairs of rank 1; see [20] and [11].

Theorem 6.2 (K. Thas [35],[36]). Every SPGQ of order (s, t), s 6= 1 6= t
and s 6= t, contains s + 1 subquadrangles isomorphic to the classical GQ
Q(4, s). Moreover, the base-group G acts semiregularly on S \ Ω and G ∼=
SL2(s).

Finally, recall that |PSL2(s)| = (s+1)s(s−1) or (s+1)s(s−1)/2, according
as s is even or odd, respectively. Also, |SL2(s)| = (s+ 1)s(s− 1) for arbitrary
s.

6.2. Generalized quadrangles with translation points or elation
points with a spread of symmetry.
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Theorem 6.3. Let S = T (O) be a TGQ of order (s, t), s 6= 1 6= t, with
base-point (∞), and which contains a spread of symmetry T. Then S is
isomorphic to Q(5, s).

Proof. Suppose L is the line of T which is incident with the base-point
(∞) of S. Since there is a group HT of s+ 1 automorphisms of S which fixes
T elementwise and which acts transitively on the points of any line of T, it
follows that each point on L is a translation point (so every line of L⊥ is an
axis of symmetry, and hence S is an SPGQ for any two non-concurrent lines
of L⊥). By Theorem 3 of K. Thas [35] it follows that one of the following
holds:

(i) s is even and S ∼= Q(5, s).
(ii) s is odd and S(∞) is the translation dual of the point-line dual of a

flock GQ S(F), that is, O is good at the element π which corresponds
to L.

Recall that t > s by the assumption. For the remainder of the proof,
we assume we are in case (ii). Suppose M 6= L is a line of T, and put
L = {L,M}⊥. Then every line of L is an axis of symmetry. Let G be the
group which is generated by the symmetries about the lines of L, and define
H by H = 〈G,HT〉. First, note that any element of H fixes L⊥ linewise.
Also, by Theorem 6.2, G acts semiregularly on S \ Ω (where Ω is as in the
previous section), and G ∼= SL2(s). Since s is odd, the kernel of the action of
G on the lines of L has size 2. We now show that HT ∩G = {1}.

By Theorem 6.2, G acts semiregularly on the points of S \ Ω and G has
order (s + 1)s(s − 1). Let Λ be an arbitrary G-orbit in S \ Ω, and fix a
line W of L⊥. By the semiregularity of G on the point set of S \ Ω, the
fact that |G| = (s + 1)s(s − 1) and that G acts transitively on the points of
W , we have that any point on W is incident with exactly s − 1 lines of S
which are completely contained in Λ except for the point on W which is in
Ω, and every point of Λ is incident with a line which meets W (recall that
G is generated by groups of symmetries). Now define the following incidence
structure S ′ = (P ′, B′, I ′);

• Lines. The elements of B′ are the lines of S ′ and they are essentially
of two types:
(1) the lines of Γ;
(2) the lines of S which contain a point of Λ and a point of Ω.

• Points. The elements of P ′ are the points of the incidence structure
and they are just the points of Ω ∪ Λ.
• Incidence. Incidence I ′ is the ‘induced incidence’.

Then S ′ is a generalized quadrangle of order s, and hence any line of S
intersects S ′ in 1 or s+ 1 points. Now suppose that θ ∈ HT ∩G, θ 6= 1. Then
by the semiregularity of G on S \ Ω it immediately follows that each line of
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T \ L⊥ intersects S ′ \ Γ in at least two points, and hence in s + 1 points,
which is clearly a contradiction. Thus HT ∩ G = {1}. Since HT ∩ G = {1},
we have |H| ≥ (s3 − s)(s + 1). Actually, since it is now clear that H acts
transitively on the points of S \ Γ, we have that (s + 1)(s3 − s) divides |H|.
Consider the dual net N ∗[∞] which arises from the regular line [∞]. Since O
is good at π, there then follows by [29, Theorem 5.3] that N ∗[∞] satisfies the
Axiom of Veblen. Hence by J. A. Thas and F. De Clerck [28], N ∗[∞]

∼= H3
s .

The points of H3
s are the points of PG(3, s) not on a given line Z of PG(3, s);

the lines are the lines of PG(3, s) which have no point in common with Z.
With {L,M}⊥ there corresponds a line Z ′ 6∼ Z of PG(3, s) and with each
line Li, i = 0, 1, . . . , s, of {L,M}⊥, there corresponds a point z′i on Z ′. Now
we interpret the group H = 〈G,HT〉 as a group of collineations of H3

s . First,
the subgroup of G of symmetries about Lj , j = 0, 1, . . . , s, clearly induces
the group of all elations of PG(3, s) with axis 〈z′j , Z〉 and center z′j . Hence
if G induces G′ on PG(3, s) then G′ is a subgroup of PGL(4, s). Also, HT

induces the full group H ′
T̃

of automorphisms of PG(3, s) which fix the spread
T̃ of PG(3, s) (recall Section 4.2) linewise. As H ′

T̃
preserves the cross-ratio

of PG(3, s), it follows that H ′
T̃

also is a subgroup of PGL(4, s) (see B. De
Bruyn [3, p. 12] for an alternative proof of the latter observation). Hence
H induces a subgroup H ′ of PGL(4, s) on PG(3, s) (which fixes Z and Z ′).
Hence the following property holds:

(E) If θ ∈ H fixes three lines of {L,M}⊥, then θ fixes every line of
{L,M}⊥.

Now fix some point u in S \ Γ, and consider uN . There is at most one
nontrivial θ ∈ N which fixes u, since the fixed elements structure of such an
element is a subGQ Sθ of S of order s (by [18, 2.2.2,2.4.1]), and such a subGQ
can be fixed pointwise by at most one nontrivial collineation (which is then an
involution), as it is well-known that in a GQ of order (s, s2), s > 1, for each
two distinct non-collinear points u and v we have {u, v}⊥⊥ = {u, v}; see FGQ.
Hence |H| ∈ {(s+ 1)(s3 − s), 2(s+ 1)(s3 − s)}, and so, as H acts transitively
on the points of S \ Γ, it follows in both cases that |uN | = s+ 1, by Property
(E). Now also suppose that u ∈ (∞)⊥. Recall that u is not a point of Γ.
Suppose S(∞) = T (O) for the generalized ovoid O in PG(4n − 1, q), where
qn = s. Then uN is a set of qn + 1 points of type (2) which—as subspaces of
PG(4n, q)—all contain the same qn points in PG(4n, q)\PG(4n−1, q). Note
that in the GQ, (∞) is also a point of (uN )⊥. Interpreted in the translation
dual T (O∗) of T (O), the qn+ 1 tangent spaces to O as defined by uN become
qn + 1 elements π0, . . . , πqn of O∗ which are contained in a PG(3n − 1, q).
Hence {π0, . . . , πqn} is a generalized oval which lies on O∗. Since T (O∗) is
the point-line dual of a flock GQ and since q is odd, we can now conclude
by [2] that T (O∗) is the point-line dual of a Kantor flock GQ S(F). Since
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the dual Kantor flock GQ’s are isomorphic to their translation duals, we can
conclude that S(∞) is the point-line dual of a Kantor flock GQ. Now Theorem
5.3 applies. �

The following theorem is a strong generalization of Theorem 6.3 and relies
on [36].

Theorem 6.4. Let S be a GQ of order (s, t), s 6= 1 6= t, with a point x
which is incident with at least three axes of symmetry. Moreover, suppose that
S contains a spread of symmetry T. Then S is isomorphic to Q(5, s).

Proof. Suppose L is the line of T which is incident with x. Then, as before,
each point on L is incident with three axes of symmetry. By K. Thas [36], it
follows that each point on L is a translation point. The theorem now follows
from the proof of Theorem 6.3. �

Remark 6.5. By [36], it is in fact sufficient to require that S be a GQ
of order (s, t), s 6= 1 6= t, with x a point incident with at least two axes of
symmetry U and V , and S having a spread of symmetry T which does not
contain U or V , in order to conclude that S is isomorphic to Q(5, s).

The following very general theorem eliminates almost all known classes of
GQ’s in the even characteristic case. First recall that a center of transitivity
x of a GQ S = (P,B, I) of order (s, t), s, t > 1, is a point x so that there is a
group of collineations of S fixing x linewise, which acts transitively on P \x⊥.

Theorem 6.6. Let S = (P,B, I) be a GQ of order (s, s2), s > 1 and
s even, with a center of transitivity (∞), and which contains a spread of
symmetry T. Then S is isomorphic to Q(5, s).

Proof. As before, there is some line L incident with (∞) of which each
point is a center of transitivity, and which is a line of the spread of symmetry
T. Suppose U and V are two distinct concurrent lines in B \ L⊥, and let
u = U ∩ V . Suppose u′ is the unique point on L which is collinear with u.
Then, since u′ is a center of transitivity, there is a collineation of S which
fixes u′ linewise and which maps U onto V . Using this observation, one easily
derives that the group of automorphisms of S which fixes L, say ΓL, acts
transitively on the lines of B \ L⊥. By Lemma 4.1, we know that the spread
T is semiregular with respect to L. By the transitivity of ΓL on B \ L⊥, we
can hence conclude that L is a regular line of S. Also, by K. Thas [39] (see
also Chapter 6 of [38]), the fact that S is of order (s, s2) implies that S(∞)

is an EGQ with base-point (∞) for some elation group G. By Theorem 5.1
of [31], we then conclude that, since s is even, S is a TGQ for every point
incident with L. The theorem now follows from Theorem 6.3. �

From the proof of Theorem 6.6, we immediately have:
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Corollary 6.7. Let S be an EGQ (for some elation point) of order (s, t),
s 6= 1 6= t and s even, which contains a spread of symmetry T. Then S is
isomorphic to Q(5, s).

6.3. Generalized quadrangles with translation lines or elation lines
with a spread of symmetry.

Theorem 6.8. Suppose S is an EGQ of order (s, t), s 6= 1 6= t, with base-
line L. Assume that T is a spread of symmetry of S which does not contain
the line L. Then S is isomorphic to Q(5, s).

Proof. Since L is not contained in T, one easily observes that each line of
S is an elation line, and hence, as Aut(S) clearly acts transitively on the pairs
of non-concurrent lines of S and as T is a Hermitian spread, it follows that
every line of S is regular. Now fix an arbitrary line M of S. Then by K. Thas
[34], we have two possibilities:

(i) M is an axis of symmetry, or
(ii) there is a subGQ S ′ of S of order s which contains M .

Suppose we are in case (i). Then each line is an axis of symmetry, and
hence S is half Moufang as each line is Moufang; see, e.g., [30]. Thus, by the
main theorem of J. A. Thas, H. Van Maldeghem and S. E. Payne [30], S is
Moufang. Hence, by Fong and Seitz ([9], [10]) it follows that S is classical.
Since S cannot be of order s and since S contains regular lines, we now obtain
that S ∼= Q(5, s) [18, 3.3.1].

Next suppose we are in case (ii). As all lines of S are regular, it easily
follows that S ′ ∼= Q(4, s), by [18, 5.2.1]. Consider two lines U and V of T.
Then {U, V }⊥⊥ ⊆ T, and there is a subGQ S ′′ ∼= Q(4, s) which contains U
and V , and hence also {U, V }⊥⊥, since Aut(S) acts transitively on the pairs
of non-concurrent lines. It is clear that T ∩ S ′′ = {U, V }⊥⊥ (both T and S ′′
are viewed as line sets here). Hence, if HT is the group of automorphisms of
S which fix T linewise, then |[S ′′]HT | = s+ 1, and there are s+ 1 (classical)
subGQ’s of order s which mutually intersect in the induced subgeometry of
S defined by {U, V }⊥⊥. By the transitivity of Aut(S) on the pairs of non-
concurrent lines of S, the result now follows from [18, 5.3.5]. �

Remark 6.9. A generalized quadrangle S of order (s, t), s, t > 1, with a
translation line L cannot have a spread of symmetry. For, suppose that this
is the case. As L contains centers of symmetry, and hence regular points, we
have t ≤ s, a contradiction to (iii) of Section 2.5.

7. Remaining open cases

We end our paper with mentioning the most important remaining open
cases.
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Problem A. Classify all generalized quadrangles of order (s, t), where
s, t > 1 and s is odd, with an elation point p which have a spread of symmetry
T.

Problem B. Classify all generalized quadrangles of order (s, t), s, t > 1,
with an elation line L which admit a spread of symmetry T for which L ∈ T.

We consider Problem B as the hardest but also the least interesting of
both problems. By Corollary 6.6, the solution of Problem A would yield a
complete classification of the elation generalized quadrangles (with respect to
a point) which admit a spread of symmetry. Since almost all known GQ’s are
EGQ’s for some base-point, this would be a very interesting result. For more
on Problem A see [40].
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