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EISENSTEIN SERIES AND CARTAN GROUPS
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Introduction

The principal congruence subgroup F(N) acts discontinuously on the upper
half plane 3f’, to give a non-compact fundamental domain of finite volume.
Given such a group, one can associate to each cusp r an Eisenstein series
E(z, s), where z g and s C. This Eisenstein series admits a Fourier
expansion at each cusp . The zero Fourier coefficient involves a meromor-
phic function ,l,i(s), so that one obtains a matrix (s) ((s)), (see 1
for precise definitions).
The determinant ,/,(s) det (s) plays a key role in the theory, mostly due

to its appearance in the Selberg trace formula for the group in question. Of
particular importance are the poles of (s), whose analysis is connected with
the study of cusp forms for the group (see [11], [1]).
The problem of computing (s) for F(N) was first addressed by Hejhal

(see [4]), who treated the case of square free and odd N by some rather
involved methods. Huxley [5] has recently solved the problem using other
ingenious arguments, and gave an expression for (s) for any N. As for other
groups, we mention the work in [2] where we compute these determinants for
Hilbert modular groups, and in [1], where they are partially analyzed for
congruence subgroups of Hilbert modular groups. Other relevant references
are [3], [8], [9].
Our aim in this paper is to introduce the Cartan group C(N) into the study

of the Eisenstein series for I’(N), and to use it in order to give a short and
simple proof of the precise formula for (s), for any N. Our main theorem
(3) shows that (s) is naturally expressed in terms of the L-functions on
C(N). These L-functions also come up in the work of Kubert and Lang on
modular units [7].

1. The Eisenstein series

Let

F=F(N)=(( ac bd)SLE(Z) (ac ) I(mod N))
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be the principal congruence subgroup of level N > 2, and choose a set of
representatives for the cusps

with (’i, 8i) 1. Thus, if 1 < ,{, /< N with ,{ ,(N), { --- 8(N), then
(3’{, [), i= 1,..., h, are the primitive pairs mod N (i.e., (,/, [, N)= 1),
identified mod + 1. Also,

For these standard facts, see [10] for example.
Let F be the stabilizer of in F, and choose a,/3 Z with a6 -/3 1.

Then

Pi
"Yi i " SL2(Z)

sends i to . Let

z(O piz (x(O, y(i)).

Then the Eisenstein series at r is defined in general as

r\r
z, Re(s) > 1,

(see [11]). It has a Fourier expansion at j of the form

y0) + (s) y0)- + non-zero coefficients,

for some meromorphic function j(s). Let P(s)= (ij(,g))i,j=l h" Our
goal is to compute the determinant

O(s) det (1)(s).

To this end, we begin by observing that for

we have

(a"r-- F
c

l(’sa + 8,c)z + (’/b + 8,d)l 2. Ic’z + d’l
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and c’ -= y(N), d’ =- $(N). Conversely, for such c’, we have ad’ c’
b’ a’ fli(N)1 (N), so that (see [10, p. 74]) there exist a’, Z, --- ai(N ), b’

with a’d’- b’c’ 1. Let

Then

= -’t ai c’ d’
. F(N).

a’ b’ )Pi* c’ d’

and any other with this property is in the same coset of F\ F. We conclude
that

(c, d)=l cz + dl 2s"
Cmy, dmS (rood N)

To simplify further, we let

Fi(z,s) E yS

c--yi,dffiS, (modN) cy‘ +dl 2s

Then

k--I (c,d)--k cz + dl 2
(k, N)=I cffi_.h,d--$(N)

E k2--- E
k=l (c, d)=l

(k, N)=I cmk-l.t,d-__k-l$(N)
Icz + dl 2s"

Here k-1 is the inverse of k mod N. Let k1,..., k be representatives of

Z(N) + (Z/NZ) x
/ -1- 1,

Then the above becomes

where

r

1 oo 1’(2s,-I- k,) E k2---S
+ E k2--Sk-1 k-1

k-k(N) k-- -k(N)
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We rewrite these relations as

e(, )

where each block B is the matrix

This essentially reduces the study of (s) to that of the corresponding
matrix for the F’s, so we now turn to the computation of the zero Fourier
coefficient of F,. at . We have

y(j)s
c--,,,,) I(c,- a)z" + (-c + aa)l"

Y(Y)s
c=-X,d=-t(N)

cz(y) + dl 2s’

A term with c 0 will come up iff h -= 0 (N), in which case we get

1Y(J)S d2--S"d=- I(N)

Now, fixing c 4: 0, by the Poisson summation formula we have

1 z 1

a-(N) Icz + dl ICZ "1" ]& -I" tSl 2s f/ eZUtdu
t6Z oo Icz + t + uNI’

and a change of variables gives

1 1 f/ e2ricut/N

Icl z’-x Iz + ul z’
tZ

du e-2rilt/N.

For the zero coefficient we put t 0 and use

fo d ,/ r(- 1/2)
Iz + ul " r(s) yl-2s
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to obtain:

PROPOSITION 1. The zero Fourier coefficient of F at j is

By comparing the zero coefficients of the Ei’s and the F’s we get:

COROLLARY.

1/2) 1
F(s) [’(2s 1,--(y,Sj-

We shall identify the matrix on the right as essentially a group matrix for
the Cartan group.

2. The Cartan groups

In this section we describe the basic aspects of these groups, essentially
following [6]. We let

G(N) GL(Z/NZ).
[

Then a primitive pair mod N (c, d)can be extended to an element {: } of
G(N), and two such elements will differ on the left by an dement of the
subgroup

a b) G(N)}G(N)={(O 1

It follows that the cusps can be represented by the cosets in Goo(N)\ G(N).
We wish to establish a unique decomposition

G(N)=Goo(N)’C(N),

where C(N) is an abelian group, called the Cartan group of level N. This will
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imply that the cusps correspond naturally to the elements of C(N), in that
C(N) acts on them simply and transitively.
Write N 1-Ilsp<’) and fix p. Let R [1, u] be the ring of integers of

the unramified quadratic extension of Q. Let Ce R be the group of units
of R. Then C, consists of the primitive elements of R, i.e., those d + cu R
for which c and d are not both divisible by p. Since C is a group, it acts
simply transitively on the primitive elements.
Next we embed C in GL2(Z) by the regular representation over Z,:

d+cu d cu2)c d

PROPOSITION 2. Let

Then we have a unique decomposition

aL (Z,) "G.
Proof. We show that the multiplication map

is a bijection.
Since Goo, C C, (1} it is one-to-one. To prove that it is onto, let

For an element in C, take

d CU2 )C d

By the transitive action of
that

on the primitive pairs, there is a pair (a’, b’) so

Hence

c d
(a, b).

c 0 1 c d
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Note that G(p’) is the restriction of GL(Zv) mod p, and similarly for
Goo(p). Thus if we let C(p) be the restriction of Ce rood p, we obtain a
unique decomposition

Finally, let C(N)= I-lelC(p<r)). Then we have a unique decomposition
G(N) Goo(N) C(N), and since we identify primitive pairs rood +/- 1, we
actually need

where

G+(N)--’Go(N).C+(N)

G+(N) G(N)/+ 1, C+(N) C(N)/+ 1.

3. The main theorem

We recall the method of group determinants: If A (at,..., a,} is an
abelian group and f is a complex function on A, then the determinant of the
"group matrix" [f(a[%)]i, y-t is given by

H E
X., a.A

We wish to relate our

1(2s- 1,+ (’/i8
i,j-1 h

to such a group matrix.
Now we saw in 2 that the cusp r (3’, ) -6/3’ can be identified with

the following dement of C(N)+/-:

abbreviated by

For such a we let

3’u2(mod pn) )8(mod p")

N(r) 8 9.- 3’u - Z(N) +
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and define

g’ (T’, 8’)(N(g)-Lt N(g)-8)N(g)-
(again we use the fact that Z(N) + acts on the cusps). Then

and therefore

,-x ( 8 -3,u

so that if we define a function on the cusps by

1
1 d: 3t)

our matrix above becomes [f(r-x r2)],2__ . This is not quite a group
matrix, but if we multiply it by the permutation matrix P (p2) defined by

1 if gj
PJ 0 otherwise

then we get the group matrix [/(-x. g)li, j-x h.

We can finally compute the determinant (s). To the map T(V, ) ,/and
the character X of C(N) +/- we associate the L-function

1L(s,x,T) E X(g)’(s, Tg)
.C(N)

where

oo 1’(s, "f) E k’-.
k=l

kffi- 3,(N)

Then by the method of group determinants,

xC (N) :t:
L(2s 1, X, T).
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Similarly, if we go back to the corollary of 1, we see that the matrix B is a
group matrix for Z(N)+/-, so that

det(B) I-I L (2s, X)
xZ’(N) +/-

where L(2s, X) is a Difiehlet L-function.
Turning finally to the permutation matrix, we see that

det(P) ( 1)(’-h)/9‘,

where ho is the number of cusps g for which N(x) 1. Thus

h0

Putting all these results together, we obtain our main theorem:

(s) (--1)(h-h)/2(Crl/2 (S-- 1/2) ) hI-[xCN)+L(2s- I’X’T)
1-IxzN)+/-L(2s, x)O

Remarks. The L-function L(s, X, T) above are exactly the ones that
appear in [7] where it is shown how they can be related to ordinary Didchlet
L-functions. Assume first that X is primitive, and let

S(X, T) _, X(g)e2iT/N
.C(N)

be its Gauss sum of C(N) with respect to T. Furthermore, let Xz be the
restriction of X to Z(N) (of conductor c, say), and let Sz(Xz) be its standard
Gauss sum. Then

1 S(X, T) (L ( s X, T) - "-z-( ’-5 s,HI 1

Finally, if X is not primitive, so that it factors through C(M) for some
MIN, then

L(s, x,T) pINH (1-XM(P))L(S, TM)r/s+l
p/M
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