THE LINEAR CUBIC p-ADIC RECURRENCE AND ITS VALUE FUNCTION

BY
Harorp C. Kurrz

1. Introduction and summary of results
Let

(11) Qn+3 = PQ,H.z - QQ,,.H + Rﬂn

be a linear cubic p-adic recurrence with coefficients in the rational p-adic
field B, . The roots o, 8, and v of the characteristic polynomial

fZ)=7Z -PZ'+QZ—~R= Z-a)Z~B)(Z~)

are p-adic algebraic numbers generating the root field R, (e, 8, v) = R, and
will be assumed distinet and nonzero.

Let (W,) : Wo, Wy, -+, Wy, --- be asolution of (1.1) with given initial
values Wy, Wy, and W, in R, not all zero, and let w, = ¢ (W,) be the p-adic
value of W,,. We investigate the following “valuation problem”: Given a
sequence (W,) satisfying (1.1) with specified initial values as above, to
determine ¢ (W,). This problem is trivial if one of the ratios of the roots of
f(Z) is a root of unity in R, ; f(2) is then termed degenerate. Hence we
assume nondegeneracy, i.e., (¢/8)", (8/7)", and (a/¥)"™ 5= 1 for all positive
integers n.

We show that we may restrict ourselves to recurrences whose coefficients
and initial values are p-adic integers where at least one coefficient and one
initial value are p-adic units. Except when p = 2 or 3, we need only con-
sider these cases:

I P, @, and R all p-adic units,
II P and Q units, R a non-unit,
IIT P a unit, @ and R non-units.

In Case III, the determination of ¢ (W,,) is trivial; for n = some 7o, ¢ (W)
equals a constant. In II, the Hensel Lemma enables us to analyze the
valuation of the cubic recurrence in terms of the valuation of the quadratic
recurrence (results (3.2)—(3.5)), explicit formulas for the latter being given
in Ward’s paper [2]. Case I has been studied by Ward [1] when coefficients
and initial values are rational integers; the results are extended to recurrences
where these are p-adic integers in Section 4.

It appears likely that for a given integer ¢, the valuation problem for the
it order nondegenerate recurrence

Q'n+t = A9n+(t—1) + v + MQn
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may also be reduced to cases where all coefficients are p-adic integers and at
least one is a p-adic unit. However, the complexity of reduction when
t = 3, when contrasted with the simplicity of case ¢ = 2 [2], indicates that a
general reduction procedure for all ¢ would be quite complicated, for as the
order of the recurrence increases, the number of cases which must be con-
sidered also increases. Including p = 2 and 3, the quadratic recurrence
reduces to two cases, the cubic to six.

2. Reduction of problem to Cases |, ll, and lli

For any given positive integer k, let j be a fixed integer in [0, k). Let
(W) be any one of the k subsequences of (W)

W;.k) = Wkn+j (n = 0, 1, 27 o ')a

andlet f,(Z) = Z —NZ -8 Z —+) =2 - P, 22+ Q. Z — R;:.
Then each (W) is a solution of

2.1) Qnts = PrQuya — @k Qs + Bi Oy

and fi (2) is nondegenerate. If ¢ (WY’) can be found for each j, ¢ (W,) is
known.

Let pr = ¢ (Px), g = ¢ (@), % = ¢ (Ry), and dy = min {ps, [gs/2], [r/3]}.
Then (UP) = (WP -p %) is a solution of

(2.2) iz = Pt Qo — Qt Qs + Ri

where p; = 6(Pr) = pr — di, gk = qu — 2di, 1% = 7 — 3di . Hence P,
Qr., and R; are p-adic integers, and ¢ (W) is known if ¢ (UY) is. By
elementary algebra,

P, = P* — 2Q, Q. = @ — 2RP, R, = R,
P;=P*—3PQ+3R, Q =@Q +3R"—3PQR, R;=FR.

When k = 1, P1, Q1 , and Ri are p-adic integers. Hence we are justified
in assuming to begin with that the coeffictents P, Q, and R of (1.1) are p-adic
integers. Assuming this, let f = min {¢ (Wy), ¢ (W1), ¢ (W,)}; then (W) =
(W,-p™") is a solution of (1.1) with ¢ (W7) = ¢(W,) — f. Hence Ws,
W1, and W3 are p-adic integers, and at least one is a p-adic unit. We there-
fore assume to begin with that the indtial values of (W.,) are integers, and at
least one is a p-adic unit. Henceforth, in transitions to subsequences wP),
it Will(lge assumed that the preceding transformation is made on the terms
of W.").

With the two preceding assumptions, let d = min {p:, [¢/2], [r/3]}, and
U, = W,-p™; then (U,) satisfies (2.2) with k¥ = 1. If d = pi, then
pi = 0 and P; is a unit; if d = [¢1/2], then g1 = O or 1;if d = [r/3], 1 = 0,
1, or 2. Since it is sufficient to determine ¢ (U,), we see on examining the
three possible values of d that we may assume one of the following holds:
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(1) ¢(@P) =0, ¢(Q)and¢(R) = 0;
(2a) (@) =0, ¢(P) 21, ¢(B) 20
(b) ¢(@) =1, ¢(P) 21, ¢(B) =1
(Ba) ¢(B) =0, ¢(P)ande(@) = 1;
(3b) ¢(R) = 1 s(P) 21, $(Q Z 2

Bec) o(R) =2, ¢(P) 21, (@) =2

We now show we may assume that at least one of P, Q, R is a p-adic unit;
of the above, (2b), (8b), and (3¢) must be dealt with.

(2b) If ¢(R) = 1, consider (W’). Then prime p > 3 implies ¢ (P;) =

=1,¢ = 2,7 = 3;hence ds = 1 and ¢(R3) = 0. If p = 3, we simi-
larly have R; a p-adic unit. When ¢ (R) = 2, consider (W®). Then p = 2
implies ¢ (P5) = 0, and p = 2 implies ¢ (Qz) = 0.

Hence in (2b), ¢ (W) is known if we can find the valuation of sequences
(UP) = WP p~*) inwhich at least one coefficient is a p-adic unit. Cases
(3b()3)and (3¢c) may be similarly dealt with by considering subsequences
W=").

Finally we show we may further restrict ourselves to the following six
subcases:

Ia P, Q and R all p-adic units,
Ib p =2, @QandR units, P a double unit,
Ie p =3, Raunit, P and @ triple units,
ITa P and @ units, R a non-unit,
IIb p = 2, P adouble unit, @ a unit, R a non-unit,
IITI P aunit, @ and R non-units.

Since at least one coefficient may already be assumed a unit, it remains to
reduce the following four cases to the preceding six:

1) 6@ =0, ¢(P)and¢(R) > 0;
@) ¢(R) =0, ¢(P)ands(@Q) > 0;
@) o) >0, ¢(Q) =¢(E&) = 0;
4) ¢@) >0, ¢(P) =9¢(R) =0

(1) Consider (W), If p # 2,6 (Ps) = ¢(Q) = 0, ¢(R:) > 0; this is
Case Ila. Ifp = 2, P, = 2 X unit, ¢(Q:) = 0, ¢ (R2) > 0; Case IIb.

(2) Consider (W), If p = 3, reduce to Ia; if p = 3, to Ic.

(3) Consider (W). If p = 2, reduce to Ia; if p = 2, to Ib.

(4) If p 5 2, consider (W) and reduce to Ia. If p = 2, consider (WP);
here ¢ (@3) = ¢ (R3) = 0. If ¢(P3) > 0, then we have (3) with p = 2, and
this has been reduced to Ib; if P; is a unit, then we have Ia.

3. Cases Il and llI

We investigate Case Ila in detail employing the Hensel Lemma, subse-
quently applying the same methods to IIb; the triviality of III will then be
shown.
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Case Ila. ¢(P) = ¢(Q) = 0,¢(R) > 0. Then
f(Z)=2"—PZ+QZ—-R=2Z(Z —PZ+ Q) (p).
By the Hensel Lemma,

J2)=(Z—-a)Z - P'Z4+Q") = (Z—a)g(Z) inR,,
where Z —a=Z (p)and Z° — P*Z + Q* = 72" — PZ+ Q (p). InR,(8),
@)= Z —-a)g@) = (Z—-a)(Z—8)Z—),

with ¢ (8) = ¢(y) = 0. Then
W, = Aa" + BS" + Cv"
= (v — B)/®)[4%" + B*s" + C*" = ((v — B)/) W .

Here 6 = (« — B) (8 — v) (@ — v) is the square root of the discriminant of
f(z),and

A% = —[W, — Wi P* + W, @Y,
B* = Wy — Wila+v) + Woarl(y — @)/ (v — 8),
C* =Wy = Wila +8) + Woal(a — 8)/ (v — 8).
From [2], (B*8" 4+ C*y") = (V7) satisfies
@.1) Qniz = Py — Q70
with characteristic polynomial g (z) having unit coefficients, and

vr = (V= Vo) — (Vi — Vi g)y"
" B— '

Then

Ve = [We — &'Wo + (aWy — W1)P¥|
and

Vi =[Wea — Wi(a’ + Q") + W, aP¥

are p-adic integers, and so (V) is a quadratic sntegral recurrent sequence.
Letting f = min {¢ (V3), ¢ (VT)}, define
Wo=p - Wi=p"(A%"+ V) = A"+ V.);

then ¢ (W,) = ¢((y — B)/8) + f + ¢(W.). The problem is to determine
the valuation of (W,) = (4’a” + V) where (V) satisfies the quadratic
integral recurrence (3.1) with at least one of Vg or V1 a unit.

We refer to [2] to determine ¢ (V5). If ¢(V,) = 0 for all n, then for
n = some Ny

3.2) wy = ¢(W2) =0,

since ¢ (@) > 0 implies ¢ (4’2") > 0forn = n,.



THE LINEAR CUBIC P-ADIC RECURRENCE 129

Otherwise let V7, be the first term of (V) with positive value, and let »
denote the following p-adic integer, expressed as a p-adic logarithm:

v = log [V},»+1 - V}/L ’Y/V;,;+1 - V}IL B]/log (v/B)".

Herer = 1if¢(8 — ) > 0. If ¢(8 — v) = 0, sequence (V) is termed
ordinary, and r is the least positive n for which ¢((8" — v")/(8 — 7)), denoted
by l.,is = 1. [2] now yields the following:

If (V2) is ordinary and ¢ (V) < I,, then by [2, Theorem 9.3]

¢(Vy) =0 if n—h##0 (@),

$(Va) =¢(Va) if n—h=0(@.
Here, there is an n, such that n = n, implies

o(W.) =0 if n—h#0 (),

oWo) =¢(Va) if n—h=0(@).

Since I, will usually be 1, the above situation is rare. When the above is
not the case, then we have from [2, Theorems 10.1 and 11.2]

o(Vy) =0 if n—h#£0 (),
(Vo) =¢(v — = h)/r) + L i n—h=0(@.
For those n for which ¢ (4’a”) # ¢ (V5), we then have
¢(W5) = min {¢(4'a"), ¢ (V2)}.
Since ¢ (V5) = 0if n — h 3£ 0 (r), there is an no such that
3.5) 6(Wo) =0 if n=mn and n—hs£0(r).

Criteria for (V) to have terms of positive valuation are given by [2,
Theorems 8.1, 9.2, and 11.1], the last giving necessary and sufficient condi-
tions for the value function ¢ (V) to be unbounded.

Note that in general we cannot say more about ¢ (W7,) by separately exam-
ining ¢ (V,) and comparing with ¢ (4’a"), because for given «, there exist
integral sequences (V7,) satisfying (3.1) with initial values so chosen that

¢(Va) =¢(4%a") if n—h=0 (.

The proof is a consequence of [2, Theorem 12.1] in conjunction with the ca-
nonical representation for p-adic integer u:

p= D im0’ O = a < p),
with A, = X roa,p* the (n + 1)** convergent.
Case IIb. p = 2,¢6(Q) = 0,¢6(P) = 1,¢(R) > 0. Then
@) =27+ Q) @),

(3.3)

(3.4)
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and by the Hensel Lemma,
JZ) = (Z—-a)(Z - P'Z+ Q"

in R, with ¢ (@) = ¢(R) > 0 and ¢ (P*) > 0. Assume ¢(P*) = 1. Then,
asinIla, 277 - W, = ((y — B)/8) W, with W, = A’a™ + V. , (V) satisfying
(3.1) with at least one initial value a unit. P* a double unit implies
¢(B —v)>0,andsor = 1in (3.4).

If $(V2) = 0 for all n, then ¢ (W7,) = 0 for all n = some na. Otherwise
let V; be the first non-unit of (V). Then

(3.6) ¢(Va) =60 — (0 — h)),
and the valuation of (V) is unbounded, as is
¢(W,) = min {¢(4'a"), 6(V3)} if ¢(4'a") = ¢(V5).
If P* had not initially been a double unit, then note that
Wongi = A& + Viy (G=0,1),

where (Viny;) = (V) satisfies a quadratic recurrence whose coefficients
P” and Q” are a double unit and a unit respectively [2]. Therefore P* may
be assumed a double unit to begin with.

Case III. ¢(P) = 0, ¢(Q) and ¢(R) > 0. Then one root of f(Z), say
a, must have valuation 0, while 8 and v have positive valuations. Consider
the expression W, = (1/8)W, = (1/8) (4’a" + B'8" + C'y"). Then for
n = some 7g

min {¢ (B') + n¢(8), ¢(C") + np(v)} > ¢(4'a") = ¢(4"),
and so ¢ (W,) = ¢(4'/8) forn = ny.

4. Case |

Cases Ia, Ib, Ic will be dealt with by generalizing the results of [1] for
rational integral sequences (W) to p-adic integral sequences (W,). We
use the canonical power series representation for p-adic integers together
with the fact that proofs in [1] depend upon the behavior of (W) modulo
successively higher powers of p in the residue class sequences of (W) modulo
p°. Let (W) be a rational sequence whose corresponding coefficients and
initial values have the same (k -+ 1)®t convergents as those of (W,). Then
the residue class sequences of (W,) and (:W,) modulo p° (i < k + 1) are
identical. If max,<n, {¢ (W,)} = k, then ¢ (W,) = ¢ (W) for n < no;
if ¢(W,) = k for all n, then ¢ (W,) = ¢ (W>) for all n. From such argu-
ments and [1], it follows that for (W,,) of Case I with at least one initial value
a unit, min {¢ (W,), ¢ Woi1), ¢ Wase)} = 0 for all n, that is, (W,) is not
a null sequence.

Define A (W), restricted period pr, rank of apparition, and ideal cube
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with respect to a p-adic integral (W,) in the manner of [1]. Here a" = a (p")
means o” — a = o p* with ao a p-adic algebraic integer. We say the funda-
mental prime p of R, is an ideal cube of order I = 1 with respect to a given
p-adic W,) if o = 1l and I = min {¢(@¢ — B), 0B — v), ¢ (e — v)}. Then
by the type of argument used in the preceding paragraph, the following
theorems and lemmas of [1], as well as the accompanying discussions, are
proved valid for p-adic integral (W,): Theorems 5.1-5.3, 6.1, 7.1, 7.2;
Lemmas 3.3, 5.1, 5.2. The following corrections of errors in [1] should be
noted: the hypothesis of Lemma 3.3 should be ‘“prime not dividing
R’A(W)”’; Theorem 5.3 should conclude, “if and only if p does not divide
A(W) and H* = K* — 4HM (mod p).”
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