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1. Introduction and summary of results
Let

(1.1) .+ P.+ + -I-
be a linear cubic p-adic recurrence with coefficients in the rational p-adic
field R. The roots a, , and /of the characteristic polynomial

f (Z) Z3- PZ + QZ- t (Z- a) (Z- ) (Z-’)

are p-adic algebraic numbers generating the root field/ (a, , ) R and
will be assumed distinct and nonzero.

Let (Wn) W0, W1, Wn, be a solution of (1.1) with given initial
values W0, W1, and W in/ not all zero, and let w (W.) be the p-adic
value of Wn. We investigate the following "valuation problem": Given a
sequence (Wn) satisfying (1.1) with specified initial values as above, to
determine (W). This problem is trivial if one of’ the ratios of the roots of
f(Z) is a root of unity in R f(z) is then termed degenerate. Hence we
assume nondegeneracy, i.e., (a/), (/,)n, and (a/,) 1 for all positive
integers n.
We show that we may restrict ourselves to recurrences whose coefficients

and initial values are p-adic integers where at least one coefficient and one
initial value are p-adic units. Except when p 2 or 3, we need only con-
sider these cases"

I P, Q, and/ all p-adic units,
II P and Q units, / a non-unit,
III P a unit, Q and/ non-units.

In Case III, the determination of (W) is trivial; for n -> some no, (W)
equals a constant. In II, the Hensel Lemma enables us to analyze the
valuation of the cubic recurrence in terms of the valuation of the quadratic
recurrence (results (3.2)-(3.5)), explicit formulas for the latter being given
in Ward’s paper [2]. Case I has been studied by Ward [1] when coefficients
and initial values are rational integers; the results are extended to recurrences
where these are p-adic integers in Section 4.

It appears likely that for a given integer t, the valuation problem for the
th order nondegenerate recurrence

fl+t Afln+(t-i)+’.. + Mfl
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may also be reduced to cases where all coefficients are p-adic integers and at
least one is a p-adic unit. However, the complexity of reduction when

3, when contrasted with the simplicity of case 2 [2], indicates that a
general reduction procedure for all would be quite complicated, for as the
order of the recurrence increases, the number of cases which must be con-
sidered also increases. Including p 2 and 3, the quadratic recurrence
reduces to two cases, the cubic to six.

2. Reduction of problem to Cases I, II, and III
For any given positive integer k, let j be a fixed integer in [0, /). Let

(W()) be any one of the/c subsequences of (W)

W() W+. (n 0, 1, 2, ...),

and letf(Z) (Z- a)(z- )(Z-,) Z- PZ-t- QZ- R.
Then each (W(n)) is a solution of

(2.1)

and f(z) is nondegenerate. If (W()) can be found for each j, (W) is
known.

Let p (P), q (Q), r (R), and d min IP, [q/2], [r/3]}.
Then (U()) (W() .p--n) is a solution of

(2.2) 2n+ P 2n+. Q 2+1 -[- R n,
wherep (P) pk- dk,q q-- 2d,r r-- 3dk. Hence P,
Q, and R are p-adic integers, and (W()) is known if (U()) is. By
elementary algebra,

p. p2_ 2Q, Q2 Q- 2RP, R R,
P P 3PQ -- 3R, Q Q -- 3R 3PQR, R R.

When/ 1, P, Q’I, and R are p-adic integers. Hence we are justified
in assuming to begin with that the coecients P, Q, and R of (1.1) are p-adic
integers. Assuming this, let f rain/ (Wo), (W), (W2) then (W’,)
(W,.p-) is a solution of (1.1) with (W’) (W,) -f. Hence W,
W, and W are p-adic integers, and at least one is a p-adic unit. We there-
fore assume to begin with that the initial values of (W,) are integers, and at
least one is a p-adic unit. Henceforth, in transitions to subsequences (W()),
it will be assumed that the preceding transformation is made on the terms

(w(2)).
With the two preceding assumptions, let d min {p, [q/2], [r/3]}, and

U, W,.p-;then (U) satisfies (2.2) with k 1. If d pl, then
p 0 and P is a unit; if d [q/2], then q 0 or 1; if d [r/3], r 0,
1, or 2. Since it is sufficient to determine (U.), we see on examining the
threepossible values of d that we may assume one of the following holds"
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(1) (P) 0,
(2a) (Q) 0,
(2b) (Q) 1,
(3a) (R) 0,
(35) (R)= 1,
(3c) (R) 2,

(Q) and (R) >- 0;
(P) >- 1, (R) >__ 0;
(P) -> 1, (R) __> 1;
(P) and(Q) >- 1;
(P) >= 1, (Q) >_ 2;
(P) __> 1, (Q)

___
2.

We now show we may assume that at least one of P, Q, R is a p-adic unit;
of the above, (2b), (3b), and (3c) must be dealt with.

(2b) If (R) 1, consider (W(3)). Then prime p 3 implies (P3)
pa 1, qa 2, r 3; henced land(R) 0. Ifp 3, we simi-
larly have R a p-adic unit. When (R) -> 2, consider (W(2)). Then p 2
implies (P) 0, and p 2 implies (Q) 0.
Hence in (2b), (Wn) is known if we can find the valuation of sequences

(U()) (W(k). p-n) in which at least one coefficient is a p-adic unit. Cases
(3b) and (3c) may be similarly dealt with by considering subsequences

Finally we show we may further restrict ourselves to the following six
subcases:

Ia P, Q and R all p-adic units,
Ib p 2, QandRunits, Padoubleunit,
Ic p 3, Raunit, P and Q triple units,
IIa P and Q units, R a non-unit,
IIb p 2, Padoubleunit, Qaunit, Ranon-unit,

III P a unit, Q and R non-units.

Since at least one coefficient may already be assumed a unit, it remains to
reduce the following four cases to the preceding six:

(1) (Q) 0, (P) andS(R) > 0;
(2) (R) 0, (P) andS(Q) > 0;
(3) (P) > 0, (Q) O(R) 0;
(4) (Q) > 0, (P) (R) 0.

(1) Consider (W(2)). If p 2, (P) (Q) 0, (R) > 0; this is
CaseIIa. Ifp 2, P. 2 X unit,(Q:) 0,(R:) > 0;CaseIIb.

(2) Consider (W(a)). If p 3, reduce to Ia; if p 3, to Ic.
(3) Consider (W()). If p 2, reduce to Ia; if p 2, to Ib.
(4) If p 2, consider (W()) and reduce to Ia. If p 2, consider (W(3))

here (Q) (R) 0. If (P) > 0, then we have (3) with p 2, and
this has been reduced to Ib; if P is a unit, then we have Ia.

3. Cases II and III
We investigate Case IIa in detail employing the Hensel Lemma, subse-

quently applying the same methods to lib; the triviality of III will then be
shown.
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CaseIIa. (P) (Q) 0,(R) > 0. Then

f (Z) Z- PZ-t-QZ- R=- Z (Z- PZ-t-Q) (p).

By the Hensel Lemma,

f(Z) (Z- a) (Z P*Z + Q*) (Z- a)g(Z) inR,

whereZ-a--Z (p) andZ- P*Z + Q* Z PZ + Q (p). InR(O),

f (Z) (Z-- o)g(Z) (Z-- o) (Z- ) (Z-,),

with(/) (7) 0. Then

W,= Ao’ - B- C,

(("Y )f)[A*o ’ B* ’ C*"yn] ((f )/)W*n.
Here i (a /) (/3 ,) (a 7) is the square root of the discriminant of
f (z), and

A* -[W- WP*- WoQ*],
B* [W-- W(a+v) + W0a7](v- a)/(7- ),

c*= [w- w( + ) + w0 ](- )/(- ).

From [2], (B* + C*) (V*,) satisfies

(3.1) 2+ P 2+- Q 2

with characteristic polynomial g (z) having unit coefficients, and

v* (v* Vo*) (v* v).
Then

and
V [W aWo - (aWo W P*]

V [W W (a - Q*) - Wo aP*]
are p-adic integers, and so (V,*) is a quadratic integral recurrent sequence.
Letting f min { (V), (V’)}, define

W, p-/. W* p-/(A*anqt- V’n) (A’an-qt- Vn);
then (W) ((, )/ti) -k- f - (W’,). The problem is to determine
the valuation of (W: (A a -- Vtn where (V’, satisfies the quadratic

V’integral recurrence (3.1) with at least one of V or a unit.
We refer to [2] to determine (Vn). If (V’,) 0 for all n, then for

n >__ some n0

(3.2) w ). (Wn) 0,

since (a) > 0 implies (A’a") > 0 for n -> no.
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Otherwise let V be the first term of (V’,) with positive value, and let
denote the following p-adic integer, expressed as a p-adic logarithm’

og [v+ v./v+ v ]/og (/).

Herer lif(/3- ,) > 0. If(/- ,) 0, sequence (V) is termed
ordinary, and r is the least positive n for which ((" .")/(/3 .)), denoted
by 1,, is __> 1. [2] now yields the following"

If (V’,) is ordinary and (V) < l,, then by [2, Theorem 9.3]

(V’,) 0 if n- h 0 (r),

O(V’,) =(V) if n- h-= 0 (r).

Here, there is an no such that n >__ no implies

(w’.)=0 n-h0(r),
(3.3)

(w’.) (v) i n h 0 (r).

Since lr will usually be 1, the above situation is rare. When the above is
not the case, then we have from [2, Theorems 10.1 and 11.2]

O(V’,) 0 if n- h 0 (r),
(3.4)

4(V,) rh(u (n h)/r) q- lr if n- h--- 0 (r).

For those n for which b (A’a") ep (V), we then have

q (W’,) min {4) (A’a"), (V’,)}.
Since (V’,) 0 if n h 0 (r), there is an no such that

(3.5) 4,(W’,) 0 if n >- no and n- h0 (r).

Criteria for (V’,) to have terms of positive valuation are given by [2,
Theorems 8.1, 9.2, and 11.1], the last giving necessary and sufficient condi-
tions for the value function (V’,) to be unbounded.
Note that in general we cannot say more about (W’,) by separately exam-

ining 4)(V’,) and comparing with 4)(Ara"), because for given a, there exist
integral sequences (V’,) satisfying (3.1) with initial values so chosen that

(V’,) =(A’a") if n- h-- 0 (r).

The proof is a consequence of [2, Theorem 12.1] in conjunction with the ca-
nonical representation for p-adic integer u"

/ =0 a p (0 =< a < p),

with A, =0" a p the (n + 1)t convergent.

CaseIIb. p 2,(Q) 0,(P) 1,(R) > 0. Then

f (Z) Z (Z q- Q) (2),
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and by the Hensel Lemma,

f (Z) (Z o) (Z- P*Z -t- Q*)
inR2with(a) (R) > Oand(P*) > O. Assume(P*) 1. Then,
as in IIa, 2-s. Wn ( B)/)W’n with W’ A’ + V’, (V’n) satisfying
(3.1) with at least one initial value a unit. P* a double unit imolies
( ,) > 0, and so r 1 in (3.4).
If (V’n) 0 for all n, then (W’) 0 for all n -> some no. Otherwise

let V; be the first non:unit of (V’,). Then

(3.6) +(V) +(v- (n- h)),

and the valuation of (V,) is unbounded, as is

(W’) min {(A’a), (V)} if (A’a) #

If P* had not initially been a double unit, then note that

Atot2n+jW2n+j -- V2+ (j 0, 1),

where (V2+) (Vn) satisfies a quadratic recurrence whose coefficients
P" and Q" are a double unit and a unit respectively [2]. Therefore P* may
be assumed a double unit to begin with.

CaseIII. (P) 0,(Q) andS(R) > 0. Then one root off(Z), say
a, must have valuation 0, while/ and , have positive valuations. Consider
the expression W (1/)W (1/ti)(A’a + B’ + C’.). Then for
n >_- some n0

min {(B’) + n(), (C’) + n(,)} > k(A’a) ck(A’),

and so k (Wn) ck (A’/) for n -> no.

4. Case
Cases Ia, Ib, Ic will be dealt with by generalizing the results of [1] for

rational integral sequences (W’n) to p-adic integral sequences (W). We
use the canonical power series representation for p-adic integers together
with the fact that proofs in [1] depend upon the behavior of (Wn) modulo
successively higher powers of p in the residue class sequences of (W’) modulo
p. Let (kW’) be a rational sequence whose corresponding coefficients and
initial values have the same (/ + 1)s convergents as those of (W). Then
the residue class sequences of (W) and (kW’,) modulo p (i -<_ /c - 1) are
identical. If maxn.<_n ((W)} /c, then ck(W) ck(W’) for n -< no;
ff (W) <= / for all n, then (W) (W) for all n. From such argu-
ments and [1], it follows that for (W) of’Case I with at least one initial value
a unit, min {(W), (W+), (Wn+2)} 0 for all n, that is, (W) is not
a null sequence.

Define A (W), restricted period p, rank of apparition, and ideal cube
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with respect to a p-adic integral (W,) in the manner of [1]. Here a" a (p)
means o a a0 p with a0 a p-adic algebraic integer. We say the funda-
mental prime p of R is an ideal cube of order >= 1 with respect to a given
p-adic (Wn) if pl landl min{(a- ),(-7),(a-7)}. Then
by the type of argument used in the preceding paragraph, the following
theorems and lemmas of [1], as well as the accompanying discussions, are
proved valid for p-adic integral (W,): Theorems 5.1-5.3, 6.1, 7.1, 7.2;
Lemmas 3.3, 5.1, 5.2. The following corrections of errors in [1] should be
noted: the hypothesis of Lemma 3.3 should be "prime not dividing
R2A (W)"; Theorem 5.3 should conclude, "if and only if p does not divide
n (W) and H =- K 4HM (mod p)."
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