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Let X(r, o) be a one-dimensional -[arkoff process defined on a probability
space (2, , P). For any positive real and any e 2 we can define a measure,
(., t, 0), on R, the real numbers, by

(0.1) g(A, t, o) LM{r" X(z, o) e A, 0 _-< r < t},

where LM represents Lebesgue measure. Trotter [3] showed that if X(r, o)
is Brownian motion, then, for almost all o, g(., t, o) has a continuous density
function, i.e., there exists a function L(x, t, o), defined for all x e R and all
positive t, continuous jointly in x and t, such that

(0.2) t(A, t, ) f L(x, t, ) dx

for every Borel set A. L(x, t, o) is called the "local time" at x up to time t.
In this paper we investigate the following problem" For t a given Borel
measure on R, when will (., t, ) have a continuous 0-density, i.e., when
will there exist, for almost all , a function L(x, t, oo), defined for all x e R
and all positive t, continuous jointly in x and t, such that

(0.3) t(A, t, ) f L(x, t, oo)O[dx}

for every Borel set A? We shall show that such an L(x, t, ) will exist, for
almost all o, whenever the transition probabilities of X(r, o) satisfy certain
conditions (involving 0). In particular, we shall show that if X(r, ) is a
stable process of index a, 1 < a =< 2, then, for almost all 0, there will exist
a function L(x, t, ) satisfying (0.2). Since Brownian motion is a stable
process of index 2, this offers a new proof of Trotter’s result.

1. Preliminary material

The purpose of this section is to explain briefly certain concepts arising
in the theory of Markoff processes which will be used in later sections.
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Throughout this paper X(r, 0) will be a time-homogeneous Markoff process
with transition probabilities; that is, for every x e R and nonnegative there is
given a measure on R, which we shall denote by Pt(x, dy) or P(x, ), such
that the following conditions are satisfied:

1. Pt(x, R) 1, i.e., Pt(x, is a probability measure on R for every
x and t;

2. if A is any fixed Borel set, then Pt(x, A) is Borel measurable in the
pair (t, x);

3. the relation

(i.I) f, Pt(y, A)P,(x, dy) Pt+,(x, A)

If e , the sample path associated with , often denoted X(), is the func-
tion mapping [0, oo into R defined by --+ X(t, ). We shall assume that
almost every sample path is right continuous.
A positive measurable function, S, on 2 will be called a terminal time for

X(r, ) if S is independent of the functions X(r) and

P(S > t) e-.
By modifying 2 somewhat we may always assume the existence of terminal
time for any given process. Indeed, let (R+, (B+, P*) be the probability
space consisting of R+, the positive reals, with field of measurable sets +,
the Borel sets in R+, and measure P* where

P*(A) f e dx.

Let 2 X R+ be the product measure space of 2 and R+ with product
measure/5 p X P*. If (, t) , let X(r, ) X(r, ) and S() t.
X(r, ) has the same transition probabilities as X(r, o), and S is clearly a
terminal time for X(r, ).

Suppose S is a terminal time for X(r, ), and T is a positive (possibly in-
finite) measurable function on 2 independent of S. Let

ft’= { "T() <
If P(2’) > 0, we may consider 2’ as a probability space (2’, if’, P’) where
if’ is the trace of ff on ’ (the field of subsets of 2’ belonging to fi;) and P’(A)
is the conditional probability P(A)/P(’). On 2’ we may define a new proc-
ess (in general iust a stochastic process), Y(r, o), by

(1.2) Y(r, ) X(r + T(o), ).

The function S’ S T is a terminal time for Y(r, o). If T() t, then

holds identically;
4. P(X(s) eA Z(r), 0 -< r -< t) Ps_,(Z(t), A) for s >- => 0.



LOCAL TIMES FOR A CLASS OF MARKOFF PROCESSES 21

Y(r, ) is not merely a stochastic process, but a Markoff process having the
same transition probabilities as X( r, ).
Suppose A is a Borl set, and T() is the infimum of those r, 0 _-< r < ,

such that X(r, ) e A, or if there is no such r. T clearly depends only on
the X(r) and is hence independent of any terminal time S. T() is called
the time X() "hits" A. We shall assume that if T o is the time X o hits
the interval [a, b), a and b real numbers, a < b, then the stochastic process Y(r, oo)
defined by (1.2) is a Martcoff process with the same transition probabilities as
X(,).
The initial distribution, px, of a Markoff process X(r, w) is the probability

measure on R defined by

px(A) P{w :X(0, w) eA}.

If X(0, w) x for some x R, then px p is the measure giving unit mass to
the point x. We shall assume that for every x e R there is a Marlcoff process
X(r, ), defined on a probability space ( P), having almost all sample
paths right continuous, initial distribution p, and the same transition prob-
abilities as X(r, o).
A Markoff process satisfying the above three assumptions will be said to

satisfy Hypothesis A. We shall refer to the individual assumptions as A1,
A2, and A3, respectively. Although the transition probabilities do not
uniquely determine a Markoff process, they play a vital part in determining
whether Hypothesis A will be satisfied. Blumenthal [1] gives conditions on
the P(x, dy) which insure that Hypothesis A will be satisfied.

If is any nonnegative real number, we can define an operator P, mapping
the space of bounded, measurable, real-valued functions on R into itself, by

P f(x) f P(x, dy)f(y).

We define another operator, U, having the same domain and range as the
P, by

Vf(x) fo -e P, f(x) dt.

U is called the potential operator associated with the transition probabilities
Pt(x, dy). An alternate expression for Uf(x) is

)(1.3) Uf(x) E f(Z(r, )) dr

where S is a terminal time for X(r, ). Indeed more than (1.3) is true.

:LEMMA 1. Let Y(r, ) be a Maroff process with almost all sample paths
right continuous and having the same transition probabilities as X(r, ). Iff is
any bounded, measurable, real-valued function on R, let
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and

Then

(1.4)

and

(1.5)

F(n, Y) E ((fo f(Y(r, o) dr)s)
F(n, x) E ((fo f(X(r, o) dr

F(n, Y) f F(n, x)p,ldx}

F(n, x) nU(fF(n 1, ))(x)

where F(O, x) - 1 and F(n, is the function x ---> F(n, x). For n 1, (1.5)
is (1.3).

Proof of Lemma 1. To prove (1.4) it suffices to prove the stronger state-
ment

)(1.6) E f(Y(r, w)) dr Y(O) f(n, Y(0))

(where E( represents conditional expectation). If almost all sample
paths of Y(r, o) are right continuous, then, for almost all ,

f(Y(r, )) dr n f(Y(t, w)) f(Y(r, )) dr dt.

This formula may be verified by integration by parts.
Let (, t) e , 0 < S()}. We may consider as a measur-

able subset of X [0, ). Let P be the restriction to of the product
measureP X LMonX [0, ). If(,t) e,let

F(n, ) f(Y(t, )) f(Y(r, )) d

Then, integrating first with respect to and then , we have

f(n, Y) n f f(n, )P(d}.

Applying Fubini’s theorem and integrating first with respect to and then
t, we have

F(n, Y) n f f(Y(t, )) f(Y(r, )) dr Pldl dt
0

(whereet {:S() > t})

( e-’ f(Y,(o, )) f(,(, )) dr,
o
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where the expectation is taken over ftt considered as a probability space,
Yt(r, ) is the Markoff process on ft defined by (1.2) with T(o) t, and
S’ S T is a terminal time for Y(r, o). If n 1 and Y(r, ) is X(r, 0),
we then have

F(1, x) fo e- f(y)P(x, dy) dt -e P f(x) dt U( f) (x).

In general

ff fF(1, Y) f e-’ /(y)P,(x, dy)pr{dx} dt F(1, x)pr{d,}.

Hence (1.4) and (1.5) are true for n 1. The validity of (1.6) for n 1 is
also clear.
We now proceed by induction. If Y(r, o) is X(r, o), then Y(r, o) has

almost all sample paths right continuous, the same transition probabilities as
X(r, o), and initial distribution P(x, ). Hence

(: (fo )--’) fE (Y(O, o)) f(Y,(r, o)) dr :(y)F(n 1, y)P,(x, dy).

Therefore

fF(n, x) n fo e- :(y)F(n 1, y)P(x, dy) dt

(1.7)
e P(fF( 1, .))(x) d

nU(fF(n 1, ))(x),

which is exactly (1.5). The validity of (1.4) and (1.6) for all n now follows
as above.
A nonnegative function, U(x, y), defined for all x e R and y e R, is said to

be a 0-kernel for U, 0 a -finite measure on R, if

Uf(x) f C(x, y)f(y)O{dy}

for every bounded, measurable function f. In general such a 0-kernel may
not exist. If, for each positive t, Pt(x, has a measurable 0-density pt(x, y)
(i.e.,

Pt(x, A) I pt(x, y)O{dy}

for every Borel set A), then U will have a 0-density, and, moreover,

U(x, y) -e p(x, y) dt.
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The validity of (1.8) may be derived by a simple application of Fubini’s
theorem.
Many of the concepts discussed above, including that of the potential

operator, are discussed in Hunt’s fundamental paper [2].
We conclude this section by defining some terms which will be useful in

formulating Theorem 1 of the next section.
A measure 0 on R is called a Borel measure if it gives finite measure to

every compact subset of R. It is clear that every Borel measure is z-finite.
A measure 0 on R is called a continuous measure if 0({x} 0 for every
x e R. Every z-finite measure 0 may be written uniquely as 0c + 08 where
0c is continuous, and 08 gives positive measure to at most a countable number
of points of R, and measure zero to any set not containing any of these points.
For want of better terminology, a nonnegative, monotonic function g,

defined on an interval [0, el], will be called a good function if

where nl is so large that 2-nl -<_ el. A sufficient condition for g to be good
is for g(x) 1/ log x to decrease to zero as x decreases to zero and

1 log xg(x) dx
x

The functions g(x) x, > O, are all good functions.
Finally, for simplicity of notation, we shall let (x, y} denote either (x, y) or

(y, x) depending on whether x < y or y < x.

2. Statement and proof of theorem
THEOREM 1. Let X( r, co) be a one-dimensional Marlcoff process, defined on a

probability space (, , P), satisfying Hypothesis A, having transition prob-
abilities Pt(x, dy), and corresponding potential operator U. If U has a O-kernel
U(x, y), 0 O 08 a Borel measure on R, and if there exists a good function
g, defined on an interval [0, el], such that

U(x, x) V(x, Y)I <- g(1/20((x, y})), O((x, y}) <-
(2.1)

U(x, x) U(y, x)l <= g(1/20(<x, y>)), Oc(<x, y>) -<_ 2el,

then, for almost all o, there exists a function L(x, t, oo), defined for all x e R and
e R+, continuous jointly in x and t, satisfying (0.3) for every Borel set A.

Proof of Theorem 1. We shall assume that 0 satisfies the following addi-
tional assumption: If E is any nonempty open interval, then O(E) > O.
In reality this is no additional assumption because it can be shown that any
measure 0 satisfying the hypotheses of Theorem 1 has this property. How-
ever, the proof is rather involved and, for this reason, will not be given.
We shall now assume that for every positive integer M there is a positive

real, aM, and a negative real, a_, such that 0([0, a) 0([a_, 0) M.
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This assumption is by no means vital and is made only to simplify the presenta-
tion of the proof of Theorem 1. We shall define a as 0. Hence for every
integer i we have defined a real number a.
We now define, for every integer n, a sequence of numbers a. If i -> 0,

let a be that numberz such that 0c([0, z)) i2-. Ifi < 0,1eta be
that number z such that O([z, 0)) i2-’. We have, for all i, ai .i

and 0c([a LetI [a,a+l) 2-. a+l) Thena < ai+

I" i+ r,+
2i tJ 2i+1

and {I} is a sequence of ever finer partitions of R.
For each n we can define an approximate 0-density, L,(x, t, ), for g(., t, )

by
L,(x, t, ) 0(I )-(I t, )

for x e I. We shall show that, for almost all , for all x, aO-M <-- X < a,
and all =< N, M and N arbitrary integers, L(x, t, ) converges to a limit,
which we shall denote by L(x, t, ). Moreover, L(x, t, ) will be jointly
continuous in x and and satisfy (0.3) for every Borel set A contained in
[a_M, a). Letting M 1, 2,... we see that for almost all 0 there is a
function L(x, t, ), defined for all x and all <_- N, continuous jointly in x and
t, satisfying (0.3) for every Borel set A. Letting N 1, 2, we have the
result stated in Theorem 1.
L(x, t, o) is continuous except, possibly, at the points a. If z a,

let A(z, n, t, ) be the discontinuity of L(x, t, ) at z. Then x e I and
y e I_1 u I imply

L,(x, t, o) L(y, t, )1 <= A(a, n, t, ).
Forz aS,let

J(z,n,d,) {t" A(z,n,t,o) => d, 0 =< =< N}

LEMMA 2.

and
H(z, n, d) {o" LM(J(z, n, d, )) => 2-’}.

If n is sufftciently large and aM <-_ z < aOM then

P(H(z, n, d) <- K2 exp(-kg(2-")-/ d)

where K and t are positive constants depending only on N and M.
The proof of Lemma 2 is lengthy and will be given in the next section.
Let H(n, d) U H(z, n, d) where the union is over those z a where

a_M =< a < a There will be exactly 2M2 such z. (We suppress the
dependence of the various sets on M and N. Also, we shall denote all suffi-
ciently large positive constants depending only on M and N by K.) If n is
so large that Lemma 2 applies, then

P(H(n, d) <= P(H(z, n, d)

<= 2MK2" exp(-kg(2-’)- d) K2 exp(-kg(2-)-/ d).
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Let d,, 3nt-lg(2-) 1" and G, [J n>_,, H(n, d,). If m is so lrge that
Lemm 2 pplies, then

P(em) nm P(H(n, d)_
g2%- g(2/e),

nd since this lst is convergent series,

P(lim G) limP(G) 0.

For every x nd n, L(x, , ) is n increasing function of t. Furthermore,

]L(x,t,) L(x,t’,)[ 2[t t’]
because u(A, t, ) u(A, t’, )l t t’ for any Borel set A. Hence
if t’ 2-’, then L(x, t, ) L(x, t’, )] 2-’. Consequently,
unless e G, for any N, n m, and any z a aM Z < a, we can
find a t’, 0 t’ N, t t’] 2-:’, such that A(z, n, t’, ) d. Hence

A(z, n, t, ) A(z, n, t’, ) + 2.2 d + 2-’+

forn m,a z < a,andt N.
’+ + it follows from the inequalityNow, since I 2 u 2+,

a+b a<a b
cWd c -where a and b re nonnegtive, c nd d positive rel numbers, that

mXaM<a Ln+l(x, t, ) Ln(x, t, )

Then, unless e G, for ny n, p with n m,

L+,(x, t, ) n(x, t, )[ +’- L+,(z, t, ) L(x, t, )

< : d + 2-+= q(n).

Now, since g is good function, d + 2-+ < . Hence q(n) 0 s
n . Hence if G, the sequence L(x, t, ) converges, uniformly for
a =< x < a nd =< N, to limit which we shll denote by L(x, t, ).
Furthermore,

L(z, t, w) Ln(X, t, w)
forn m, aM x < a nd N. Itisclerthtthemesureson
[a, a) hving L(x, t, ) s 0-densities converge t least wekly to (., t, )
restricted to [a, a), nd consequently L(x, t, ) is 0-density function
for (., t, ) restricted to [aM, a). The joint cominuity of L(x, t, )
remains to be established.

Let (n) be number so smll that for every x, a x < a, x e I nd
x-y] <(n) implyyeILuI. SupposetG. If ]x-yl <(n)
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where n >= m and a. <-_ x, y < aM then

L(x, t, o) L(y, t, )l <- L(x, t, o) L,(x, t, o)1

(2.2)
A- L(x, t, o) L(y, t, )l-- Ln(y, t, oo) L(y, t, )1

_-< 2q(n) -f-d-t-2-+1 < 3q(n).

If n => m and q(n) < e/3 for e an arbitrary positive real, then Ix Y <
(n) implies [L(x, t, ) L(y, t, o)1 < e. Note that the choice of

for given e does not depend upon t.
Turning to continuity with respect to t, we have, for t Gm and n >= m,

L(x, t, ) L(x, t’, o)] <= L(x, t, ) L(x, t,

(2.3)
+ L,(x, t, o) L(x, t’, o)1

+ L(x, t’, ) L(x, t’, o)1

=< 2q(n) -t’- 2it t’i.
[f c is an arbitrary positive number, let (c/2)2 where n _>- m and
q(n) < /4. Then It t’ < implies L(x,t,o) L(x, t’, o)l < .
Note that in this case the choice of for given v is independent of x. Hence
L(x, t, o) is continuous iointly in x and t.

Since lim P(Gm) 0, we have shown that, for almost all , L(x, t, )
converges, uniformly for aO_M <--_ X < aM and -< N, to a function L(x, t, )
which is continuous jointly in x and and satisfies (0.3) for any Borel set
contained in [aOM;, a). As we have remarked above, this is sufficient to
establish the validity of Theorem 1.

3. Proof of Lemma 2
To avoid interruption of the argument at a later stage we prove a pre-

liminary lemma.

LEMMA3. If aO_.M <-- X < aOM and O((x, y)) <= , then U(x, y) is
bounded, say by cl < .

Proof. It suffices to show that U(x, x) is bounded if a_ =< x < aM.
Suppose n is so large that 2 _-< vl and x => 0 a. For (2.1) to be valid,
U(0, 0) must be finite. The lemma now follows from the inequality

U(x,x) u(o, o) +lU(a, O) U(O, O)] + U(a ,a’) U(a’, O) --+lU(x, x) U(x, a_) < U(0, 0) -4- 2mg(),

am- < X < am

since x < a implies m -< M2’. The proof is similar if x =< 0.
We now assume thag there are terminal times defined for the Markoff
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processes X(r, ) and X(r, ). Ve denote all such terminal times by S.
We may now associate with each e a measure, (., ), on by

#(A, ) #(A, S(), ) LM {r X(r, ) e A, 0 r < S()}
for every Borel set A. As above, we may define for every n > 0 an approxi-
mate 0-density, L,(x, ), by

L(x, ) (O(I) )-x g(I, )
for x e I. Let A(z, n, ) be the discontinuity of L(x, ) at z a.

A(z, n, ) has the same distribution as the absolute value of
()

R(z, ) f V,(X(r, ) dr
o

where
V(y) (O(ILt))- for y eI [aLt, a),

-(O(I))- for y eI [a,ai+),

0 elsewhere.

Let c max(1, ct) and c g(2-’)-ta.
LEMMA 4. There is a positive constant K such that

E(exp((24c)-c R,(z, ) ])) g

for all z, aM Z < a and all n so large that g(2-’) c.
Proof. Let Q(m) E (c. R(z, ) ). We clearly huve

Q(m)E(exp((24c)-c [R(z, ) [)) 0 (24c) m!

To prove the lemma it sces to show that Q(2m) (12c):(2m ) since
then, using the inequality Q(2m 1) 1 + Q(2m), we have

E(exp((24c)-tc, R(z, ) ])) 2- + 24c 2(._ + 1
m0

K<.
Let

(2m 1)! (24c)-t

R(m) E( (c R(z, ) )")
and

((R(m, x) E c, V(X(r, )) d

By the definition of V we have

)-) :o(c:E V:(X(r, o)) dr
"’()

V:(X(r, o)) dr P{do}
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where T() is the time X(o) hits [ai_l, aid+l) and 2’ o" T() < S() }.
If P(’) 0, then Rn(z, o) 0 almost everywhere, and hence
E(exp( (24c)-1cn R,(z, ) 1 independently of n. If P(T) > 0,
then

V,(Y(r, ) dr

where the expectation is taken over 2’ considered as a probability space,
Y(r, o) is the stochastic process defined by (1.2) with T(o) the time X()
hits [a_, a+x), and S’ S T is a terminal time for Y(r, o). By A2,
Y(r, ) is a Markoff process having the same transition probabilities as
X(r, ). Hence, by (1.4),

R(m) P(2’) f R(m, x)pr{dx}

where pr is the initial distribution of Y(r, ). By the right-continuity of
almost all sample paths of X(r, ), pr([an_l, a+]) 1. Hence to show that
Q(2m) R(2m) =< (12c)m(2m!) it suffices to show that
(12c) m! for all x e [a_, a+] and all m. We shall show by induction on
m that, for all m,

(a) ]R(m,x) R(m,a’) < 4g(2-)/m (12c)-, ai_l < x ai+l

and

(b)

are true.

R(m, x) <- (12c) m!,

Using (1.5) with f cV, we obtain

R(m, x) mU(c V R(m 1, )) (x)
(3.1)

mc J U(x, y)V(y)R(m 1, y){dy}

where R(0, y) 1.
By construction,, we may write (3.1) as

R(m, x) mc (f u<x, y)R(m 1, y)Olldy}
(3.2)

] V(x, y)R(m 1, y)O{dy}
?

where and are probability measures on Ii and I respectively.

R(m, x) mc f u(x, y)R(m 1, y)

(3.3) V(x, a)R(m 1, a. )O{dy}

ai-1 x ai+l

)
Hence

U(x, a )R(m 1, a. U(x, y)R(m 1, y)O.ldy}.
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HenceBy definition of the a a_ <_- x, y

U(x,y)- U(x,y)[ =<2g(2-) and U(y,x)- U(y,x) <- 2g(2-)

ai-1 _-< x, yl, y. =< ai+. For m 1, (3.3) becomes

R(1, x) (f U(x, y) U(x, a)Ol{dy}

and therefore

R(1, x)]< c4g(2 ai-1 x ai+l.

From (3.1) we have

R(m, x) R(m, a’
(3.4)

mc, J (U(x, y) U(a’, y))V(y)R(m 1, y)O{dy}.

If m 1, then it follows, as above, that

R(1, x) R(1, a) =< 4c g(2-’) 4 g(2-’), ai_’ <= x =< a+
Hence (a) and (b) are true for m 1. Suppose (a) and (b) are true for
m 1. From (3.4) it then follows that

JR(m, x) R(m, a. <- mc 4g(2-’)(m 1)! (12c)"-1

ai- x ai+.

Hence (a) is true for m. Now

f U(x, y)R(m- 1, y) U(x,a.)R(m- 1, a’C)O{dy}men

c f ((x, y) U(x, a.))R(m 1, y)O{dy}-- mc f U(x, a. )(R(m 1, y) R(m 1, a))Oldy }.

By the inductive assumptions we have

nc, f (:(x, y)- U(x,a. ))R(m 1,

<- mc,2g(2-’)(m- 1)! (12c)- 2g(2-)/m! (12c)-<= 2cm! (12c)-and

I U(x, a.)(R(m 1, y) R(m 1, a.))Oldy}men

<= mc 4cg(2-’)/2(12c)’-(m- 1)!- 4cm! (12c)-.
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Hence

! U(x, y)R(m- 1, y) U(x, a.)R(m- 1,men

-< 4cm! (12c)"-1 2cm! (12c)m-1 6cm! (12c)"-1.
Similarly,

f U(x, a.)R(m 1, a’) U(x, y)R(m 1,men
?

<= 6cm! (12c)-1.
Therefore,

R(m, x) <= 6cm (12c)-1 + 6cm (12c)

m!(12c), -< x <ai-1 ai/l.

The proof of Lemma 4 is now complete.

COROLLAnY. P{co’A(z, n, ) >-- d} <= K exp(-(12c)-lg(2-+l)-1/2 d)
for a_M <-- Z < aOM.

Proof. P(A(z, n, o) >-- d) P( R,(z, o) >= d)

P((12c)-1c [R,(z, 0) -> (12c)-1c d)
__< E(exp((12c)-lc R(z, ) ]))

exp( -(12c) c d)
-< K exp(- (12c)-1g(2-)-1/ d).

Let 2 X R+ with measure P P X P*, and let X(r, &) and S()
be as in Section 1. For e we can then define a measure (., &) and
construct approximate 0-density functions L(x, &). Let A(z, n, ) be the
discontinuity of L,(x, ) at z a, and let/(z, n, d) {" A(z, n, ) _>_ d}.
We have shown that if a_M <-- Z < aOM and n is sufficiently large, then

/5(/(z, n, d) =< K exp(- (12c)-1 g(2-)1/ d).

Let "(z, n, d) P(H(z, n, d) ). If e H(z, n, d) and e J(z, n, d, o), then
(, t) & e/(z, n, d). Let

I(z, n, d) (o, t) e H(z, n, d), e J(z, n, d, )}.

By definition of P*, LM:(J(z, n, d, o)) => 2- implies P*(J (z, n, d, o)) =>
e-2-: since J(z, n, d, o) [0, N]. Hence, using Fubini’s theorem, we have

2-e- ,(z, n, d) <-_ (I(z, n, d) <-_ P(I(z, n, d)
__< K exp(- (12c)-1g(2-)-1/ d)

or
")’(z, n, d) <= Ke2 exp(-(12c)-1g(2-)-1/ d)

if n is sufficiently large and a =< z < a. This is, however, exactly the
assertion of Lemma 2.
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4. Examples and applications
We shall now exhibit a large class of Markoff processes satisfying the condi-

tions of Theorem 1 with 0 LM. A stable process of index a, 0 < a __< 2,
is a Markoff process with transition probabilities P(x, dy) where P(x, dy)
is the measure on R having (LM) density p(x, y) where

(4.1)

1pt(x, y)
/-
exp(-t(idl v -k d. Iv [" (1 -b ida(v v [) tan 1/2a))) dr,

dl, d., da fixed real numbers, d > 0, ]dal -<_ 1.

It is well known that there is a Markoff process having these transition prob-
abilities which satisfies Hypothesis A. If d da 0, d. 1, and a 2,
then Pt(x, dy) is the familiar normal distribution with mean zero and vari-
ance t. Thus Brownian motion is a stable process of index 2. It is clear
that (for fixed dl, d, and da) pt(x, y) depends only on and x y. We
therefore write p(x, y) as pt(z) where z x y. As was noted in Section
1, the potential operator U corresponding to the P(x, dy) will have an LM:-
density U(x, y) where

U(x, y) f e p(x, y) dt.

Since pt(x, y) depends only on x y, so does U(x, y), and we write U(x, y)
as U(z) where z x y. To show that the conditions of Theorem 1 are
satisfied, it suffices to show that there exists a good function g such that

(4.2) U(x) u(0) < z(1/21x I)
for xl sufficiently small. We shall show that g(x) Kx"- will satisfy
(4.2) for 1 < a _-< 2. We have, letting , 1/%/(2r),

U(x) fo e pt(x) dt

e--, exp(-t(id v q- d. Ivl"(1 / id3(v/lv]) tan 1/2ra))) dv dt

e-e- exp(-t(id v -b d.]v["(1 -k ida(v/[vl) tan 1/2ra)))dtdv

"r 1 W d I,, + ida(vii v l) tan 1/2ra) W idlv
dr.

If a 2, then tan 1/2ra 0, and we have

U(x) "v ool-k d.v W idly
dr.

Now 1 -b d v - id v is a quadratic polynomial whose roots are easily seen to



LOCAL TIMES FOR A CLASS OF MARKOFF PROCESSES 33

lie on the imaginary axis. Therefore, by using contour integration and the
theory of residues, there are real numbers a, b, c, depending on dl, d, and
d3, such that

U x ae-b if x_-> 0,

ae if x < 0.

Hence U(x) U(O) <= a max (Ib I, c I) Ix K Ix [.
Suppose that1 a 2. Then

e-v- 1U(x) U(0) ,
1 -t- d Iv [" (1 -[-/-(v[ v ]) tan 1/2ra) - id v

dv- 1 - d (1 + id3(y/I y )tun 1/2ra) + id yx- dy

(by letting y xv). Hence, if x > 0,

IV(x) v(0) x-"

Ix" -[- d [y ]" (1 + ida(y/I y ]) tan 1/2ra) - id yx"- dy

dyl"
dy=K< .

The last inequality follows from the inequality

d [yl Ix" + d [y "(1 + ida(y/[ y ) tanaka) + idyx"- [.
Thus we have shown that

U(x) U(O) l<- Kx
for x _>- 0. For x =< 0 the same inequality holds by making the substitution
y -xv above.

If lim sup0 g(x)/g(2x) < 1, then we are in a position to construct explicit
moduli of continuity for L(x, t, o) in x and t. For simplicity, we shall per-
form the construction for 0 LM:. If limsup_.og(X)/g(2x) < 1, then
q(n) <-_ K(ng(2-’) 2-+1) for K a sufficiently large positive constant.
If LM, then aS i2-’. Then (2.2) becomes

L(x, t, o) n(x’, t, ) <= 3q(n) -< K(ng(2-’)1 + 2-’+1)
(4.3)

-_< K(I log Ix x’ll g(I x x’ I) 1/2 +
if[x] =< M, Ix’[ <= M,t<__ N,G,and2--1 < [x-x’ <_ 2- where
n _-> m. For many Markoff processes, including the stable processes, almost
all sample paths are bounded in any finite interval. Hence, for almost all, there is an M() such that L(x, t, o) 0 for _<_ N and
When such is the case, then by choosing K sufficiently large (4.3) will hold for
all x and x provided only that -<_ N. If, for x sufficiently small, there, are
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positive constants K1 and /such that g(x) >- (KI x), then

[L(x, t, ca) L(x’, t, ) <= K([ log lx x’ll g(I x x’ [)1/2)
for K sufficiently lurge. For the stable processes we hve

(4.4) L(x, t, ) L(x’, t, ca) <- K([ log lx x’]] (I x x’ [)(a--l)/2).
If we turn to a modulus of continuity for L(x, t, ) in t, (2.3) becomes

L(x, t, ca) L(x, t’, ca) <= 2q(n)

<- 2K(ng(2-’)

for Ix [-< M, 0 < t,t’ _-< N, caCG,,,andn => m. The minimum value of
-the right-hand side for It t’l fixed and n ranging from m to infinity is a
function of It t’ ], say l(It t’l). Then

L(x, t, ca) L(x, t’,

for x -< M, 0 < t, t’ -<_ N, and ca G,. In the case of the stable processes
we have

(4.5) L(x, t, ca) L(x, t’, ca)

for 0 < t, t’ _-< N, and K sufficiently large. (4.5) may be derived in the
following manner" Choose n so that 2-" is approximately equal to
it t’ I/("+) log t’]]-/("+1). If It t’]is sufficiently small, then n
will be greater than or equal to m, where ca t G. It then follows that for
It t’ so small

l([ t’l) _-< Kit t’l (a--1)/(a-t-i) loglt

Choosing K sufficiently large we have the inequality holding for all and t’,
0 < t,t’ <= N. Note that (4.5) holds for allx (and not justforlx < M
for some M) since almost all sample paths are bounded in any finite interval.

In the Brownian-motion case the moduli of continuity derived here are
exactly the same as those given by Trotter [3].

5. Extensions

One shortcoming of Theorem 1 is that (2.1) involves t/c and not t. It is
not very clear what is the significance of the decomposition of 0 into 0o 08.
As was noted in Section 2, under the assumptions of Theorem 1, 0c gives
positive measure to every nonempty open set. It would be desirable to
know that the conclusions of Theorem 1 hold when, instead of (2.1), only

U(x,x) U(x,y) <- g(1/2((x,Y))), ((x,y)) <= 2,
(5.1)

U(x, x) U(y, x) <-- g(1/2q((x, y})), ((x, y}) <= 2e,

is true, where g is a good function defined on an interval [0, sl] and is a Borel



LOCAL TIMES FOR A CLASS OF MARKOFF IROCESSES 35

measure on R which gives positive measure to every nonempty open set. At
this time, however, only a slightly weaker result can be shown.
We shall say that a Markoff process satisfies Hypothesis B if it satisfies A1

and A2 and satisfies A3 for intervals of the form (a, b] as well as intervals of
the form [a, b).

TEOgEM 2. Let X(-, oo) be a one-dimensional Markoff process defined on a
probability space ( ,, P) satisfying Hypothesis B, having transition prob-
abilities Pt(x, dy) and corresponding potential operator U. Let X R+
with measure P X P*, and let X(-, o) and S (o) be as in Section 1. With
(oa, t) & e we associate a measure, (., go), on R by

(A, ) (A, t, o) LM{r’X(r, )eA, 0 =< r < S()}

for every Borel set A. If U has a O-kernel U(x, y), 0 a Borel measure on R,
and if there exist a good function g, defined on an interval [0, el], and a Borel
measure o on R, giving positive measure to every nonempty open set, such that
(5.1) holds, then, for almost all (o, there exists a function L(x, ), defined and
continuous for all x e R, such that

(5.2) it(A, (o) f L(x, ga)O{dx}

for every Borel set A.

It follows that, for almost all 0, there exists a function L(x, t, oo) defined
for all x e R and all e R+, continuous in x for almost all (Jwith respect to
Lebesgue measure), satisfying (0.2) for every Borel set A.

Proof. We first show that 0 gives positive measure to every nonempty
open set. Suppose D is an open set and 0(D) 0. Let 1D be the indicator
of D, i.e., 1D(x) is either one or zero depending on whether x e D or not.
Then, by assumption,

V(lo)(x) f fo 0

for all x e R. But, if x e D, by (1.3),

V(l)(x) E l(Xx(r, oa)) dr > O,

since the right continuity of almost all sample paths of Xx(r, ) implies
s

l(Z(r, oa))dr > 0

for almost all . Thus 0 gives positive measure to every nonempty open set.
Since is a Borel measure, we can find numbers a, i 0, 4-1, 4-2,

such that a < a+l for all i,
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lim+, lim.a- , and ((a,’,ai+l)) < 1a-i --,
Between a, and a+l there is at least one point a such that ((a, a)) _-<
1 2-1 and((a, 2-1-2 a+l)) -< 1/2 Choosing such an a (if necessary) we
denote it by a.+11, and we denote a, by a. Thus we have constructed
sequence of points a such that, for all i, a < a+l, a a2,

lim+ a_i --0, lim a , and ((a, a+l)) -< 2-1.
In similar fashion we can find, for every n, a sequence of numbers a such

n-blthat, for all i, a’ < a+l, a a.

2--olima_ --, lima , and ((a’, a+l)) =<
Tn-l-1 ;rn-I andLet I [a a/+i). Then I 1 u *i+, [I} is a sequence

of ever finer partitions of R.
We can now associate, for every n, an approximate 0-density, L(x, ), for

(., &) by

(5.3) L(x, ) ,(I )/()

for all x e I. We now will show, using the methods developed in Sections
2 and 3, that L(x, ) converges, for almost all , to
which sutisfies (5.2) for every Borel set A. To be more precise, we show that
L(x, ) satisfies (5.2) for all sets A in the z-ring generated by the intervals
I, i 1, 2, n 1, 2, .... However, since gives positive measure
to every nonempty open set, it follows that the points a, i 1, 2,
n 1, 2,... are dense in R, and therefore the a-ring generated by all the
intervals I, i 1, 2, n 1, 2, is the z-ring of all Borel sets.

[a--M, a) and let M approachWe again show this convergence only for x in
infinity. Let

) i(A(a+, n, ) L(a

If we use once again the inequality
a b a < a b

it follows thatc+d- -’
in(X, ) in_i(x, ) A(a/+,

n--1for all x e I Once again let c g(2-)-/. By definition,

(+ , ) ,(x(,,
where

Va,+ (x) (0(I’))-1 for x eI,
-(0(I’+1))-1 for x

0 elsewhere.

then ((x, y}) < 2By construction, if x e I2 and y e I+1, It now fol-
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lows, exactly as in the proof of Lemma 4, that there exist positive constants
k and K such that

(5.4) E.(exp(/c c A(a+, n, &) I)) --< K
a < a2n/+l < aMfor all n sufficiently large and all a2i+ where

letForz a2i+l

H(z, n, d) {g" [A(z, n, 0)[_>_ d}.

It follows from (5.4) that for n sufficiently large and a_M <-- Z < aOM,
P(H(z, n, d) <= K exp(-/ g(2-n) -1/2 d)

where K and / are positive constants depending only on M. Let
H(n, d) U H(z, n, d) where the union is over those z a+
where a_M <-- Z < aOM. There will be exactly M2 such z. If n is sufficiently
large, then

P(H(n, d) <= _, D(H(n, z, d) <= MK 2 exp(--k g(2-)-1/ d).
--1 2--n 1/2Let d nk g( and G,, U, H(n, dn). If m is sufficiently

large, then

D(G) <= .,n_P(H(n, d)) <= MK _,,_,, 2"e MK _,, (2/e) n,
and since this last is a convergent series,

P(lim G) limmP(Gm) 0.

As we have shown above,

maxao_M <__x<ooM Ln(x (o) --Ln-I(X, ) <- maxao__M<Z<aOM (i(Z Tb, )) ].

Then, unless & e G, for any n, p with n => m,

"" -l-pLn+v(X, ) nn(x, ) <- A..n+l Li(x, (o) --ni_l(x, (o) < Z==: d q(n).

Now, since g is a good function, =_ d. < . Henceq(n) --0asn-- .
Hence if G, the sequence L,(x, 5) converges, uniformly for
a <- x < a, to a limit which we shall denote by L(x, ). Furthermore,

L(x, 5) L,(x, &)l <= q(n)

for n => m, a =< x < a. It is clear that the measures on [a, a)
having Ln(x, ) as 0-densities converge at least weakly to (., ) restricted
to [a,, a), and consequently L(x, &) is a 0-density function for g(., &)
restricted to [a, a). The continuity of L(x, ) remains to be established.
We first show that L(x, (o) is right continuous for all x. If x e R, let (n, x)

be a positive number so small that x e I and 0 <= y x < ti(n, x) imply
yeI. Suppose &tG. If 0 -< y x < i(n, x) where n => m
and aM =< X < a, then
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L(x, &) L(y, () <- L(x, (o) L,(x, (o)- L(x, (o) L(y,
(.5)

+ ]L(y, ) L(y, )

2q(n).

Hence if n m and q(n) < /2, then 0 y x < (n, x)
implies L(x, ) L(y, ) < . Thus L(x, ) is right continuous in x.
Now let J (a a%], and let Qn(X, ) (J$, )/O(J) for all x e J

Then, by exactly the same logic as above, for almost all &, Q(x, ) converges
to a limit function Q(x, ) which is a 0-density for (., &) restricted to
(a, a]. In this case, however, Q(x, ) will be left-continuous in x. If
A is any Borel set in (aM, a), we have

since both integrals equal (A, ). It therefore follows that Q(x, ) L(x, )
for almost all x (with respect to 0) in (a, a). Now, since 0 gives posi-
tive measure to all nonempty open sets, it follows that the set of points where
Q(x, ) L(x, ) is dense in (aSu, a). Hence Q(x, ) L(x, ) every-
where in (a, a) and is continuous for all x in (a, a). This com-
pletes the proof of Theorem 2.

If & (, t0) and L(x, ) exists and is continuous in x, then
L(x, t0, ) L(x, ) is a continuous function in x and satisfies (0.2) (for

t0) for every Borel set A. Since

P({ L(x, ) is not well defined} 0,
it follows that

P({" LM({t’L(x, &) is not well defined for (, t)}) > 0}) 0.

Thus we have shown that, for almost all , there exists a function L(x, t, ),
defined for all x e R and almost all (with respect to Lebesgue measure),
satisfying (0.2) (for all such t) for every Borel set A. If t0 is a point where
it is not defined by this procedure, then define L(x, to, ) lim to L(x, t, ).
By Lesbesgue’s bounded convergence theorem it follows that L(x, to, )
satisfies (0.2) (for t0) for every Borel set A. Note that alternatively
one could also define L(x, to, ) limt t0 L(x, t, ).
The following property which processes having local times possess was

pointed out to me by F. Spitzer.

THEOREM 3. If, for almost all , (., t, w) has a O-density L(x, t, ),
0 a Borel measure on R, then J [0, ], LM(J) > 0 imply that
O({X(r, ) r e J}) > O for almost all .

Proof. It suffices to consider the case where J [0, N] for some N. Let
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o e 2 be such that L(x, N, o) is defined. Let A IX(r, o) r e J}. Sup-
pose 0(A) 0. Then

< LM(J) <= tt(A, N, o) Ji L(x, N, oo)O{dx} O,0

which is a contradiction.
In particular, applying Theorems 1 and 2 with 0 LM, we have sufficient

conditions that the range of almost all sample paths have nonzero Lebesgue
measure whenever the domain has nonzero Lebesgue measure.
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