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In the Sullivan-Quillen proof of the Adams conjecture on the image of the
J-homomorphism, and in Sullivan’s work on BPL and F/PL, it has become
necessary to systematically exclude p-primary information about CW-com-
plexes for certain primes p. The method of doing this is clear for loop spaces
and for suspensions. Sullivan has used "local cells and local spheres" to do
this for arbitrary complexes. Sullivan’s construction suffers from the fact
that it is not functorial, but is defined only up to homotopy type.
We give a construction below, inspired by the paper [2] of F. P. Peterson and

the construction of Eilenberg-MacLane complexes given by E. Spanier in his
book [3]. This construction is functorial, and has all of the desirable properties
of Sullivan’s construction.

1. R-groups
If R is subring of the rtionl numbers containing 1, n belin group A is

called an R-group if the map A A (R) Z --* A (R) R is an isomorphism. Since
all subrings of the rational numbers are free of torsion, Tor (A, R) 0.
Thus the exact sequence

0--*Tor(A,R/A) A (R) Z A (R) R A (R) R/Z---->O

shows that A is an R-group if and only if Tor (A, R/Z) O, A (R) R/Z O.
Let M M(R) {m m is an integer, m a unit of R}. Then R Z[M-],

M- {m-lm M}, so that M and R determine one another. Since M is
countable, let m, m., be an indexing of the elements of M. Let R Z,
r’R --* R+x be multiplication by m. Then R lim R.
PROPOSITION 1.1. If A is an R-group, Horn (Z, A) Horn (R, A),

Hom (R/Z, A) O.

Proof. Horn (R, A) lim inv (Horn (R, A)). If A is an R-group, it is
an R-module, so that m "A --* A is an isomorphism. Thus every map in the
inverse system Hom (R, A) is an isomorphism, so that Horn (R, A)
Hom (R, A) =Hom (Z, A). Thus Hom (R/Z, A) O.

PROPOSitiON 1.2. If A is an R-group, Ext (R, A) 0 Ext (R/Z, A).

Proof. From the fact that Horn (R, A) --* Horn (Z, A) is surjective, and
Ext (Z, A) 0, we see that Ext (/Z, A) Ext (R, A).

Let Fo ---. F R/Z be a free resolution of R/Z. Since R is an R-group,
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o (R) - F1 (R) is an isomorphism, low there is an exact sequence

0 --. Hom (R/Z, A) Hom (F1, A) -* Horn (F0, A) --, Ext (R/Z, A).

Since Hom (F, A) Hom (F, Hom (R, A)) Horn (F (R) R, A), and
since

Horn (F (R) R, A) --* Horn (F0 (R) R, A)

is an isomorphism, Ext (R/Z, A) O.
If m is an integer, Z Z Z/m is a free resolution of Z/m. Since for any

group A, Hom (Z, A) A A (R) Z, we see that

Hom (Z/m, A) Tor (Z/m, A), Ext (Z/m, A) Z/m (R) A.

If n mm. m, R/Z lim Z/n. Thus

lim Tor (Z/n A) Tor (R/Z, A), lim (Z/n @ A) R/Z @ A.

PROPOSITION 1.3. A is an R-group i/either Tor (Z/n A) O, Z/n (R)
A O, all i or Horn (Z/n, A) 0, Ext (Z/n, A) O, all i.

PROPOSITION 1.4. If Hom (R/Z, A) O, Ext (R/Z, A) O, A is an R-
group.

Proof. There is an exact sequence, for m M, of the form

o z/ n --, R/Z R/Z O.

This gives an exact sequence

0 -- Hom (R/Z, A) --. Hom (R/Z, A) Hom (Z/m, A)

-* Ext R/Z, A) Ext (R/Z, A) Ext (Z/m, A) 0

TSEORE 1.5. A is an R-group if and only if any of the following equivalent
conditions hold:

(1) R/Z @ A =0, Tor(R/Z,A) =0
(2) Z/m (R) A O, Tor (Z/m, A) O, all m M
(3) Ext (R/Z, A) O, Hom (R/Z, A) 0
(4) Ext (Z/m, A) 0, Horn (Z/m, A) O, all m M.
(5) Horn (R, A) --* Horn (Z, A) is an isomorphism and Ext (R, A) O.
(6) Ext (Z/p, A) O, Hom (Z/p, A) O, all primes p M.

PROPOSITION 1.6. If a group is isomorphic to a subgroup of an R-group and
is isomorphic to a quotient group of an R.group, it is an R-group.

Proof. If A is isomorphic to a subgroup of an R group, Tot (R/Z, A) 0.
If A is isomorphic to a factor group of an R-group, R/Z (R) A O.

PRoPOSITION 1.7. If 0 -- A B -- C --* 0 is a short exact sequence ofgroups,
if any two groups are R-groups, so is the third.
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Proof. Look at the exact sequence for R/Z (R) and Tor (R/Z, for the
three groups.

THEOREM 1.8. The homology groups of a complex of R-groups are again R-
groups.

Proof. By 1.6, the boundary groups are R-groups. By 1.7, this implies
that the cycle groups and thus the homology groups are R-groups.

PROPOSITION 1.9. If A is a group, R (R) A 0 if Q (R) A O,
Wor (Q/R, A) O.

The group Q/R is isomorphic to [C/Z, where/ is the ring generated by those- with Z, - R. Notice that R n/ Z, R @/ Q, and that these
two properties characterize R as a subring of Q.

TEOREM 1.10. If " A ----> B is such that Q @ " Q @ A Q (R) B is an
isomorphism, and the kernel and cokernel o] are R.groups, then

R@ a:R @ A---+R @ B
is an isomorphism.

Proof. R @ A R (R) B will be an isomorphism if and only if

R@ker() 0 and R@ coker(a) 0,

since R is torsion free.

If Q @ ker (a) 0, R @ ker (a) will vanish if Tor (Q/R, ker (a) 0.
However,

Wor (Q/R, ker ()) Wor (/Z, ker ()).

Thus, if ker (a) is an R-group, T0r (Q/R, ker ()) 0.

2. Homotopy theory with coefficients
In [2], Peterson defined cohomotopy groups vith coefficients, and exposed

the main properties of these groups. Our discussion here is analogous to his,
with slight modifications to suit R-groups.

If A is an abelian group, F0 --+ F1 --* A a free resolution of A, define a space
M(A, 1) as follows. Let M(F, 1) be a bouquet of circles, with one circle for
each generator of F. LetM(F0,1) --+M(F1,1) realise F0 --+F in homology.
Let M(A; 1) be the mapping cone of this map. As a complex, M(A, 1)
depends upon the resolution of A, but Peterson showed that its staple homo-
topy type is uniquely determined.

If X is a space, we let rn(X;A) [Zn-IM(A, 1), X] for n

_
2. Since

[M(F, 1), X] Hom (F, r(X)), and more generally,

[Z"-IM(F,, 1), X] Hom (F,, r,,(X) ),
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we see that there is an exact sequence

--, r+,(X; F0) .(X; A) --* .(X; F1) ---, ,(XiFo) ---,...

which gives us short exact sequences

0 -- Ext (A, +l(X) -- r,(X; A) -- Hom (A, ,(X) --* 0

THEOREM 2.1. If r(X) is abelian and Ext (R/Z, r(X) O, r,(X) is
an R-group if and only if r,(X; R/Z) O.

If r(X) is abelian, and Z/m (R) (X) O, all m e M, r,(X) is an R-group
if and only if r,(X, Z/m) O, all m M.

We observe that if m M, m can be written uniquely as a product of powers
of primes, all of which are in M. Thus m M above could be replaced by
p, M, p prime.
The space M(R/Z, 1) is necessarily infinite, so that it is not compact. How-

ever, if we choose the proper resolution, M(Z/m, 1) will be compact. Thus,
if X is the union of an increasing sequence of subcomplexes X, r,(X;Z/m)
lira ,(X ;Z/m).

If X is a complex, let R (X) be the complex obtained from X by attaching
to X a cone on each map into X of any *M(Z/m, 1) for m e M. Then X is
a subcomplex of R(X), and contains the 0- and 1-skeleton of RI(X). Thus
v(X) -- r(R(X) is onto. I is not difficult to see that the kernel consists
of the element of order m for some m e M.
Thus (R (X)) (X)/Tor (R/Z, (X)). Notice that

(x; z/m) .(R(X) Z/m)

is the zero map all m e M, n >_ 1. This gives us the following result.

THEOREM 2.2. If R*+I(X) RI(R*(X) ), and R(X) is the union of the
R’(X),

r(R(X) rl(X)/Wor (R/Z, v,(X)

r.(R(X);Z/m) 0 for m e M, n >_ 1.

COROLLAY 2.3. ’,,(R(X) is an R-group for n > 1. If rI(X) is abelian
and R/Z (R) (X) O, (R(X) is an R-group.

THEOREM 2.4. H,(X; R) H,(R(X) R) is an isomorphism.

Proof. RI(X)/X is a one point union of spaces ZM(Z/m, 1) for m e M.
Since Z/m (R) R 0, Tor (Z/m, R) 0,

H,(X; R) H,(R(X) R)

is an isomorphism. Singular homology takes increasing unions of CW-
complexes into direct limits of the singular homology groups of the individual
complexes, since the n-simplex is compact for all n.

PROPOSITION 2.5. If X X. is an increasing sequence of CW
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complexes, X UX then iffor some space Y,

[X+I, Y] --+ [X, Y]

is surjective for all i, [X, Y] -- [X Y] is surjective for all i.

Proof. Since [X,+I, Y] --+ IX., Y] is surjective for every n, given f;
X - Y i follows from the homotopy extension property of the pair (Xn+,
X,) that there is a sequence of mapsfn’X, -+ Y forn _>/such thatf.+l X.
f. Then, defining f X -+ Y so that f[X,, $,, for n >_ i, yields a map
whose restriction to X is ft. Since X has the weak topology, this map is
continuous. Thus IX, Y] --+ [X, Y] is surjeetive.

Suppose that f X --+ Y as above, and each f IX is homotopic to the
constant (basepoint) map. Because pairs of CW-complexes have the
homotopy extension property, any homotopy of f to a constant on X can be
extended to a homotopy from f to a map factoring through X+I/X. Thus,
if every map X+/X into Y is null homotopic, we can compose this homotopy
with a second homotopy, which is constant at the end.

Changing parameters so that the null homotopy of f X is constant from
1-1/2 to 1, we can extend this to a null homotopy of f lX+x which is constant
from 11/2+ to 1.

PROPOSITION 2.6. If [X+/X Y] consists of only the homotopy class of the
basepoint map for all i, IX, Y] [X Y] is injective for all i.

THEOREM 2.7.
then for any X,

If r,,( Y) is an R-group for n > 1, Tor (R/Z, r( Y) O,

[R X Y] IX, Y]
is bijective.

Proof. Because r.(Y; Z/m) 0 for m e M, n >_ 1, we have

[R’(X), Y] [R’-(X), Y]

a bijection for all i. Thus the map in the theorem is surjective by 2.5. By
2.6, [R(X)/Ri-(X), Y] 0 implies that the map is one to one.

3. The relationship between H, and II,

If A is an abelian group, p a prime, tt,(K(A, 1); Z/p) can be described in
terms of A (R) Z/p and Tor (A, Z/p). Thus, if p e M, and A is an R-group,
I,(K(A, 1);Z/p) O.
From this, either the comparison theorem for the Serre spectral sequence,

or the direct calculation of the groups H,(K(A, n); Z/p) in the Caftan
seminar [1] shows that I,(K(A, n); Z/p) 0 for A an R-group.

PROPOSITION 3.1. I,(K(A, n) Z) is an R-group if and only if A is an R-
group.
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Proof. /].(K(A, n); Z) A, so the only if part is true.
plication is shown above.

The other im-

PROPOSITION 3.2. If F --, E -- B is a fibration with I(B) acting simply on
H,(F; Z/p) for p M, p prime, then if two of the three/,(F; Z),/,(E; Z),
/,(B; Z) are R-groups so is the third.

Proof. For any space X, /,(X; Z) is an R-group if and only if
//,(X; Z/p) 0, all primes p M. The proposition follows from the com-
parison theorem for the Serre spectral sequence.

Combining these results, we obtain the following.

PROPOSITION 3.3. IfX has afinite number o$non-vanishing homotopy groups,
r(X) O, then r,(X) is an R-group i]and only i] I,(X; Z) is.

This result allows us to prove the "rood R" Hurewicz theorem.
groups do not form a Serre class, this is not a "rood C" theorem.

Since R-

THEOREM 3.4. If a(X) O, r(X) is an R.group for i

_
n if and only if

I(X; Z) is an R-group for i <_ n.

Proof. Let X() be obtained from X by kiIHng off all homotopy groups
above dimension n, so that X() has only a finite number of homotopy groups.

Now B(X; Z) [/(X() ;Z) ffi/(X(. ;R) ffi/(X; R) for i _< n if
the homotopy groups of X(.) are all R-groups. If the homotopy groups of
X(.) are not all R-groups,

z) tI,(x(.) ;z) [I,(x(.) tl,(x; R)
for some i _< n, so//(X; Z) is not an R-group.

If ,(X) 0, we will say that X is R-simple if r,(X) is abelian, ,(X) is
an R-group, and v(X) acts trivially on the rood p homology for p M, of the
fiber of X --, X(). This is probably the same as acting trivially on the mod p
homoopy of X. Our techniques so far would allow us to replace "r,(X) 0"
in 3.4 by "X is R-simple".
COROLLARY 3.5. If r,(X) is R-simple, [/.(R(X); Z) is an R.group, and

/,(X; R) I,(R(X); Z).
COROLLARY 3.6. If ,( Y) is an R-group,

,(Y) [R(S’), Y]

Proof. Apply 2.7, 2.2, and 3.5.

4. Properties of R
Below is a listing of the elementary properties of R. Proofs are left to the

reader.
It is clear that any map f X --* Y induces a map R(f) R(X) ---, R(Y).

Further, R(fg) R($) R(g).
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If f is an inclusion, so is R(f). We have a map R(Y/X) R(Y)/R(X)
which clearly induces an isomorphism on homotopy.

Iff is any map, C($) the mapping cone of $, there is an inclusion

C(]) - C(Rff) ).

This induces R(C($) -. R(C(R(f) ). However, clearly C(R(f)
R(C(R(f))) induces an isomorphism on homotopy, so that there is map
R(C($)) -- C(R(f)), defined up to homotopy, which is homotopy equiv-
alence. In particular, we have a map R(Y,(f)) --, ,R(f), where 2 denotes
suspension, defined up to homotopy, which is a homotopy equivalence.

Given two spaces, X, Y, RI(X) X RI(Y) contains RI(X X Y). Thus
R(X X Y) is a subcomplex of R(X) X R(Y). The inclusion map clearly is
an isomorphism on homotopy groups, and thus is a homotopy equivalence.

Dually, there is an inclusion of R(X) /R(Y) in R(X /Y), which induces
an isomorphism on homology groups.

If f" g, R(f) --- R(g), and the homotopy is determined by the homotopy
from f to g in a functorial way.
Given a Serre fibration,

F---*E r B,

we have an inclusion in the quasi-fibring R(F) R(E) R(B). R(F) is
homotopy equivalent to the fiber of R(r).

Since X is filtered by its n-skeletons X, R(X) is filtered by the R(X), and
R(X"+)/R(X) is homotopy equivalent to R(X+/X). Thus it is, up to
homotopy equivalence, a bouquet of R(S+) ’s. Thus R(X) has an "R cell
decomposition".

This observation can be made stronger. Since X+ is the mapping cone
of a map of a disjoint union of n-spheres into X, thus R(X"+) is, up to a
homotopy equivalence which is itself determined up to homotopy, the mapping
cone of a disjoint union of R(S) ’s into R(X").

IfX is an H-space, R(X) is also an H-space, with multiplication determined
up to homotopy. If X has a classifying space Y, so that X is homotopy
equivalent to 2Y as an H-space, then R(X) is homotopy equivalent to
(RY) as an H-space if (X) 0, so that R(X) also has a classifying space
if (X) 0.
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