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1. Main result
We will prove the following theorem.

THEOaEM 1. Let U be an inner function in the upper half-plane and analytic
at the origin. If U’(O) a 0 for some vector a, then Ua is constant.

This theorem generalizes a recent result of Helson [1] concerning operator-
valued inner functions. Our proof is based on some calculations of Potapov
[3] which were originally done for a finite Hilbert space but which carry over
to the infinite dimensional case.

2. Preliminaries
All symbols keep the same meaning throughout the paper. Complex

variables will be denoted by z and w, while x will denote a real variable. K is
a Hilbert space of finite or infinite dimension. H is the usual Hilbert space
of boundary values of K-vector valued functions analytic on the upper half-
plane. U is an inner function, that is, a function on the real line whose values
are unitary operators in K such that if F(x) e H, then U(x)F(x) e H.
The operator-valued function U has a bounded analytic extension to the upper
half-plane.
For a more thorough development of these ideas see Helson’s book [2].

3. Proof of Theorem 1
We can assume without loss of generality that U(0) I, where I is the

identity operator in K. Let a be a vector in K such that U’(O)a O. Ro-
tate the half-plane by the map w -iz and define V(w) U(z). V is con-
tractive in the right half-plane and analytic at zero. It has a series expansion
in some neighborhood of zero:

V(w) I- Al w W Asw- ....
From the definition of V we see that A iU’(O). (The differentiation on
U will always be with respect to z or x.) In [1] it is observed that U’(O) iA
where A is a self-adjoint positive operator in K. Thus A is self-adjoint.

Using the fact that A is self-adjoint and that

([I- V(w)V*(w)]a, a) >_ O, Re w _> 0,
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Potapov proves [3, p. 154] that A1 a 0, Am_l a 0 implies Am a 0
for every m >_ 2. Thus U’(O)a 0 implies V(w)a a identically in w.
So U(z)a a identically in z and the theorem is proven.

4. Application
With Theorem 1 we can simplify the proof of the following theorem of

Helson [1]. We use only two general lemmas he establishes relating continu-
ity on the boundary with analyticity.

THEOREM 2. Suppose an inner function U(x) satisfies the differential equa-
tion U’(x) ip(x)M(x) U(x). Assume M(x) is norm-continuous and pro-
jection-valued. Assume furthermore that p(x) is a continuous bounded real
function on the line such that lip(z) is entire, and such that -log p(z)
sesses a positive harmonic majorant in the upper half-plane. Then M(x) is
constant.

Proof. We assume U(0) I. Helson easily shows that the norm-con-
tinuity of p(x)M(x) implies that U(x) is analytic on the real axis.

Let N(x) be the null space of M(x). If a is in N(0), Theorem 1 implies
U(x)a a, (U(0) I). Thus U’(x)a 0andN(0) oN(x). Itremains
only to show N(x) c N (0) for any x. Let b be any real number unequal to
zero. Suppose c is a vector in N(b). Let V(x) U(x - b). The vector
U*(b)c is such that V’(0) U*(b)c O. By Theorem 1, V(x) U*(b)c is identi-
cally constant. Evaluations at x 0 and x -b show that U(x - b)c c
identically in x. Differentiation with respect to x followed by evaluation at
--b give U’(O)c O. Thus c is in N (0) and Theorem 2 is proven.
The only properties of p(x) that we used were that it was continuous and

never zero. If we only assume that p(x) has isolated zeros, then a restriction
of the calculations to the set of real numbers b such that p(b) and p(-b)
are both nonzero and an appeal to the norm-continuity of U(x) carry the
proof through.
The author wishes to thank Henry Helson for the improved form of Theorem

1 which appears here.
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