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A BEURLING-RUDIN THEOREM FOR H

BY

PAMELA GORKIN, HJiKAN HEDENMALM2 AND RAYMOND MORTINI

O. Introduction

Let H be the Banach algebra of bounded analytic functions on the open
unit disc D (z C: Iz[ < 1}, supplied with the uniform norm. It is well
known that we may regard H as a closed subalgebra of L, the uniform
algebra of (equivalence classes of) essentially bounded Lebesgue measurable
functions on the unit circle T D. Consider the linear space

H + C= (f+g:fH,g C= C(T)};

Donald Sarason [8, p. 377] has shown that this is a dosed subalgebra of L. In
connection with H + C, Sarason introduced QC, the dosed subalgebra of
H + C consisting of all functions whose complex conjugates also lie in
H + C, and its analytic subalgebra QA QC H. Expressed differently,
QC is the largest C* algebra contained in H + C.

In the second section of this paper, we give a complete description of the
closed ideals in QA. This result is hardly surprising, for Ame Beurling’s
(unpublished) and Walter Rudin’s [15] independently obtained description of
the dosed ideals in the disc algebra A C H and several results of
Thomas Wolff [20], [21] suggest that this is possible. In fact, Srinivasan and
Wang’s proof [16] of Beurling’s and Rudin’s result can be extended to QA. We
use this result in the third section of this paper to obtain some rather
surprising results about dosed ideals of H. We will show that an arbitrary
dosed nonzero ideal in H has the form u(J t H), where u is an inner
function, and J is a dosed ideal in H + C; this is what we mean by a
Beurling-Rudin theorem for H. Moreover we shall see that the quotient
algebras H/J H and (H + C)/J are canonically isomorphic. And in
H + C, as opposed to H, a theorem of ilov [9, 45] and a later refinement
of it due to Errett Bishop and Irving Glicksberg [7, p. 61] give us quite a lot of
information about the closed ideals. The first result in this direction was
obtained by Hitkan Hedenmalm [11], and later generalized by Raymond
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Mortini [14]. For a dosed H-ideal I whose hull h(I) is contained in the
ilov boundary ’(L) (for these concepts, see Section 1 below), we can say a
great deal more: there exists a closed L-ideal whose intersection with H
equals I, and since a theorem of Sllov [9, 36] tells us that all closed ideals in
L C(/g(L)) are intersections of maximal ones, the same can be said
about I. We will also show that

H/I ---/[h(z C(h(I)).

Most of the results that appear in this paper extend easily to H(f) on
finitely connected domains with the techniques of [11].
A major part of this research was done when the first two authors were

visiting the University of Kadsmhe, Germany. We wish to thank Professor
Michael von Renteln for his help and hospitality, and the university for its
support.

1. Basic concepts

The bilinear form linking any Banach space A with its dual space A* will
always be denoted by .,.).

All Banach algebras are assumed complex, commutative, and unital. For a
Banach algebra B, we denote by .At’(B) its maximal ideal space; the dements
of ’(B) are the nonzero complex homomorphisms on B. With the Gelfand
topology, (B) is a compact Hausdorff space. The Gelfand transform,
always denoted by defines a continuous homomorphism B -, C(g(B)).
The algebra B is said to be semisimple if the Gelfand transform is injective. A
uniform algebra on a compact Hausdorff space X is a closed unital subalgebra
of C(X). A uniform algebra is a semisimple Banach algebra whose image
under the Gelfand transform is a uniform algebra on the maximal ideal space.
A C* algebra is a uniform algebra which is closed under complex conjugation.
The Stone-Weierstrass theorem allows us to conclude that a C* algebra B is
isomorphic to C(/(B)). Let B be a uniform algebra on a compact Hausdorff
space X. A closed subset E of X is a peak set if there is a function p B such
that P I--1 and [Pl < 1 on X\ E; we call p a peaking function. A weak
peak set is an intersection of peak sets. An interpolation set E is a closed
subset of X such that Big= C(E). Unless X is specified, X is tacitly
assumed to be .At’(B).
For an ideal I in a Banach algebra B, its hull is the dosed set

h(I,B)= (m ’(B): m(x) =Oforallx I}.

If I is dosed, it is well known [7, p. 12] that we may identify /[(B/I) with
h (1, B). Whenever possible, we will write h(I) for h (1, B).
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A corollary of Beurling’s famous invariant subspace theorem [8, p. 85] states
that every weak dosed ideal in H other than {0) has the form uH, where
u is an inner function. The weak topology on H is the one inherited from
L (Lt(T))*. A weak dosed subspace of H is an ideal if (and only if) it
is invariant under multiplication by the coordinate function z; hence the weak

closure in H of an ideal in H or QA is an H-ideal. So, given an ideal I
in H or QA other than (0}, we find an inner function u such that the weak
closure of I equals uH. We shall call the function u, which is unique except
for a (unimodular) constant factor, the inner factor of I. It could also be
described as the greatest common divisor of the inner factors of the functions
in I [8, pp. 83-84].

Using the fact that C c QC c H + C, one can show that QC QA + C.
It follows from this that ,[(QA)=Jt’(QC)u D [21]. It is standard to
identify J’(H + C) with t’(H) \ D and Jt’(L) with the Silov boundary
of t’(H). Let

I’: ,t’(L) [(QC) and "y: /[(H + C) /[(QC)

be the respective restriction mappings. Because QC is a C* algebra, a theorem
of ilov [9, {}12] tells us that I" and , are surjective. Let Dm y-t({m}) and
Em F-t((m }) denote the QC level sets corresponding to the point m
[(QC). The restriction of H to Em (or Dm) is a uniform algebra with
maximal ideal space D, and Silov boundary Em.

2. Closed ideals in QA

Let be an element of the dual space of QC C([(QC)). By the Riesz
Representation Theorem, has the form

(QC
f QC,

where g is a regular Borel measure on ,[(QC). In particular, the continuous
linear functional ’h0 defined by

<f ePo) ffdh, f QC,

where X is normalized Lebesgue measure on T, defines a measure on
(QC) such that

fdo ,
(QC)

f QC,
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which we will call lifted Lebesgue measure. Lemmas 2.1 and 2.2 below are due
to Thomas Wolff [20].

LEMMA 2.1. The Gelfand transform on QC has a unique extension to an
isometric isomorphism LX(T, ) Lx(g(QC), o) (still denoted by ") such that

f LI(T, h), g QC.

The following is the QA analogue of the classical F & M Riesz theorem.

LEMMA 2.2. If IX QC* annihilates QA, then Ix is absolutely continuous
with respect to o, that is, dIx fdo for some f LI(g(QC), ).

The easiest way to see that the above statement is true is to realize that the
quotient spaces C/A and QC/QA (QA + C)/QA are canonically isomor-
phic, and therefore must have the same dual space Ho { f H: f(0) 0}
c L(T, ).

LEMMA 2.3. Let f QA have the factorization f ug, where u is an inner

function and g H. Then g QA, and if m(f) 0 for some m (QC),
m(g) 0.

Proof. Since we are assuming g H, and , uf H + C because
f QC, we see that g QA. To prove the remaining part of the assertion,
find t’(L) such that lQC m; this is possible because the restriction
mapping F" t’(L) g(QC) is onto. Since u is inner, I,/,(u)l 1, and
hence I(g)l I(u),/,(g)l I,/,(ug)l I’/’(f)l Im(f)l 0. Since g
QA, m(g) O.

Remark 2.4. Lemma 2.3 states that QA has the f-property in the sense of
Havin, answering one of the two questions raised by Milne Anderson in [3].
The fact that QA has this property has been shown previously by Pamela
Gorkin [10].

In [15] Walter Rudin described all dosed ideals in the disc algebra.
Srinivasan and Wang [16] later gave a proof that relied less on function theory.
It is this proof that we shall modify to prove a similar result for QA. For a
dosed set E [(QC), introduce the notation

I(E, QA) { f QA" f[= 0).
Clearly, I(E, QA) is a closed ideal in QA. Thomas Wolff [20] has shown that a
closed subset of (QC) is contained in the zero set of a nonidentically
vanishing QA function if and only if it has lifted Lebesgue measure 0. Hence
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I(E, QA) (0} if and only if o(E)= 0. Assume for the moment that
o(E) 0. Clearly, the inner factor of I(E, QA) must be 1, in view of Lemma
2.3. If u is an inner function such that the set of all m J,t’(C) for which
l is nonconstant is contained in E, uI(E, QA) will be contained in QA,
because the functions in uI(E, QA) are constant on all QC level sets; here we
use a theorem of Silov [9, {}44]. Because u is inner, this is a closed ideal in A.
Our theorem below states that all (nontrivial) closed ideals in QA arise in this
fashion.

THEOREM 2.5. Let I be a closed QA-ideal other than (0). Then there exist an
inner function u and a closed subset E of .1(QC) with o(E) 0 such that
I= uI(E, QA).

Proof. Let u be the inner factor of I (see Section 1), and let

J= (fQA’uf.I).
First observe that because I is a closed QA-ideal, J is, too. In view of Lemma
2.3, we are done if we can show that J I(E, QA), where E ( rn t’(QC):
m(f)--0 for all f 1}. Clearly, J is contained in I(E, QA), again by
Lemma 2.3. To show the reverse inclusion, let/ be a regular Borel measure on
[(QC) annihilating J. Since J is an ideal, for any f J and g QA,

f ,fidl O.
(O.c)

Thus fdtt annihilates QA. By Lemma 2.2, fdtt is absolutely continuous with
respect to o. Writing # # + # where #a is absolutely continuous with
respect to o and # is singular, we see that fdlt, 0. Thus supp/, { m
t’(QC): re(f) 0) for any f J and hence supp #, c E. Now it is clear
that #, annihilates I(E, QA). Since J is contained in I(E, QA), both/, and/
annihilate J, so tt a does, too. Since the inner factors of J and I(E, QA) must
be 1, we see that J and I(E, QA) are both weak dense in H. Recall that
the weak topology of H is the weak topology of L= (Lt(T))*
restricted to H. Since # is absolutely continuous with respect to o, Lemma
2.1 tells us that #a belongs to the predual of L, and hence the fact that
/x a .1. J implies Ia I I(E, QA). Now both ]a and #s annihilate I(E, QA), so #
does, too. Thus J +/- c I(E, QA)x, so I(E, QA) c J, as desired.

In this context, the QA analogue of the Rudin-Carleson theorem, which is
due to Thomas Wolff [20], [21], takes the following form. An epimorphism is a
surjective homomorphism.

THEOREM 2.6. Let E c ’(QC) be a closed set of lifted Lebesgue measure O.
Then there exists a unique continuous epimorphism

QC QA/I( E, QA)
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which is canonical on QA its kernel is the closed QC-ideal

I(E, QC) ( f QC: fie 0).

Proof. Wolff’s theorem [20], [21] states that QAIe C(E). Because QA is
a logmodular algebra on its Silov boundary g(QC), E is a weak QA peak set
[17, p. 216]. Hence we may deduce that

h(I(E, QA), QA) E.

It is standard to identify QA/I(E, QA) with QAle [17, p. 117]. So, by letting
L be the restriction mapping

QC QCIF. C(E) QA/I(E, QA),

we obtain a continous epimorphism that is canonical on QA, and dearly, its
kernel is I(E, QC). Observe that as a consequence, QC QA + I(E, QC).

It remains to be shown that L is unique. For the algebra QC C([(QC)),
a theorem of ilov [9, 36] specializes to show that the closure of the QC-ideal
generated by I(E, QA) equals I(E, QC), because h (I(E, QA), QA) E.
Hence any other continuous epimorphism L’: QC QA/I(E, QA) which is
canonical on QA must vanish on I(E, QC), but since QC QA + I(E, QC),
L’ must coincide with L, which is our desired conclusion.

These are some of the many ways in which QA acts like the disc algebra.
But there are some differences. Rudin [15] showed that every dosed ideal in
the disc algebra is the closure of a principal ideal. This is not true in QA. Take
for example the maximal ideal (f QA: m(f)= 0} for rn .At’(QC); in-
deed, using the corona theorem for QA and Sundberg’s and Wolff’s descrip-
tion of QA interpolating sequences [19], it is not hard to check that any QA
function vanishing at rn must vanish on a set homeomorphic to fin \ N,
where fiN denotes the Stone-tech compactification of the nonnegative in-
tegers N. However, for countably generated closed ideals, we have a result
analogous to that for the disc algebra [6, p. 73]. Namely, every countably
generated dosed ideal in QA is the principal ideal generated by a finite
Blaschke product. This follows from a result of Dietrich [6, p. 72], after the
observation that t’(QC) is connected.

3. Closed ideals in H

A Douglas algebra is a dosed subalgebra of L containing H. For certain
Douglas algebras B and dosed H-ideals I we construct a continuous
epimorphism (i.e., surjective homomorphism) LI, B" B H/I which is
canonical on H. Whenever possible we write LI for LI, . This epimorphism
will enable us to study closed ideals in H by replacing them with closed
ideals in B.
The following lemma, which is. probably known, will prove useful.
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LEMMA 3.1. For a uniform algebra B on a compact Hausdorffspace X, let E
be a peak set with peaking function p. Then the closure of the B-ideal generated
by 1 p equals (f B: fl e 0).

Proof Clearly, (f B: fie 0} is a dosed ideal in B, and it contains the
function 1 p. Let f B vanish on E. It is easy to check that

(1-pn)ff asn

and since 1 pn (1 p)(1 + p + +p,-1), the assertion follows.

The proposition below is what makes everything in this section work. It uses
Wolff’s remarkable result [21] that every L function can be multiplied into
QC with an outer QA function.
For a closed set E c /t(QC), I(E, H) denotes the dosed ideal

PROPOSITION 3.2. Let I 4= {0} be a closed ideal in H with inner factor 1.
Then I contains I(E, H) for some QA peak set E c d/g(QC) (which has lifted
Lebesgue measure O, of course).

Proof Thomas Wolff [21] has shown that to a given function f L, we
can find an outer function q QA such that qf QC. In particular, this
result can be applied to the functions in I, showing that I c3 QA 4: (0}. Since
q was outer, we can say even more, namely that the closed QA-ideal I c3 QA
has inner factor 1. By our characterization of the closed ideals in QA
(Theorem 2.5), we find a dosed set Eo /t(QC) with o(Eo)= 0 such that
I c3 QA I(Eo, QA). We already noticed in the proof of Theorem 2.6 that E0

is a weak QA peak set, meaning that it is an intersection of peak sets. So, we
can find a QA peak set E (QC) containing E0, and such sets have
o(E) 0 according to Wolff [20]. Let p be a QA function that peaks on E.
Then p is also a peaking function for the set

= + c) \ o
in the algebra H, and Lemma 3.1 tells us that the closure of the H-ideal
generated by 1 p coincides with I(E, H). Since

1 p I(E, QA) c I(Eo, QA) I (3 QA,

the assertion follows.

THEOREM 3.3. Let I 4: {0} be a closed ideal in H with inner factor 1. Then
there exists a unique continuous epimorphism H + C H/I which is canon-
ical when restricted to H.
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Proof. Let us do the uniqueness part first. Observe that any such epimor-
phism L: H + C H/I must have L(z-nf) (z + I)-n(f + 1) for
f H and n > 0, and since such functions span a dense subspace of
H + C, continuity shows that L must be unique whenever it exists.
By Proposition 3.2, we can find a QA peak set E in g(QC) such that

I 3 I(E, H). In the proof of Proposition 3.2, we mentioned that -/-t(E) is a
peak set for H, so by [17, p. 117], Hl.-l(e), which is isomorphic to
Hc/I(E, H), is a closed subalgebra of C(f-(E)). Our epimorphism will be
the composition of the following maps"

H + C H + C[v-(e Hlv-(e --- H/I(E, H) H/I.

The first map is the restriction of the Gelfand transform. The equality sign
holds because of Wolff’s interpolation theorem QAle- C(E) [20], [21]. The
last map is well defined because I I(E, H).

We now arrive at our main result.

THEOREM 3.4. Let I 4= (0} be a closed ideal in H with inner factor u. Then
I u(J ( H), where J is a closed ideal in H+ C. Also, the quotient
algebras H/J H and (H + C)/J are canonically isomorphic.

Proof Clearly, Io (f H: uf I } is a closed H-ideal because I is,
and I uIo. By construction, I0 has inner factor 1. Theorem 3.3 gives us a
continuous epimorphism

Lt0: H + C H/Io

which is canonical on H, so putting J---ker Lt0, we obtain a closed
(H + C)-ideal whose intersection with H is I0. The map Lzo induces a
topological isomorphism (H + C)/J H/Io, which is the inverse of the
canonical homomorphism H/Io --) (H + C)/J because Lzo is canonical
on H.
An antisymmetric set for H + C is a set S c t’(L) such that whenever

f H + C and fls is real valued, then fls is constant. Bishop’s antisym-
metric decomposition theorem for ideals, which is due to Glicksberg, tells us
that Theorem 3.4 has the following corollary [7, p. 61], [17, p. 115].

COROLLARY 3.5. Let I =/= (0} be a closed H-ideal with inner factor 1. Then
an H function f is an element of I if (and only if) fl s II s for all maximal
antisymmetric sets S for H + C.

Since QC level sets are unions of maximal antisymmetric sets for H + C,
Corollary 3.5 has the following consequence. Corollary 3.6 may also be
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deduced from Theorem 3.4 by applying ilov’s decomposition theorem for
ideals [9, 45].

COROLLARY 3.6. Let I (0) be a closed H-ideal with inner factor 1. Then
an H function f is an element of I if (and only if) fle I1 for all QC level
sets Em.

COROLLARY 3.7. If I (0} is a closed ideal in H with inner factor 1, then
I QA I(E, QA), where E v(h (I, H)).

Proof. By Proposition 3.2, the inner factor of I QA is 1, and by our
description of the dosed ideals in QA, I f3 QA I(E, QA) for some dosed
set E c [(QC) of lifted Lebesgue measure 0, which dearly must contain
v(h (I, H)). On the other hand, if f QA vanishes on v(h (I, H)), then
fl Em II Em trivially for all QC level sets Em, since the maximal ideal space of
Hle is D,--V-l((m }). Corollary 3.6 now tells us that f I. That is,
I QA I(v(h (I, H)), QA), as asserted.
One may wonder whether the ideal J in the formulation of Theorem 3.4 is

uniquely determined by I. This turns out to be the case, indeed, J is the
closure of the (H + C)-ideal generated by J f3 H. Here is our precise
statement.

THEOREM 3.8. The mapping J J H is one-to-one from the set of all
closed (H+ C)-ideals with a((h(J, H+ C)))= 0 onto the set of all
closed H-ideals with inner factor 1. Also, if tr((h(J, H + C))) > O, J tq

H= (0).

Proof. If o(3’(h(J, H + C)))> 0, J cannot contain any nonidentically
vanishing QA function [20], and hence J & H must equal {0}, by Wolff’s
generalized Fatou theorem [21].

Let J be a dosed (H + C)-ideal such that the lifted Lebesgue measure of
E y(h(J, H + C)) is zero. We shall show that J contains the ideal

I(E,H + C) (f H + C" flv-’(e)= 0}.

To this end, observe that if m ,[(QC)\ E, then JlDm Jlv-((m}) is not
contained in any maximal ideal of t’(H + Clom) Din, SO JlDm H +
C[Dm. An application of Silov’s decomposition theorem for ideals [9, 45]
yields J I(E, H + C), as desired. Using this we have J I(E, QA). Since
we already know that I(E, QA) has inner factor 1, we see that J H is a
closed H-ideal with inner factor 1. If I {0} is a closed ideal in H with
inner factor 1, taking the kernel of the epimorphism of Theorem 3.3 provides
us with a closed (H + C)-ideal J whose intersection with H equals I. By
the above remark, o(’t(h(J, H + C))) 0. Hence the mapping J -) J H
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is onto, as asserted. What remains to be shown is that it is one-to-one. To this
end, let I 4: (0) be an arbitrary closed ideal in H with inner factor 1, and let
J and J’ be two closed ideals in H + C such that J N H J’ N H I. We
wish to show that J J’. According to what we have done so far, the lifted
Lebesgue measure of the sets

E "(h(J, H + C)) and E’= "y(h(J’, H + C))

must be zero. From our work above we know that J D I(E, H + C) and
J’ I(E’, H + C). By Wolff’s interpolation result QAie C(E) [20], [21],
we may conclude that H + I(E, H + C) H + C; just take an arbi-
trary function f g + h H + C, find a q QA with q[e hie, and
observe that

f= (g + q) + (h q) H + + C).

Hence H + J H + C, and in the same fashion, H + J’ H + C.
Elementary algebra now tells us that

H/I H/J H =- (H + J)/J (H + C)/J

and

H/I H/J H =- (H + J’)/J’ (H + C)/J’

algebraically, and hence topologically, by the open mapping theorem. These
isomorphisms induce two continuous epimorphisms H + C H/I that
are canonical on H, with kernels J and J’, respectively. Theorem 3.3 tells us
that these two epimorphisms must be identical, and hence J J’. The proof
of the theorem is complete.

Whenever we can get a continuous epimorphism LI: L H/I which is
canonical on H, we can say much more about the closed H-ideal I. If such
a map exists, then L/ker LI-- H/I. Thus we may identify the maximal
ideal spaces of these algebras. But g(L/kerLz) may be identified with
h(kerLI, L), and g(H/I) may be identified with h(I, H) [7, p. 12].
From this it follows that a necessary condition for the existence of such a map
is that h(I, H) be contained in .At’(L). Surprisingly enough, it is also
sufficient. We obtain this result as a corollary of the following theorem, the
proof of which is based on Sheldon Axler’s neat result on factorization of L
functions [4], and its proof, as in [18].

THEOREM 3.9. Let I be an ideal in H + C such that

h(I,H + C) ,/#’(L).
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Then there exists a unique epimorphism .Z’I: L (H+ C)/I which is
canonical on H + C. If I is closed, ,Wt is continuous.

Proof. By Axler’s theorem, for each f L, there exists a Blaschke
product b such that bf H + C. We define Z’z as follows:

.z(f ) (b + I)-i(bf + I).

Note that (b + 1) -1 exists since h(I, H0 + C) c d/l(L0) and IBI 1 on
’(L). We will show that the choice of the Blaschke product b does not
affect the definition of .WI. Suppose that we have f L00 and Blaschke
products b and c such that bf and cf are in H + C. Then

( + )-(f + ) ( + )-(c + )-(cf + )
(+)-x( -c+I) (b+I)(cf+I)

(c + I)-l(cf + I).

Thus at is well defined, and in the same way one checks that it is a
homomorphism. That .W1 is canonical on H0 + C is obvious.

For the uniqueness, let L: L (H + C)/I be an arbitrary epimor-
phism that is canonical on H + C. Then for f L and a Blaschke product
b with bf H + C,

(b + I)L(f ) L(b)L(f ) L(bf ) bf + I,

so
From now on, we assume 1 is dosed. The kernel of a1 is the ideal

J ( f L: bf I for some Blaschke product b }.

From the proof of Axler’s factorization theorem (see [18]) it follows that J is
closed. The map a induces an algebraic isomorphism

L/J (H + C)/I

which is the inverse of the canonical homomorphism. Since the canonical
homomorphism (H + C)/I --, L/J is continuous, the open mapping theo-
rem states that this isomorphism must be topological, and hence that a1 is
continuous. The proof of the theorem is complete.

COROLLARY 3.10. Let I be a closed ideal in H such that h(I, H)
[(L). Then there exists a unique continuous epimorphism L - H/I which
is canonical on H.
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Proof. An inner function has modulus 1 on the Silov boundary /t’(L);
therefore if it is not invertible in H, then it must vanish somewhere else in
t’(H) \’(L). Consequently, the ideal I must have inner factor 1. Theo-
rem 3.3 provides us with a continuous epimorphism

LI" H + C H/I

which is canonical on H, and if we let J denote its kernel, we obtain a closed
ideal in H + C with

h(J, H + C) h(1, H) C

Defining Li, LOO I .j, where i is the isomorphism (H+ C)/J
H/I induced by Lt and .o’j is as in Theorem 3.9, we get the desired
epimorphism. For the uniqueness, observe that any such epimorphism must
coincide with Lz, o on quotients of inner functions, and since such functions
span a dense subspace of L by the Douglas-Rudin theorem [8, pp. 192-195],
it must by continuity coincide with Lz, zoo everywhere. The proof is complete.

COROLLARY 3.11. Let I be a closed ideal in H with h(I, H
Then I is an intersection of maximal ideals, and h(I, H) is a weak peak
interpolation set for H.

Proof Corollary 3.10 gives us an epimorphism LI, LO" L H/I, and
since it is canonical on H, the intersection of its kernel J ker LI, Loo and
H equals I. Also, since H/I and L/J are canonically isomorphic, they
have the same maximal ideal spaces h( J, L) h(I, H). By a theorem of
ilov [9, {}36], J is an intersection of maximal ideals, and hence the same can
be said about J N H I. Thus the fact that H/I and L/J are canoni-

L Now Lcally isomorphic can be restated as Hlh(i, HOO I<, n). Ih<I, Ho)
C(h(1, H)), making h(1, H) an H interpolation set, and since H is

logmodular on its Silov boundary /t’(L), it follows that h(I, H) is also a
weak peak set [17, p. 216].

At this point, it is certainly reasonable to conjecture that if 1 =/= (0} is a
closed ideal in H with inner factor 1, such that h(I, H) c tt(B) for a
Douglas algebra B, then there exists a continuous epimorphism LI, B: B --+

H/I which is canonical on H. We shall give an example to show that this
is not true in general. Before we do so, we introduce some new terminology
and notation.
A sequence { z } of points of D is said to be thin if

I(Zn- z)/(1 2kZ,,)l 1.
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A Blaschke product associated to a thin sequence is called a thin Blaschke
product. Any point m t’(H)\D which is in the closure of a thin
sequence is called a thin point. We let #" denote the collection of all thin
points in t’(H). It is well known that #" is a union of nontrivial Gleason
parts (see for instance [12]). In [13], Kenneth Hoffman introduced for every
m ’(H) an analytic mapping Lm" D --* ’(H) varying continuously
with m, the image of which is the Gleason part (n) containing m. Hoffman
showed among other things if m #-, then L is a homeomorphism. In fact,
if b is a thin Blaschke product whose zero sequence captures m in its closure,
then o L,,,(z) hz, z D, for some unimodular constant , which we can
take to be 1 by a change of b. It is now also dear that Ho L H,
because if f H, then f o b H is a function such that f Lm f. We
are now ready to give our example of a dosed ideal I in H with inner factor
1 and a Douglas algebra B such that h (1, H) c ’(B), but no continuous
homomorphism of B onto H/I that is canonical on H exists. Let k denote
the singular inner function

k(z) exp((z + l)/(z -1)), zD.

Example 3.12. The ideal kH is closed in H. Define the ideal I by

I= {f H" f oLm kH}
for some m #’; then I is a closed ideal in H with inner factor 1. Since
Ioo o Lm H, L,,, kH. Let B be the smallest Douglas algebra con-
taining the complex conjugates of all thin Blaschke products. In [12] it is
shown that t’(B) t’(H) \ (’t) D). We first show that h(1, H)
gt’(B). Observe that I contains the dosed ideal

so h(I, H) c h(J, H), but since o Lm kH,
The formula

h(I, H) c h(J, H) \#(m).

Lm(dp)(f ) (fo Lm), f H, dp

extends Lm to a continuous mapping t’(H) ’(H). Our next step is to
show that h(J, H) Lm(./ll(H)). To this end, let e h(J, H). Since
I Lm H, the formula (] Lm) (f), f e H, defines a nonzero
complex homomorphism tk on H such that Lm(q,,), as desired. We will
now show that every thin Blaschke product has modulus 1 on

h(J, g) \(m) Lm(d/l(H) \D),
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thereby ensuring that

h(I, H) c h(J, H) \(m) c [(B) [8,p. 375].

By [12], for a thin Blaschke product b, b L,
constant, or

is identically a unimodular

L (z) X 1 z O,

for some a D, h T. In either case, [ o L,,I 1 on .At’(H) \ D.
Now suppose a continuous homomorphism Lx" B --. H/I that is canoni-

cal on H exists. Let b be a thin Blaschke product such that _m(b)= 0,
normalized so that , L,n(Z ) z, z D. Then b (b ’)/(1 ’b) is thin
for all " D [12], and hence b-1 B. Therefore

for all " D. Thus, there exists h r H such that Ilhr + Ill -< C and

hb 1 I. Without loss of generality, we may assume Ilhrll < 2c. Now

()oLm(z) 1 gz)-
z I),

for some f H. But [If, Lml < 2C, so IIfll 2C + 1 for all " D.
Plugging in " z, we see that the fact that k(z) ---, 0 as z --, 1 along the real
axis makes this impossible.

Remarks 3.13. (a) There is a wide variety of closed subalgebras of H
containing QA for which the techniques of this section are applicable. For
instance, the algebra QAs B H for a Douglas algebra B is of this kind.
More explicitly, the analogue of Theorem 3.4 states that every dosed ideal of
QAs has the form u(J c QAs), where u is an inner function, and J is a
closed ideal in the algebra QAs + C B (H + C). This description is
possible because an argument similar to that of Lemma 2.3 shows that QAs
has the f-property in the sense of Havin. However, the obvious analogue of
Corollary 3.10, which would state that if I is a closed QAs-ideal with inner
factor 1 and h(I, QAs) c g(Qs), where Qs B B, there is a continuous
epimorphism QB --" QA/I that is canonical on QAB, turns out not to be true
in general. A counterexample can be produced along the lines of Example
3.12. Let COP be the closed subalgebra of H consisting of those functions
that are constant on all Gleason parts other than D. It is easy to check that
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COP + C is a dosed subalgebra of L, knowing that H + C is. In COP,
every closed ideal with inner factor 1 has the form J N COP, where J is a
closed ideal in COP + C. We cannot get the general statement for arbitrary
dosed ideals, because COP does not have the f-property [2].

(b) One may wonder if in Corollary 3.5 we may localize to the Gleason
parts instead of the maximal antisymmetric sets for H + C. We shall see that
this is not possible, and indeed, one may not even localize to the COP level
sets, which are those sets in ’(H) where COP functions are constant.
Donald Sarason has observed that COP contains an infinite Blaschke product
b (see [2]). Let J be the closed principal ideal b2(H + C), which is proper
because b is not invertible in H + C, and put I J N H, which has inner
factor 1. Clearly, [s IIs on every COP level set S, but since b isn’t
invertible in H + C, b cannot be in J b2(H + C).

(c) An open problem of Norman Ailing [1] asks for a complete description
of all closed prime ideals in H. It is conjectured that if P is a closed prime
ideal in H, other than {0}, then P is either maximal, or there exists an
m t’(H) \ D with nontrivial Gleason part (m) such that P { f H:
fl(,, 0). Using Theorem 3.4 and certain facts about uniform algebras it is
possible to show that the following is true. If P is a closed nonzero nonmaxi-
mal prime ideal in H, then there exists a unique maximal antisymmetric set
S for H + C such that if fl s P[ s, then f P for any f H. A proof of
this can be devised using Bishop’s construction of maximal antisymmetric sets
[5] together with Theorem 3.4 and the observation that if A is a uniform
algebra on X and P is a closed prime ideal of A, then there is a unique
A A, level set F c X such that f(F) 0 implies f P.
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