ORIENTATION REVERSING AUTOMORPHISMS OF RIEMANN SURFACES

EMILIO BUJALANCE¹ AND ANTONIO F. COSTA¹

It was shown by Jakob Nielsen [N] that the fixed point data determines an orientation preserving automorphism of prime order on a given compact Riemann surface up to topological conjugacy. In this paper we classify up to topological conjugation the orientation reversing automorphisms of order 2p, for p prime, on compact Riemann surfaces of genus $g_0 \ge 2$. In 1979, Robert Zarrow studied this classification (see [Z1] and [Z2]). However we have found some errors in his works.

We separate our study in two cases: when the automorphisms have order 4 and when the automorphisms have order 2p, with p an odd prime. In the first case we have proved the following theorem:

THEOREM 1. Let X be a Riemann surface, suppose that ϕ_1 and ϕ_2 are two orientation reversing automorphisms of X such that ϕ_1^2 and ϕ_2^2 have order 2 and they have fixed points. Then ϕ_1 and ϕ_2 are conjugate if and only if ϕ_1^2 and ϕ_2^2 have the same number of fixed points.

The above theorem agrees with Theorem 1.1 of [Z1] but if the considered automorphisms have fixed point free squares and $g_0 \equiv 1 \pmod{4}$ then we find two conjugacy classes instead of one as Zarrow claimed (see Theorem 2).

For the automorphisms of order 2p with p an odd prime we have established the following result:

THEOREM 3. Let X be a Riemann surface and suppose that ϕ_1 and ϕ_2 are two orientation reversing automorphisms of order 2p where p is an odd prime. Then ϕ_1 and ϕ_2 are conjugate if and only if (1) $X/\langle \phi_1 \rangle$ and $X/\langle \phi_2 \rangle$ are homeomorphic, (2) ϕ_1^2 and ϕ_2^2 are conjugate and (3) the action of ϕ_1^2 on Fix ϕ_1^p (fixed point set of ϕ_1^p) is conjugate to the action of ϕ_2^2 on Fix ϕ_2^p .

The conditions of this theorem are different to those proposed in [Z2]. However in the example in Section 3 we show that the conditions of Zarrow's statement are not sufficient.

Received February 10, 1992; received in revised form February 2, 1993. 1991 Mathematics Subject Classification. Primary 30F10; Secondary 57M60.

¹Partially supported by DGICYT PB89-0201 and Science Program C.E.E.

1. NEC groups and automorphisms of NEC groups

A non-euclidean crystallographic group (NEC group) is a discrete subgroup Γ of the group of isometries of the hyperbolic plane H^2 (including the orientation reversing isometries, namely reflections and glide reflections) with compact quotient space.

NEC groups may be classified according to their signatures [M]. The signature of an NEC group Γ is a symbol of the form

$$(g, \pm, [m_1, \ldots, m_t], \{(n_{i_1}, \ldots, n_{is_i}), i = 1, \ldots, k\})$$

where g is the genus of the surface H^2/Γ , the sign + or - indicates whether the surface is orientable or non-orientable, the $m_i \ge 0$ (proper periods) represent the branching indices over the interior points of H^2/Γ by the projection p: $H^2 \to H^2/\Gamma$, the $n_{ij} \ge 2$ (linked periods) represent the branching indices over the points of the boundary of the surface under the projection p, and k is the number of boundary components of H^2/Γ . If $s_i = 0$ then the ith bracket is called empty and denoted by ().

The groups Γ with sign + in the signature have a canonical presentation given by generators (canonical system of generators):

$$x_i, i = 1, ..., t$$
 (elliptic generators)
 $e_i, i = 1, ..., k$ (boundary generators)
 $c_{ij}, i = 1, ..., k, j = 0, ..., s_i$ (reflection generators)
 $a_j, b_j = 1, ..., g$ (hyperbolic generators)

and relations

$$x_i^{m_i} = 1, i = 1, ..., t$$

$$c_{is_i} = e_i^{-1} c_{i0} e_i, i = 1, ..., k$$

$$c_{ij-1}^2 = c_{ij}^2 = \left(c_{ij-1} c_{ij}\right)^{n_{ij}} = 1, i = 1, ..., k, j = 1, ..., s_i$$

$$e_1 ... e_k x_1 ... x_t a_1 b_1 a_1^{-1} b_1^{-1} ... a_g b_g a_g^{-1} b_g^{-1} = 1 (long relation)$$

If the group Γ has sign – in its signature it has the same presentation replacing the hyperbolic generators by the glide-reflections d_j , $j = 1 \dots g$ and the long relation by

$$e_1 \dots e_k x_1 \dots x_t d_1^2 \dots d_g^2 = 1.$$

From the results of Singerman [S] if ϕ is an automorphism of the surface H^2/Γ then there exists an NEC group Γ' such that $\Gamma \triangleleft \Gamma'$, and $\Gamma'/\Gamma \approx \langle \phi \rangle$.

In our study, the knowledge of some special types of automorphisms of NEC groups will be important.

Let Γ be an NEC group with sign + in its signature and $x_i, e_i, c_{ij}, a_j, b_j$ be a canonical system of generators then the automorphisms to be used are:

 ω defined by $\omega(a_1) = a_1b_1$ and $\omega(y) = y$ for every canonical generator y different from a_1 .

 ξ defined by $\hat{\xi}(a_1) = a_1b_1$, $\xi(b_1) = a_1^{-1}$ and $\xi(y) = y$ for every canonical generator different from a_1 and b_1 .

 v_j defined by $v_j(a_j) = a_{j+1}$, $v_j(b_j) = b_{j+1}$, $v_j(a_{j+1}) = c_{j+1}^{-1}a_jc_{j+1}$, $v_j(b_{j+1}) = c_{j+1}^{-1}b_jc_{j+1}$, where $c_{j+1} = [a_{j+1}, b_{j+1}]$ and $v_j(y) = y$ for every

canonical generator y different from a_j , b_j , a_{j+1} and b_{j+1} . μ defined by $\mu(a_1) = a_2 a_1$, $\mu(a_2) = b_1 a_2 b_1^{-1}$, $\mu(b_1) = b_1$, $\mu(b_2) = a_2 b_2 a_2^{-1} b_1^{-1}$, $\mu(y) = a_2 y a_2^{-1}$ where y is an elliptic, reflection, boundary or hyperbolic generator different from a_1, b_1, a_2, b_2 .

 σ defined by $\sigma(x_t) = a_1^{-1} x_t a_1$, $\sigma(a_1) = [a_1^{-1}, x_t^{-1}] a_1$, $\sigma(b_1) = b_1 a_1^{-1} x_t a_1$, $\sigma(y) = y$ for every canonical generator different from x_t , a_1 and b_1 .

If $s_i = s_{i+1} = 0$, then we define λ_i by $\lambda_i(e_i) = e_i e_{i+1} e_i^{-1}$, $\lambda_i(e_{i+1}) = e_i$, $\lambda_i(c_{i0}) = e_i c_{(i+1)0} e_i^{-1}, \ \lambda_i(c_{(i+1)0}) = c_{i0}, \ \lambda_i(y) = y$ for every canonical generator y different from c_{i0} , $c_{(i+1)0}$, e_i and e_{i+1} .

Assume that t = 0; then we can define the automorphism π , by

$$\pi(e_k) = a_1^{-1} e_k a_1, \qquad \pi(c_{ki}) = a_1^{-1} c_{ki} a_1,$$

$$\pi(a_1) = \left[a_1^{-1}, e_k^{-1} \right] a_1, \qquad \pi(b_1) = b_1 a_1^{-1} e_k, a_1,$$

 $\pi(y) = y$ for every canonical generator y different from e_k , c_{ki} , a_1 and b_1 . If the sign in the signature of Γ is - and x_i, e_i, c_{ij}, d_j is a canonical system of generators then the automorphisms to be used are:

 α_j defined by $\alpha_j(d_j) = d_j^2 d_{j+1} d_j^{-2}$, $\alpha_j(d_{j+1}) = d_j$, $\alpha_j(y) = y$ for every canonical generator y different from d_j and d_{j+1} .

 β_j defined by $\beta_j(d_j) = d_j d_{j+1}^{-1} d_j^{-1}, \quad \beta_j(d_{j+1}) = d_j d_{j+1}^2, \quad \beta_j(y) = y$ for every canonical generator y different from d_j and d_{j+1} . γ defined by $\gamma(d_1) = x_t d_1, \quad \gamma(x_t) = x_t d_1 x_t^{-1} d_1^{-1} x_t^{-1}, \quad \gamma(y) = y$ for every cononical generator $\gamma(x_t) = x_t d_1 x_t^{-1} d_1^{-1} x_t^{-1}, \quad \gamma(y) = y$ for every

canonical generator y different from d_1 and x_t .

Assume that $s_i = s_{i+1} = 0$, then we can define the automorphism δ_i by

$$\delta_i(e_i) = e_i e_{i+1} e_i^{-1}, \quad \delta_i(e_{i+1}) = e_i, \quad \delta_i(c_{i0}) = e_i c_{(i+1)0} e_i^{-1},$$

$$\delta_i(c_{(i+1)0}) = c_{i0},$$

 $\delta_i(y) = y$ for every canonical generator y different from $c_{i0}, c_{(i+1)0}, e_i$ and e_{i+1} .

Assume that t=0 and $s_k=0$; then we can consider the automorphism ε defined by

$$\varepsilon(d_1) = e_k d_1, \qquad \varepsilon(e_k) = e_k d_1 e_k^{-1} d_1^{-1} e_k^{-1}, \quad \varepsilon(c_{k0}) = e_k d_1 c_{k0} d_1^{-1} e_k^{-1},$$

 $\varepsilon(y)=y$ for every canonical generator y different from $d_1,\,c_{k0}$ and $e_k.$

2. Orientation reversing automorphisms of order 4

First let us prove Theorem 1 of the introduction.

Proof of Theorem 1. It is clear that if ϕ_1 is conjugate to ϕ_2 then ϕ_1^2 and ϕ_2^2 have the same number of fixed points.

Suppose now that #Fix $\phi_1^2 = \text{\#Fix } \phi_2^2$. Assume $X = H^2/\Gamma$, and that Γ_1, Γ_2 are NEC groups such that $\Gamma_1/\Gamma \approx \langle \phi_1 \rangle$, $\Gamma_2/\Gamma \approx \langle \phi_2 \rangle$ then the signatures of Γ_1 and Γ_2 are

$$(g_i, \pm, [(2)^{r_i}(4)^{q_i}], \{()^{t_{ij}}\}), \quad j = 1...t, \quad i = 1, 2$$

(see Chapter II of [BEGG]).

Let θ_i : $\Gamma_i \to Z_4 \approx \langle \phi_i \rangle \approx \Gamma_i/\Gamma$ be the natural epimorphism and let x_i, e_i, c_j, a_i, b_i (or d_i according to the sign in the signature) be a canonical system of generators of Γ_i .

Let us prove that t_{ij} must be 0. If $t_{ij} \neq 0$ then the reflection generators c_{j0} satisfy $\theta_i(c_{j0}) = \overline{2}$. If $r_i \neq 0$, $\theta_i(x_j) = \overline{2}$ for x_j some elliptic canonical generator and this contradicts the orientability character of X (see [HS]) and if $r_i = 0$ then some generator d_i , a_i , b_i or x_i must be mapped on $\overline{1}$ by θ_i (because θ_i is an epimorphism) and this also contradicts the fact that X is orientable. Then $t_{1j} = t_{2j} = 0$ $j = 1 \dots t$. By the orientability of X, since ϕ_2 is orientation reversing, the sign in the signature must be — and each $q_i = 0$. Since ϕ_1^2 and ϕ_2^2 have the same number of fixed points, $r_1 = r_2$ and by Riemann-Hurwitz formulae $g_1 = g_2$. Then the signature of Γ_1 and Γ_2 is

$$(g, -, [(2)^r])$$
 with $r \neq 0$.

The epimorphisms θ_i necessarily satisfy $\theta_i(d_j) = \overline{1}$ or $\overline{3}$ for every glide reflection generator of Γ_i and $\theta_i(x_j) = \overline{2}$ for the elliptic generators. Using the α_j automorphisms of Γ_i defined in §1, we can order the generators d_j in such a way that: $\theta_i(d_j) = \overline{3}, j = 1, \ldots, m_i, \theta_i(d_j) = \overline{1}, j = m_i + 1, \ldots, g, \theta_i(x_j) = \overline{2}, j = 1, \ldots, r.$

If $m_i = 0$ or g, then by an automorphism of Z_4 , $\theta_i(d_i) = \overline{3}$ for every j.

If $m_i \neq 0$, g then, since $r \neq 0$, using automorphisms γ , α_j of §1 we can construct a new system of generators of Γ_i such that $m_i = g$. Thus we can find an isomorphism $\psi \colon \Gamma_1 \to \Gamma_2$ such that $\theta_1 = \theta_2 \psi$ and ϕ_1 is conjugated to ϕ_2 (see Theorem 3 of [M]).

THEOREM 2. Let X be a Riemann surface of genus $g_0 \ge 2$. If $g_0 \equiv 1 \pmod{4}$ there are two conjugacy classes of orientation reversing automorphisms of order 4 having squares that are fixed point free automorphisms of X; if g_0 is not congruent to 1 modulo 4 then there are no such automorphisms.

Proof. Let X be H^2/Γ and ϕ an orientation reversing automorphism of order 4 of X and such that ϕ^2 does not have fixed points. If $\Gamma'/\Gamma \approx \langle \phi \rangle$ then by the same reason as in the proof of Theorem 1 the signature of Γ' is $(g,-,[-],\{-\})$. Let $\theta\colon \Gamma'\to Z_4\approx \langle \phi \rangle \approx \Gamma'/\Gamma$ be the natural epimorphism. Since $\theta(d_i)=\bar{1}$ or $\bar{3}$ for $i=1,\ldots,g$ then g must be even and so g_0 is congruent to 1 modulo 4.

Assume that $\theta(d_j) = \overline{1}$ and $\theta(d_{j+1}) = \overline{1}$, with 0 < j < g - 1. Then using the automorphism β_j of Γ' (see §1) we have $\theta(\beta_j(d_j)) = \theta(\beta_j(d_{j+1})) = \overline{3}$. If there is an even number of generators d_i sent by θ to $\overline{1}$ then using the automorphisms α_j of §1 and the β_j we can obtain a new system of generators of Γ' such that $\theta(d'_j) = \overline{3}$ for $j = 1, \ldots, g$. If there is an odd number of d_i sent to $\overline{1}$ by the same method we can obtain d'_j , $j = 1, \ldots, g$ such that $\theta(d'_j) = \overline{3}$ $j = 1, \ldots, g - 1$ and $\theta(d_g) = \overline{1}$.

Then there are at most two conjugacy classes of automorphisms satisfying the conditions of the theorem.

In order to finish the proof let us take two automorphisms ϕ_1 , ϕ_2 satisfying the conditions of the theorem. Let θ_1 and θ_2 be the epimorphisms defined by ϕ_1 and ϕ_2 and assume that $\theta_1(d_j) = \overline{3}$ for $j = 1, \ldots, g$ and $\theta_2(d_j) = \overline{3}$ for $j = 1, \ldots, g - 1$, $\theta_2(d_g) = \overline{1}$.

Then θ_2 can be defined by $\theta_2(y) = \overline{3}\langle d_1 \dots d_g, y \rangle + \overline{2}\langle d_g, y \rangle$; $y \in \Gamma_1$, where $\langle \cdot, \cdot \rangle$ is the intersection number modulo 2. If there is an isomorphism $\psi \colon \Gamma_1 \to \Gamma_2$ such that $\theta_1 = \theta_2 \psi$ then $\psi(d_1), \dots, \psi(d_g)$ will be a system of generators of Γ_2 and $\theta_2(\psi(d_j)) = \overline{3}$ for $j = 1, \dots, g$. Then $\langle d_g, \psi(d_j) \rangle = 0$ for every j, which is impossible. Therefore ϕ_1 and ϕ_2 are not conjugate.

3. Orientation reversing automorphisms of order 2p, for p an odd prime

Let X be a Riemann surface and ϕ an orientation reversing automorphism of order 2p with p an odd prime. The set of fixed points of ϕ^p , Fix ϕ^p , consists of finitely many disjoint closed curves and the orientation preserving automorphism ϕ^2 of order p acts on Fix ϕ^p .

Proof of Theorem 3. If ϕ_1 is a conjugate to ϕ_2 then it is clear that $X/\langle \phi_1 \rangle$ is homeomorphic to $X/\langle \phi_2 \rangle$, ϕ_1^2 and ϕ_2^2 are conjugate and $\phi_1^2|_{\text{Fix }\phi_1^p}$ is also conjugate to $\phi_2^2|_{\text{Fix }\phi_2^p}$.

Let ϕ be an automorphism of X of order 2p. If $X = H^2/\Gamma$, let Γ_1 be an NEC group such that $\langle \phi \rangle \approx \Gamma_1/\Gamma$ and θ : $\Gamma_1 \to Z_{2p} \approx \langle \phi \rangle \approx \Gamma_1/\Gamma$ be the natural projection. To prove the converse of Theorem 3 it is enough to show that θ is completely determined by the topological type of $X/\langle \phi \rangle$, the conjugation class of ϕ^2 and the action of ϕ^2 on Fix ϕ^p .

By the results in Chapter 2 of [BEGG] the signature of Γ_1 is

$$(g, \pm, [(2)^r, (p)^s, (2p)^q], \{()^v\})$$

Since ϕ is orientation reversing there exists an orientation reversing element in Γ_1 and the image under θ of such an element must be a generator of Z_{2p} or $\bar{p} \in Z_{2p}$ because X is orientable. Using the above orientation reversing element, the results of [HS] and the orientability of X it is easy to obtain that r = q = 0.

Case 1. s > 0. In this case the signature of Γ_1 is $(g, \pm, \lceil (p)^s \rceil, \{(\)^v \})$. Subcase 1. The sign in the signature of Γ_1 is -. In other words the signature of Γ_1 is $(g, -, \lceil (p)^s \rceil, (\)^v \}$). Let $d_i, i = 1, \ldots, g, x_i, i = 1, \ldots, s, e_i, i = 1, \ldots, v$ be a canonical system of generators of the NEC group Γ_1 . Then

$$\begin{split} &\theta(d_i) = r_i \in Z_{2p}, \text{ with } r_i \text{ odd, } i = 1, \dots, g, \\ &\theta(x_i) = \overline{1}_i \in Z_{2p}, \text{ with } \overline{1}_i \text{ even, } i = 1, \dots, s, \\ &\theta(e_i) = \overline{k}_i \in Z_{2p}, \text{ with } \overline{k}_i \text{ even, } i = 1, \dots, v, \\ &\theta(c_i) = \overline{p} \in Z_{2p}, i = 1, \dots, v. \end{split}$$

The conjugacy class of ϕ^2 completely determines $\theta(x_i)$ for $i=1,\ldots,s$ (up to order) and the action of ϕ^2 on Fix ϕ^p determines $\theta(e_i)$ up the order of e_1,\ldots,e_v but the automorphism δ_i tells us that such order is not important. In order to finish this case we will find a new set of glide reflection generators for Γ_1 such that the image under θ is completely determined by the data. Using the automorphisms α_i of §1 we can change the order of the d_i 's to obtain $\theta(d_j) = \overline{1}, j = m, \ldots, g$ and $\theta(d_j) \neq \overline{1}$ for each j from 1 to m-1. Assume $m \neq 1$. Since s > 0 there is an e > 0 such that $\theta(x_s)^e \theta(d_1) = \overline{1}$. With the automorphism $(\gamma \alpha_1 \gamma \alpha_1)^e$ we obtain a new system of generators d_1', \ldots, d_g' such that $\theta(d_j') = \theta(d_j), j = m, \ldots, g$ and $\theta(d_1') = \overline{1}$. Reordering the d_j' we have a new system of generators such that $\theta(d_{m-1}') = \cdots = \theta(d_g') = \overline{1}$. Repeating this process we can arrive at a new system d_1, \ldots, d_g

such that $\theta(d_2) = \cdots = \theta(d_g) = \overline{1}$ and $\theta(d_1)$ is determined by the relation

$$e_1 \dots e_v x_1 \dots x_s d_1^2 \dots d_g^2 = 1$$

and by the fact that $\theta(d_1) = \bar{f}$ with f odd.

Subcase 2. Signature with sign +. In this case the signature is $(g; +; [(p)^s]; \{(\)^v\})$. Let $a_i, b_i, i = 1, \ldots, g, x_i, i = 1, \ldots, s, e_i, i = 1, \ldots, v$ be a canonical system of generators of Γ_1 . As in subcase 1, $\theta(x_i)$ and $\theta(e_i)$ are determined by the conjugation class of ϕ^2 and the action of ϕ^2 on Fix ϕ^p . Using the automorphisms ω , ξ , ν_j , μ and σ we can choose the generators a_i, b_i in order to obtain $\theta(a_i) = \theta(b_i) = \overline{1}$ (compare with [H]).

Case 1. s = 0

Subcase 1. v>0 and there exists a generator e_i of Γ_1 such that $\theta(e_i)\neq \overline{0}$. Using the automorphisms λ_i and δ_i we can assume $\theta(e_i)\neq \overline{0}$. Then the proof of the two subcases of case 1 can be modified for this subcase replacing the automorphism σ by π if the sign is + in the signature of Γ_1 and the automorphism γ by ε if the sign is -.

Subcase 2. v = 0 or $\theta(e_i) = \overline{0}$ for every generator e_i of Γ_1 . Since ϕ is orientation reversing the sign in the signature of Γ_1 must be – in order for θ to be an epimorphism. Then the signature of Γ_1 is $(g, -, [], \{()^v \})$. Let $d_1, \ldots, d_g, e_1, \ldots, e_v$ be a system of generators. In this case we have $\theta(e_1) =$ $\cdots = \theta(e_n) = \overline{0}$. If g = 2, $\theta(d_1)$ and $\theta(d_2)$ are completely determined by the long relation and the fact that $\theta(d_i) = e$ with e odd, up automorphism in Z_{2p} . Assume now that $g \ge 3$. Since θ is an epimorphism there is a d_i such that $\theta(d_i)$ is a generator of Z_{2p} and by automorphism of Z_{2p} we can assume that $\theta(d_i) = \overline{1}$. After use of the automorphisms α_i we can assume $\theta(d_m) = \overline{1}$ $\cdots = \theta(d_g) = \overline{1}$ and $\theta(d_j) \neq \overline{1}$ for every j from 1 to m-1. There exists $e \in \{1, \dots, (p-1)\}$ such that $\theta(d_{m-1}) + \overline{2e} = \overline{1}$; then the automorphism $(\beta_{m-1} \cdot \beta_{m-2} \cdot \alpha_{m-2} \cdot \alpha_{m-1})^e$ gives us a new system of generators $d_1, \ldots, d_g, e_1, \ldots, e_v$ such that $\theta(d_{m-1}) = \cdots = \theta(d_g) = \overline{1}$. Repeating the process we obtain a system of generators such that $\theta(e_1) = \cdots = \theta(e_n) = \overline{0}$, $\theta(d_2) = \cdots = \theta(d_g) = \overline{1}$ and $\theta(d_1)$ is determined by the long relation and the fact that $\theta(d_1) = \bar{e}$ where e is odd.

In Zarrow's paper [Z2] the condition 3 of Theorem 3 is replaced by ϕ_1^p and ϕ_2^p are conjugate. The next example shows the problems of his condition:

Example. Let Γ be an NEC group of signature $(0, +, [\quad], \{(\quad)^3\})$ and let $e_1, e_2, e_3, c_{10}, c_{20}, c_{30}$ be a canonical system of generators for Γ . Consider the epimorphism $\theta_1 \colon \Gamma \to Z_{10}$ defined by $\theta_1(e_1) = \overline{0}$, $\theta_1(e_2) = \overline{2}$, $\theta_1(e_3) = \overline{8}$, $\theta_1(c_{i0}) = \overline{5}$, i = 1, 2, 3, and $\theta_2 \colon \Gamma \to Z_{10}$ defined by $\theta_2(e_1) = \overline{0}$, $\theta_2(e_2) = \overline{4}$, $\theta_2(e_3) = \overline{6}$, $\theta_2(c_{i0}) = \overline{5}$, i = 1, 2, 3. Then $\ker \theta_1 = \ker \theta_2$ and let X be $H^2/\ker \theta_1 = H^2/\ker \theta_2$. The epimorphisms θ_1 and θ_2 define two orientation reversing automorphisms ϕ_1 and ϕ_2 of order 10 on X. The automorphisms

 ϕ_1 and ϕ_2 satisfy $X/\langle\phi_1\rangle\approx X/\langle\phi_2\rangle\approx H^2/\Gamma_1$ (sphere with three holes), ϕ_1^2 and ϕ_2^2 are conjugate (they are two fixed point free automorphisms of order five on X) and ϕ_1^5 and ϕ_2^5 are conjugate because they are two orientation reversing involutions on X with seven fixed curves; i.e. ϕ_1 and ϕ_2 satisfy the condition of Zarrow. The action of ϕ_1 on Fix ϕ_1^5 permutes cyclically five fixed curves of ϕ_1^5 , there is a fixed curve of ϕ_1^5 rotating $2\pi/5$ and the other one rotating $-2\pi/5$. The action of ϕ_2 on Fix ϕ_2^5 permutes cyclically five curves, there is a curve of Fix ϕ_2^5 rotating $4\pi/5$ and the other one rotating $-4\pi/5$. Then the action of ϕ_1 on Fix ϕ_1^5 is not conjugate to the action of ϕ_2 on Fix ϕ_2^5 and ϕ_1 is not conjugate to ϕ_2 .

REFERENCES

- [BEGG] E. BUJALANCE, J.J. ETAYO, J.M. GAMBOA and G. GROMADZKI, Automorphism groups of compact bordered Klein surfaces. Lecture Notes in Mathematics 1439, Springer-Verlag, Berlin, 1990.
- [H] W.J. HARVEY, On branch loci in Teichmüller space, Trans. Amer. Math. Soc. 153 (1971), 387-399.
- [HS] H. Hoare and D. Singerman, "The orientability of subgroups of plane groups" in *Groups*, St Andrews 1981, London Math. Soc. lecture Notes 71, pp. 221-227.
- [M] A.M. Macbeath, The classification of non-Euclidean plane crystallographic groups, Canad. J. Math 19 (1967), 1192–1205.
- [N] J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Danske Vid Selsk. Mat-Fys. Medd. 1 (1937), 1-77.
- [Z1] R. ZARROW, Orientation reversing square roots of involutions, Illinois J. Math., 23 (1979), 71–80.
- [Z2] _____, Orientation reversing maps of surfaces, Illinois J. Math., 23 (1979), 82-92.

Universidad Nacional de Educacion a Distancia Madrid, Spain