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ASYMMETRIC TENT MAP EXPANSIONS II.
PURELY PERIODIC POINTS

J.C. LAGARIAS, H.A. PORTA AND K.B. STOLARSKY

1. Introduction

The family of asymmetric tent maps T,: [0, 1] [0, 1] for a > 1 is

ox
T(x)

a 1(1 -x)

for0 <_ x <_ 1/a.
for 1/a _< x _< 1. (1.1)

This family of mappings has been extensively studied as a simple family of
one-dimensional dynamical systems, and as a one-dimensional lattice system
in statistical mechanics. They give expansions of real numbers x [0, 1],
called T,-expansions, which are analogous to the decimal expansion. These
are:

X E (-- 1) jOy-(nO+ +nJ)[3j, (1.2)
j>O

where /3 a/(a 1) and the nonnegative integers ni are specified by the
itinerary I(x)= L"RLnRLn..., which encodes the successive iterates
T(’)(x) as being in the left interval [0, 1/a] (labelled L) or the half-open
right interval (1/a, 1] (labelled R). For certain x the expansion (1.2) contains
only finitely many R’s, and the corresponding itinerary is then I(x) L"oR

RnRL; these numbers x are exactly the preperiodic points of 0, de-
noted Per0(T,).

Part I studied the set Per(T) of the eventually periodic points of T and
proved that for certain values of a, called special Pisot numbers, one has

Per(L) (a) f3 [0, 1].

Special Pisot numbers are those real numbers a such that a and a/(a- 1)
are both Pisot numbers. (Recall that a is a Pisot number if a > 1 is a real
algebraic integer such that all algebraic conjugates tr(a) of a with tr(a) 4: a
satisfy Itr(a)l < 1.) Part I showed that there exist only a finite number of
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Table 1. Special Pisot Numbers (a,/3)
a=2 /3=2
X-2 X-2

a 1.75487 /3 2.32471 +

X3-2X2+x- X3-3X2+2X-

a 1.61803 + /3 2.61803 +

X2-X- X2-3X+

a 1.46557 + /3 3.14789 +

X3-X2- X3-4X2+3X-

a 1.38027 + /3 3.62965 +

X4-X3- X4-5X3+6X2-4X+

a 1.32471 + /3 4.07959 +

X3-X- X3-5X2+4X-

special Pisot numbers and exhibited eleven such numbers, which are listed in
Table 1 below. Since a is a special Pisot number if and only if/3 a/(a 1)
is also, Table 1 lists only the numbers with 1 < a < 2, the remainder being
given by the corresponding/3’s.

In this paper we study the sets

Fix(L ) {x" Ta(rn)(x) X for some m > 0}
{purely periodic points},

Pero(L) {x" ()r (x) 0 for some k >_ 0}
points with terminating T.-expansion},

when a is a special Pisot number.
In 2 we first show that for all special Pisot numbers

Fix(L) - {3’ Q(a)" y [0,1] and tr(y)

for all embeddings tr" Q(a) - C with tr(a) a}, (1.3)

where each A is a compact subset of C which is the attractor of a certain
hyperbolic iterated function system (Theorem 2.1). Hyperbolic iterated func-
tion systems are defined in Barnsley and Demko (1985) and Barnsley (1988);
see also 2. We examine when equality holds. We show for a 2 that

Fix(T2) p/q" 2 of q and 21p and 0 < p < q}

in this case (1.3) is a strict inclusion, since its right side is Q [0,1]. However
when a is a special Pisot number generating either a real quadratic field or a
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non-totally-real cubic field, we prove that equality holds in (1.3). In particu-
lar, for a (1 + V)/2, we have

Fix(T) (y Q(x/-)" 0 < y < 1 and 4 _<_<- (1.4)

where / denotes the algebraic conjugate of y; a similar characterization
applies to a (3 + x/)/2. We are unable to describe precisely the attrac-
tors A when a generates a non-totally real field; we conjecture however that
each such attractor A is the closure of a bounded open set in C having a
"fractal" boundary. For the remaining two special Pisot numbers of degree 4
in Table 1 we do not know whether equality holds in (1.3) or not.

In 3 we study Per0(T) and related sets. We first show that Per0(T2)
consists of the dyadic rationals in [0, 1]. For the remaining special Pisot
numbers with Q(a) Q, we consider the set of algebraic integer fixpoints

I, {),: y Fix(T) t Or},

where Or is the ring of integers of K Q(a), and prove that I is finite. We
define

Per*(T ) LJ {Per(T,)" ), I,}

where Per(T,) denotes the preperiodic points of 3’, and prove that

Per* (L) Or [0, 1].

In particular Per*(T) is always closed under multiplication and under
addition (mod 1). Now I always contains 0 and in some cases I, {0}, and
then Per0(T) inherits this ring structure. This occurs for a--(1 + x/-ff)/2.
Other special Pisot numbers have larger sets, e.g., a (3 / x/-)/2 has
I {0, (- 1 + x/-)/21.

For comparison we mention some related results in the literature. First,
the characterization (1.4) for Fix(T,) for a (1 + v-)/2 is analogous to that
for real numbers whose continued fraction expansion is purely periodic.
Second, K. Schmidt (1980) studied fl-expansion maps T(x)= fix (mod 1)
and observed that Per0(T*) was closed under multiplication and addition
(mod 1) for certain special values of/3. Solomyak (1991) recently showed that
Per0(T) Z[1/fl] c [0, 1] for a certain class of Pisot numbers. Third,
Moussa, Geronimo and Bessis (1984) characterize Per(T) for monic polyno-
mials T(X) Z[X] acting on C as being those algebraic integers such that
they and all of their algebraic conjugates lie in the Julia set of T. Moussa
(1986) extends this result further to polynomials T with algebraic coefficients.
Compare this with Theorem 2.1 below.
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There remain a number of open questions, including the following.
(1) Obtain the complete list of all special Pisot numbers.
(2) For special Pisot numbers both Per(’l’) and Per*0",,) are closed under

multiplication and under addition (mod 1). If we encode y Per(’l’) (resp.
Per*(T,)) using binary sequences for the itinerary in the form (preperiod,
period), do these addition and multiplication laws have any interesting
structure?

(3) Theorem 2.1 and 2.2 show that for all special Pisot numbers the
denominator of points y Fix(T) go to infinity as the period length p - oo.
What can one say about the distribution of period lengths among y Fix(T)
of denominator B? Equivalently, for y having period p, bound the denomi-
nator from above and below.

(4) Do there exist any a which are not special Pisot numbers, for which
Fix(T) q, where is defined in Theorem 2.1 below?

2. Purely periodic points

Associated to the mapping "1", are the two affine maps on R:

L,,( x) ax, (2.1a)

R(x) a 1 (1 x). (2.1b)

Suppose that a is an algebraic number. Then for each embedding tr:

Q(a) - C such that tr(a) 4: a we have affine maps on C:

L]( x) a)x (2.2a)

o-(a) 1 (1 x). (2.2b)

Since embeddings preserve field operations, if {Si} denotes any sequence of
the operators L, R, and {S} the corresponding sequence of operators
L], R, then for any x Q(a),

y S1S2 Sk(X)

implies that

(2.3)

For any set of affine maps ’= {L1,... Lk} on Rn define the set Fix(,/) to
be the closure of the set of fixed points of all finite products of the members
of ’. In general the set Fix(’) is unbounded. However if the mappings Li
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are all strict contractions, i.e., if

Zi(x) Zi(y)II < tllx yll for some 6 < 1,

then Fix() is compact. In that case is a hyperbolic iterated function
system (hyperbolic IFS) in the sense of Barnsley (1988), and

Fix( )

where A(’) is the attractor of the hyperbolic IFS, which is characterized as
the unique compact subset of Rn satisfying the functional equation

k

A Il Li(A); (2.4)
i=1

cf. Hutchinson (1981), Theorem 1. The name attractor refers to the property
that for any e > 0, the iterates of any point x0 of Rn under any sequence of
maps from ’ are all within distance e of A from some point on.

THEOREM 2.1. For any real algebraic number a > 1,

Fix(T)
___
G {Y’Y Q(a) [0,1] and tr(y) Fix{L, R}

for all embeddings with r(a) 4 a (2.5)

(k) is a fixed point of some SiS2 Sk drawnProof Ify=T, (3,)then 3’
from {L, R}, and (2.3) then implies that tr(y) is a fixed point of SS S
hence is in Fix{L], R}. m

Special Pisot numbers are characterized by the properties:
(i) a and a/(a 1) are algebraic integers which are real and greater

than one.
(ii) For each embedding tr with tr(a) 4: a, both R and L] are contract-

ing maps on C; i.e.,

and
or(a) 1

A consequence of property (ii) is that {R, L]} forms a hyperbolic IFS for all
embeddings tr" Q(a) C with tr(a)4: a. In particular the attractor A

Fix({ L], R}) is compact, consequently any purely periodic point 3’ of "1"
has 3’ and all its conjugates bounded.
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Note that while the fixed point sets satisfy

Fix({ L, R}) a(Fix{ L, R})

holds for all embeddings r" Q(a)--* R, this property is not necessarily
preserved for the closures of the fixed point sets; i.e.,

(Q(a)) o Fix({L=, R} 4= o’[Q(a) o Fix{L, R}]
may occur.
We remark that there exist infinitely many real algebraic numbers a > 1

which are not algebraic integers, such that condition (ii) above holds and all
the attractors A with r(a) 4= a are compact.
Now we study Fix(T) for special Pisot numbers. The simplest case is a 2

and Theorem 2.1 gives Fix(’l’) c Q [0, 1]. In fact this inclusion is strict.

THEOREM 2.2. For a 2 one has

Fix(T2) - 0 < p < q and 21p, 2 + q (2.6)

Proof Set

’= - 0 <p <qand21P, 24q

Given x Fix(’l"2) write its fixed point equation as

X Ljl Jz Li2"(x)2 R2L2 R2

where all Ji >- O. Then

X (- 1)m-12m+jl+j2+ Jmx
m-1

[ ( 1) k- 12k +il + +ik

k=l

so that x p/q where

m-1

P E (-- 1) m+k-12k+jl+
k=l

q 2re+J1 + +Jm + (--1) m.
It is easy to see that 21p. Also 2 + q and 0 < p < q, since the terms in the
sum defining p alternate in sign, strictly increase, the first term is > 2, and
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the last is at most q + 1. On reducing p/q to lowest terms the conditions
2[p, 2 - q are preserved. Hence Fix(T2) c_ .
To show the other inclusion, let y p/q c be given in lowest terms.

Then TE(y)= 2p/q or 2(q- p)/q has the same denominator, so y
must be eventually periodic with period f _< (q 1)/2. Now we argue by
contradiction. If y Fix(T2) then there would exist some TE)(y) Fix(T2)
with y’ T2j+ 1)(y) Fix(T2). Then y’ would have two distinct preimages in
W, namely TEJ)(y) and TEf-1)(y’) Fix(T2) c_ . Now we claim that any
z ’ has exactly one preimage in , which will give a contradiction
showing that y Fix(T2). To prove the claim, write z’= 2p’/q’
with 0 _< p’/q’ < 1/2 and observe that the preimages of z are p’/q’ and
(q’-p’)/q’, and since q’ is odd, exactly one of p’ and q’-p’ is even.

All remaining special Pisot numbers have Q(a) 4= Q. We show that equal-
ity holds in (2.5) for many of them.

THEOREM 2.3. Let a be a special Pisot number such that Q(a) is a real
quadratic field or a non-totally-real cubic field. Then

Fix(T,) ,.:= {y: y Q(a) [0,1] and tr(y) A for all

embeddings with tr (a) #= a (2.7)

Proof Let r denote the right side of (2.7), and suppose that y r.
We show that 3’ Fix(T) by an argument similar to that of Theorem 2.2.

First, is closed under "1". To see this, recall by (2.4) that

A L(A) U R(A)

hence if tr(y) e A then T(tr(y)) e A.
Second, we claim that each element 3’ r has at least one T-preimage

which is in . Here we use the hypotheses on the field Q(a). To prove the
claim, observe first that for a fixed embedding tr with tr(a) #= a, since

A L(A) U R:(A) (2.8)

and (y) A there is some ’ A with either L(’) tr(y) or R(6’)
tr(y). For definiteness suppose L(’) o-(y). (The proof for R(6’) tr(y)
is similar.) Now 6’ tr(Q(a)) so set 6’ tr() for some Q(a). Applying
all automorphisms of Q(a) to this linear equation gives

L](’r(6)) 7"(y) for all embeddings 7". (2.9)

To show 6 r we must check that z(6) A, for all z. This always holds
if - is, the identity, for both R and L map [0, 1] into [0, 1], hence
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L-l(y) [0, 1]. Thus, if Q(a) is a real quadratic field, i5 r. If Q(a) is
a non-totally real cubic field, then the two embeddings with tr(a) 4: a are
complex conjugates, call them tr and , and applying complex conjugation to
(2.8) shows that the attractor A is the complex-conjugate of the attractor A.
Hence

o’(t) A * #() A.

This shows that , proving the claim.
Third, we consider a sequence of preimages Y,Y-I,Y-2,... with

Ta(y_/)-" T-i+I such that all Y-i r. We just showed that such a se-
quence exists, but is not necessarily unique. We claim that the set {7-i: _> 0}
is finite. If so, it has some Y-i Y-j, with > j, hence y is in the cycle
{’Y-i, Y-i+ 1,’", "Y-j}, and y Fix(T), proving the theorem. Incidentally this
implies that each 3’ has exactly one preimage under T in q, for if it
had two, one would not be in a cycle.
To prove this claim, we use the fact, proved in part I, that if a is a special

Pisot number with Q(a) 4: Q then both a and a/(a 1) are units in the
ring of integers of Q(a). Consequently if we define the denominator of
y Q(a) to be the smallest positive d Z such that dFI(X- tr(y))
Z[X], then

1 a-1R-I(x) --x and Ll(x) (1 x)

both do not increase denominators. Hence denominator(y_i) for all > 0 is
bounded above by do denominator(y). Finally since membership in the set

bounds a number ti Q(a) and all of its conjugates, r only contains
finitely many ti Q(a) having denominators < d0. For the lead coefficient
of the minimal polynomial in Z[X] for is < do and the other coefficients
are bounded since all roots tr(6) are bounded. This proves the claim and the
theorem, m

Next we study the attractors for the numbers covered by Theorem 2.3.
The only two real quadratic special Pisot numbers are (1 + V-)/2 and
(3 + V-)/2, and in this case the attractors A have a simple description. For
a real quadratic field, let denote the algebraic conjugate of y.

COROLLARY 2.3a. For a (1 + x/)/2,

Fix(L) 7eq(a)’7 [0,1]and/ 4
1
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For a (3 + V-)/2,

Fix(T) 3’ Q(a)’y [0,1]andT/ 2 ,0

Proof It suffices to show that the attractors A for {L], R} for the two
values of a are exactly the specified intervals. This follows by verifying that
(2.4) holds for these intervals, m

Next we consider the attractors for non-totally real cubic special Pisot
numbers.

CONJECTURE 2.4. For special Pisot numbers such that Q(a) is a non-totally
real cubic field, the complex conjugate attractors A and A are the closure of
their interiors and A A Int(A) has Hausdorff dimension strictly be-
tween one and two.

This conjecture implies that OA is a "fractal" curve of infinite length. As
evidence we exhibit computer plots of some of these attractors A. Figure 2.1
shows the attractor A for a a root of X3 2X2 + X- 1 with the choice
tr(a) .12256 + .74486i. Figure 2.2 shows a magnification of part of this
attractor near 0 by a factor of ten. Certainly this A is not simply connected.
It appears to have positive Lebesgue measure. It is not clear whether the set
of "holes" is dense in A, but we think they are not dense. Figure 2.3 shows
the attractor A for the corresponding /3 to the above, which is a root of
X3- 3X2+ 2X-1, with the corresponding conjugate tr(/3) ".33764-
.56228i. The attractor A appears visually different from A, but appears
consistent with the conjecture.
Under a plausible hypothesis we show that such sets A have Hausdorff

dimension two. Any finite set of similitudes ,a= {Li(x)= aiOix + i" 1 <
< m} of Rn such that each 0 is a rotation and 0 < o < 1 for all is a

hyperbolic IFS with an attractor A(’). Such a set ,a satisfies the open set
condition if there is an open set U in R such that:

(1)
(2)

I,.J r= 1Li(U) U.
For j, Li(U) N Lj(U)= .

Hutchinson (1981) showed that for any finite set ’ of similitudes as above
which satisfies the open set condition the Hausdorff dimension d of its
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FIG. 2.1 The attractor A for tr(a) .12251 + .74486i a root of X 2X + X- 1. (The box
is a square of side 4 centered at zero in C.)

attractor A() is the unique positive solution of

m

E a/d 1. (2.10)
i---1

This dimension d is then also equal to the box dimension of and to the
Lyapunov dimension of ; see Geronimo and Hardin (1989). Falconer
(1987) indicates that the formula (2.10) determining d is sometimes valid
even when the open set condition doesn’t hold. Now for a non-totally real
cubic special Pisot number a, the let {L], R} is a hyperbolic IFS
consisting of similitudes on C with al tr(a)l and a2 ]r(/3)]. Also
al [al 1/2, a2 [fl 1/2 because a and /3 are units in a non-totally real
cubic field and

1 --INQ<:)/Q(a)[ 2

Since 1/a + 1/13 1 this gives

al
2 + a22 1.
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FI6. 2.2 The attractor A in Figure 2.1 magnified by ten. (The box is of side 0.4 centered at zero
in C.)

Comparing this with (2.10), we conclude that if satisfies the open set
condition, then A has Huasdorff dimension two.
Theorems 2.2 and 2.3 cover all special Pisot numbers in Table 1 except for

two numbers of degree 4. For these two numbers the attractors A consist of
one real attractor and a complex conjugate pair of attractors. The hyperbolic
IFS associated to these a do not satisfy the open set condition, because the
corresponding equations (2.10) have no solution d < 1 in the real case and
no solution d < 2 in the complex case. We do not know if the equality
Fix(T) holds for these a or not.
For comparison with the attractors A we mention a set ’ constructed by

Rauzy (1982) which he calls a "morecellement." The set /is the attractor
of an affine hyperbolic IFS associated to the non-totally-real cubic Pisot
number a 1.8392 + satisfying X3 -X2 -X- 1 0. Rauzy constructs ’in connection with the fixed point of the substitution sequence 1 12,
2 - 13, 3 - 1. Other sets that A may resemble are the dragon-fractals in C
constructed in Gilbert (1982).

Finally, we remark that differences between Figures 2.1 and Figure 2.3
might be taken as evidence that the conjugating map taking "1", to ! is
singular, when a is the real root of X3- 2X2 + X- 1. Recall that "1" is
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FIG. 2.3 The attractor A for 0-(/3)= .33764- .56628i a root of X3- 3X + 2X- 1. (The
box is a square of side 4 centered at zero in C.)

topologically conjugate to "l’r for all 3’, but Proppe, Byers and Boyarsky (1983)
showed that the conjugating map is singular whenever y does not equal a
or o

3. Preperiodic points

There is a nice characterization of certain sets of preperiodic points of 1"
for special Pisot numbers a. We begin with the case a 2.

THEOREM 3.1. For a 2, one has

(m )Per0(’l’2) -" n > 0 and 0 < rn < 2 with rn Z (3.1)

Proof Let denote the right side of (3.1). We examine all numbers in
Per(’l2) Q c [0, 1]. The map "1"2 applied to p/q with (p,q)= 1 gives a
rational with denominator q if 2 - q and q/2 if 21q. Theorem 2.2 shows that
the only purely periodic point having denominator dividing a power of 2 is
{0}. Since all rationals are eventually periodic,

___
Per0(’l’2).
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The same observation shows that any odd q > 3 dividing a denominator is
preserved under iteration by "1"2, hence Per0(’l"2)

___ . m

COROLLARY 3. la.
tion (mod 1).

Per0(’l"2) is closed under multiplication and under addi-

Now we turn to the remaining special Pisot numbers a having Q(a) 4= Q.
Let O/ denote the ring of integers of K Q(a) and Perr(’l’,) denote the set
of preperiodic points of a purely periodic point 3’ Fix(’l’). We define

Per*(T) U {Perr(T)" 3’ Fix(T) c O/}
and have the following result.

THEOREM 3.2. Let a be a special Pisot number with K Q(a) 4= Q. Then

is a finite set which always includes 0 and

Per* (T) O/ N [0, 1]. (3.2)

Proof. We showed in part I that for special Pisot numbers a with
Q(a) 4= Q both a and /3 are units in O/. Hence denominator(T(3’))=
denominator(y) for all 3’ Q(a). Since Per(T) Q(ce) N [0, 1] and O/
{3’ Q(a): denominator(y) 1} this proves (3.2).
To see that the set I is finite, observe that any 3’ Fix(’l’) has 3’ and all

its conjugates bounded by Theorem 2.1, since A Fix((L, R)) is com-
pact for special Pisot numbers. Since O/ contains finitely many elements
having all conjugates in any bounded set, (cf. the end of the proof of
Theorem 2.3), I is finite. II

COROLLARY 3.2a. For all special Pisot numbers a, Per*(T) is closed under
multiplication and addition (mod 1).

Proof For a 4= 2 this holds by (3.2) and for a 2 it holds by Corollary
3.1a, since I2 {0}.

One can determine each I, by a finite computation. The quadratic special
Pisot numbers reveal an asymmetry.

COROLLARY 3.2b. For real quadratic special Pisot numbers, if a
(1 + /)/2 then I, {0}, while if a (3 + v-)/2, then I, {0,(-1
+ -)/2}.
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Proof Set y (a + bx/)/2 with a b (mod 2), and use Corollary 2.3a.
For a (1 + v-)/2 one must have

0<a +bx/-_<2

1-
2

_<a-bye- _< 1.

These imply that

_< 2a -< 3

1 < 2b _<
2 (3.3)

Now (3.3) with a b (mod2) has solutions (a,b)= (0,0),(1, 1) and the
second is extraneous, so I {0}.
For a (3 + v-)/2 one must have

0_<a +bye_<2

1- V- _<a-bye- _<0,

and one easily deduces I {0, (-1 + x/-)/2}, m

Similar asymmetries occur for some other special Pisot numbers.
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