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A SHEAF HOMOLOGY THEORY WITH SUPPORTS

PHILIPPE JACOBS

ABSTRACT. We introduce a homology theory with supports and with coefficients in a sheaf. It has a very
explicit description of the chains in terms of a triangulation of an ambient space, making the theory useful
for integration purposes. We prove a Poincaré Duality Theorem that states that our homology modules are
isomorphic to the classical sheaf cohomology modules with supports. This theorem is a main ingredient
in the proof of a criterion on the vanishing of real principal value integrals in terms of cohomology. We
briefly explain how real principal value integrals appear as residues of poles of distributions | f|* and as
coefficients of asymptotic expansions of oscillating integrals.

1. Introduction

In this paper we introduce a sheaf homology theory (with supports) on an open
subspace W of a topological space X. On W we are given a sheaf F of L-modules
and a family ¢ of supports. We use a (locally finite) triangulation ¢ of the “big”
space X and an orientation o of the simplices of ¢ to build our homology L-modules
Hf (W, F,t,0). The triangulation ¢ must subtriangulate the complement of W in X.
The chains of our homology theory are formal sums of products of a coefficient in the
sheaf F and an intersection of a simplex of ¢ with W. If W = X then we get a more
traditional approach to sheaf homology. Note that the triangulation ¢ is finite if X is
compact. This fact can be exploited to prove the equality of integrals on homologous
cycles of our homology theory; see [D-J].

The main result of this paper is a Poincaré Duality Theorem. We assume that
X is a n-dimensional differentiable manifold and that F is locally constant. Then
the theorem states that, under some natural conditions on ¢, ¢ and L, our homol-
ogy L-modules Hf (W, F,t, 0) are isomorphic to the classical sheaf cohomology
modules Hq'}‘i (W, F). Note that this last module is independent of ¢ and o, hence
H?(W, F,t,0) is independent of 7 and o.

If W = X we recover two well-known cases. In the first case we take ¢ equal to
the family of all compact subsets of W. Then our homology modules are isomorphic
to the classical singular homology modules. In the second case we take ¢ equal to
the family of all closed subsets of W. Then our homology modules are isomorphic
to the classical Borel-Moore homology modules [Bo].

Our version of the Poincaré Duality Theorem forms one of the main ingredients
in the proof of the following theorem on the vanishing of principal value integrals.
Let X be a non-singular complex projective algebraic variety defined over R of
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complex dimension m such that X(R) # @. Let w be a rational differential m-
form of degree d on X defined over R. Thus w € I'(U, Q% /]R@’d) for some Zariski
dense open U C X. Let |[div(w)| denote the support of the divisor of w. Let
x: X(R) — {1, —1} be a function that is constant on the connected components of
X (R)—|div(w)|. Letdiv(w) = Y_; B; D;. We formally consider w'/¢ as a multivalued
rational differential form on X and define div(w!'/4) = ¥, o; D; whereo; = B; /d. We
assume that |div(w)| has normal crossings over R, meaning that it has normal crossings
and that each irreducible component containing an R-rational point is defined over
R. Moreover we assume that w'/? has no integral poles, meaning that no o; is a
strictly negative integer. Then we can define PV [y g x|@'/?|, the principal value

integral of x|w'/4| over X (R) as in Langlands paper [L]. This is done as follows.
Choose a finite number of local coordinates {x,: U, — R™},cp for X (R), centered
at p € X(R), such that the U, cover X (R) and on each U,: w = ’g‘px,,”l’(dxp)d,
where &, is a regular function on U), defined over R and nowhere zero on U, and
x7 =1, xp,?” " with y,, € Z. This is possible since |div(w)| has normal crossings
over R. Choose a C* partition of unity {¢,},ep With respect to {Up,},cp. Then
for each p € P: fU,, @p X 1Ep1174|xp|7/4+5|dx, | converges for Re(s) >> 0 and its
meromorphic continuation is holomorphic in s = 0 because w'/¢ has no integral
poles. Then one defines

PV / x| = / 00X 5141, 17145 dlx, |
X® ZpeP U, pAISP P 4 o

where [—]7, means taking the value in s = 0 of the meromorphic continuation of
the integral. This definition is independent of the choices made. Let £(w'/?) be the
locally constant sheaf of C-vectorspaces on X — |div(w)| associated to '/, which
is locally free of rank 1. A non-zero section of £(w!/¢) on a connected open U is an
analytic branch of '/ on U multiplied with a complex number.

mc

(1.1) THEOREM. If H™(X(C) — |div(w)|, L(w'/?)) = O then
PV[ x4 =0.
X (R)

For a nice overview of the proof we refer to [D-J]. The whole proof can be found
in [J].

Now we briefly explain the connection between coefficients of asymptotic expan-
sions of oscillating integrals and residues of poles of distributions | f|*; see [A-V-G,
1L,§71, [I1], [12], [Lae] for more details. The connection of these two with principal
value integrals is worked out in detail in [J2]. Let f: R™ — R be a non-constant real-
analytic function with only isolated singularities. Let ¢: R™ — R be a C*°-function
with compact support. Then one considers the integral

I1(7) := / e ®p(x)dx,
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where 7 is a real parameter, x = (x1,...,Xy,) and dx = dx; A --- Adx,. The
function I (t) has an asymptotic expansion for T — +00,

m—1
1)~ Y Y acal@)r*(no),

a k=0

where the coefficients a; o, are distributions of ¢ and where o runs through a finite set
A of numbers in descending arithmetic progressions. One can write these arithmetic
progressions in terms of the numerical data (N;, v;), i € I, of an embedded resolution
w: Y — R™ of the singularities of f. The set A consists of the numbers in the
arithmetic progressions

—vi i+ —(i+2) fori el

N; ’ N; ’ N;

Now let A be a complex parameter with real part R(A) >> 0 and define the functions

Gai= [ Fredrt / (—Plods.
f<

>0

Then
G4 = f e
]Rm

and
G- = [_sen(hisPods,

where sgn denotes the sign function. So we obtain the classical distribution | f|* and
its twisted version sgn(f)|f]* (twisted by the character sgn). One can show that
these functions have meromorphic extensions to the complex plane with poles « in
the set A, hereafter called the set of candidate poles. The coefficient ay (@) in the
asymptotic expansion of /(t) can easily be expressed in terms of the coefficients
b,:_ka (@) of (A — )~ "*D | > k, in the Laurent expansions of G4 ().

Let ¢ € A be a candidate pole. Using the resolution 7 one finds a non-negative
integer k, such that b,fa (p) = O for all ¢ and all k > ky. Then, for most ¢, k4 is
the expected order of « as pole of G (1). Let B be the maximum of A, such that
Qry.B (@)T8(In ‘L')k" is the dominating term in the asymptotic expansion of 1 (7). In [J2]
we show that bk (®) and hence ai, g(¢) can be expressed in terms of real principal
value integrals (of a meromorphic differential form of higher degree). Thus in the
case that f is a polynomial the theorem stated before gives a condition in terms of
cohomology for the vanishing of the coefficient ax, (¢).

This paper is divided into six sections. In the second section we give some defi-
nitions and a lemma which we need to build our homology theory in Section 3 and
to state our main results in Section 4. Besides the Poincaré Duality Theorem we
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formulate Propositions A and B, which are useful to check the conditions of the
Poincaré Duality Theorem. In the last two sections we prove our results. The proofs
of Propositions A and B are given in Section 5. Section 6 is entirely devoted to the
proof of the Poincaré Duality Theorem.

The results in this paper can also be found (in a slightly more elaborated way) in
my Ph.D. Thesis [J]. At this point I'd like to thank Prof. Jan Denef for the many
fruitfull discussions and for his interesting suggestions.

2. Definitions of basic notions

In this section we define the basic notions that we need later on. We introduce
simplicial complexes as in [Ka-Sch, VIL,§1, p. 321-322]. We also explain the notions
of triangulation, orientation and family of support.

2.1 Simplicial complexes

(2.1) Definition. A simplicial complex S = (S, A) consists of a set S and a set
A of subsets of S, satisfying the following axioms.

1. Any o in A is a finite and non-empty subset of S.

2. If T is a non-empty subset of an element o of A, then 7 belongs to A.
3. {p} belongs to A for any p in S.

4. The set {o € A|p € o} is finite for any p in S.

An element of S is called a vertex of S and an element of A is called a simplex of S.

We equip RS with the product topology and for o in A we define the relative interior
of o by

lo| == {x e R%|x(p) =0for p ¢ o;x(p) > Ofor p € o and Zx(p) = 1].
P

We also define |S| := Uyealo|, called the space of S, @, the closure of |o| in |S| and
dim o, the dimension of o, which is one less than the cardinality of . We denote
the set of i-dimensional simplices of S by A;. A non-empty subset of a simplex o is
called a subsimplex or face of o. A face of a simplex o of dimension (dimo — 1) is
called a facet of 0.

A simplicial complex S' = (S, A") is called a simplicial subcomplex of the simplicial
complex S = (S, A)if ' c Sand A’C A, O

(2.2) Convention. If we write p = ), A; p;, we will always mean that p is a
positive barycentric combination of the p;,soA; > 0and ) ; A; = 1.
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2.2 Triangulations

(2.3) Definition. Let X be a topological space. A triangulationt of X is a home-
omorphism ¢: |S| — X from the space |S| of a simplicial complex S to X. We
denote it by #: S — X. For any simplex o of S we denote the set #(|o’|) by o; and
for any subspace W of X we denote the set 1(G) N W by ow. If X is a differentiable
manifold then we will always assume that the sets o, are locally closed differentiable
submanifolds of X.

We say that the triangulationt’: C — C is a subtriangulation of t if C is a subspace
of X, C is a simplicial subcomplex of S and ¢’ equals the restriction of ¢ to the space
|C| of C. If such a triangulation ¢’ exists we also say that ¢ subtriangulates C. Note
that for any simplex o of S with o, C X — C the closure of 0; in X — C is equal to
Ox — c. O

(2.4) LEMMA. Let W be a subset of a topological space X. Lett: (S, A) - X
be a triangulation of X which subtriangulates X — W . Then:

1. W is an open subspace of X.

2. 00 CX—Worao, CW foreveryo in A.

3. For every D C A the subset U,cpow of W is a locally finite union and hence
closedin W.

4. The set oy is connected for each o in A.

5. For every simplex o in A we have

ow = U T

ycw
 face of o

The proof of this lemma is elementary. It can be found partially in [Ka-Sch, VIL§1,
pp. 321-322].

(2.5) Definition. Lett: S — X be a triangulation of a topological space X
and let F be a closed subspace of X. We say that t is good with respect to F if t
subtriangulates F and for each simplex o of S with o, N F = @ there exists a vertex
p of o with p ¢ F. (Here we identify p with the unique point in the singleton
{p},) O

(2.6) Example. Lett be the triangulation of the 2-sphere sketched in Figure 1.

Let E be the “equator” and M the “zero meridian”. Then ¢ subtriangulates M and
E. Moreover t is good with respect to E, but not with respect to M. It is also good
with respect to { po, p2} but not with respect to {py, p»}.

(2.7) Remark. A triangulation t: & — X which subtriangulates a closed sub-
space F of X can always be refined to obtain a triangulation #' of X which is good
with respect to F. You can take the first barycentric subdivision of ¢ for example.
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Figure 1

2.3 Orientations

(2.8) Definition. LetS = (S, A) be a simplicial complex. For a simplex o =
{po, ..., pi} we define an orientation of o as a pair (s, (px,, - - ., P;)) Where s €
{1, —1}isasignand o = {py,, ..., px}, modulo the following equivalence relation
~. We say that (s, (pxy, ..., Px)) ~ (r, (p, - - ., pi;)) if the permutation f of the
vertices of o such that f(py,) = p;, for all 0 < j < i, has sign equal to s.r. We
denote the class of (s, (pxy, .- .» Px,)) by S[prg, - --» P, 1. O

(2.9) Definition. Leto = {po,...,p;} € Aandlett = {po,..., pj,..., pi}
be a facet of o (where p; means omitting p;). Choose an orientation o(c) =
s.[po, ..., pil of . Then we define the orientation on t induced by o(c), denoted
by o(o)|t, as the orientation of T given by s(—1)/[po, ..., Pj, ..., pil. One checks
that this is well-defined. O

(2.10) Definition. An orientation o of a triangulation t: S — X of a topolog-
ical space X, is a map which maps each simplex o of S to an orientation o(o') of
the simplex o. Note that the orientation o(t) of a face T of a simplex o is not de-
termined by the orientation o(o’). Thus the orientations of the simplices need not be
‘compatible’. O

2.4 Families of supports

(2.11) Definition. Let X be a topological space. A family of supports on X is a
family ¢ of closed subsets of X such that:

1. A closed subset of a member of ¢ belongs to ¢.
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2. ¢ is closed under finite unions.
The family ¢ of supports on X is said to be paracompactifying if in addition:

3. Each element of ¢ is paracompact.
4. Each element of ¢ has a neighborhood which is in ¢.

We write c(X),resp. cl(X), for the family of supports on X consisting of all compact,
resp. closed, subsets of X. If W is a subspace of X and ¢ a family of supports on X,
letopNW :={KNW|K € ¢} and ¢|W := {K € ¢|K C W}. Both are families of
supportson W. O

3. A sheaf homology theory with supports
In this section we build up our homology theory. We assume the following data.

(3.1) Data. Let X be a topological space and let W be an open subspace of X.
Let L be aring and F a sheaf of L-modules on W. Let ¢ be a family of supports on
W. Lett: (S, A) — X be atriangulation of X which subtriangulates X — W and let
o be an orientation of z.

(3.2) Notation. Leto € A. Then we define

Flow):= lim F(V).

oy CcVcw

In this direct limit V runs through all open subsets of W containing ow. Note that
we have a natural restriction F(ow) — F(tw): ¢ > c|tw for a subsimplex 7 of .

(3.3) Definition. We define C;(W, F, t, 0) as the direct product of L-modules
[Tsca, F(ow). We denote an element of [, F(ow) by [1,ca, c(ow)ow, where
c(ow) € F(ow). Note that this notation is justified since for any two different i-
dimensional simplices o and T of S we have ow # tw provided that these last two
sets are non-empty. If only a finite number of the c(ow) are non-zero we also write
2 sen, Clow)ow. If A; = @ we agree C;(W, F,t,0)=0. O

(3.4) Definition. If T is a facet of a simplex o we define the sign €(o, 7) by the
relation o(0)|t = €(o, T)o(r). O

(3.5) Remark. 1If 7, and 1, are two different facets of a simplex 0 € A with
non-empty intersection p, one checks that

€(0, 11).€(11, p) = —€(0, 12).€(12, P).
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(3.6) Definition. Now we define boundary morphisms
ai: Ci(W’ f’ ts 0) - C[—](Wv f’ tv 0)’
fori > 0. If A; =@ ori =0 we put 9; := 0. Otherwise we define

diclowow) =[] (e, Dclow)lw)w

TCOo,TEA;

foro € A;, c(ow) € F(ow). Here c(ow)|Tw is the image of c(ow) under the natural
restriction F(ow) — F(tw). We extend this definition by linearity to C,(W, F, t, 0).

Using Remark 3.5 one checks that 9;_19; = O for all i. Thus we have constructed
a chain complex of L-modules (C.(W, F,t,0),0.). O

(3.7) Definition. For ¢ = [[,¢,, clow)ow € C;(W, F, ¢, 0) we define the sup-
port of ¢ by

supp(c) := ,ti, ow.
1
clow)#0

Remark that supp(c) is a closed subset of W by lemma 2.4. We also define

CY(W,F,t,0):={ceC,(W,F,t o)lsupp(c) € p} O

(3.8) Definition. Since supp(9;(c)) C supp(c) for ¢ € C;(W, F,t,0) we have
3: CP(W,F,t,0) - C{ (W, F,t,0). Thus again we have a chain complex of
L-modules (C¢(W, F,t,0),d.). We define H?(W, F,t, 0) as the homology of the
chain complex (C¥(W, F,t,0),d.). O

(3.9) Notation. We denote the module of i-dimensional cycles, resp. bound-
aries, by Z{(W, F,t,0), resp. BY (W, F,t,0). We denote H'W)(W, F,t,0) by
H(W,F,t, o).

(3.10) Remark. The homology modules H,.‘”(W, F, t, 0) depend a priori on the
chosen triangulation ¢ and orientation 0. However it is easy to check that they don’t
depend on the chosen orientation. Later on (see 4.3) we will see that in some inter-
esting cases they don’t depend on the triangulation neither.

(3.11) Example. Let X be the complex projective line and let W = X — {0, oo}.
We identify W with C — {0} and choose an affine coordinate z on W. Let ¢, d be
relatively prime positive integers with« := c¢/d ¢ Z. Let w be the rational differential
1-form z¢(dz)“ on W of degree d, i.e.,w € I'(W, Q},mw). Let £(w'/?) be the locally
constant sheaf of C-vectorspaces on W associated to w'/¢, which is locally free of
rank 1. A non-zero section of £(w'/4) on a connected open U is an analytic branch
of !/ on U multiplied with a complex number.
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W =X - {0,00}

Figure 2

We choose a triangulation ¢ of X which subtriangulates X — W, as in Figure 2. We
also choose an orientation o of ¢ such that all 2-dimensional simplices have the same
orientation, i.e., the orientation induced by one orientation of the Riemann sphere X.

Now we will show that H,(W, L(w!/9),t,0) = O for all i. It is clear that all
2-dimensional cycles correspond with global sections of £(w!/4) on W. Hence
Hy(W, L(w"/), t, 0) vanishes since a ¢ Z.

Denote the simplex {p;, pj} by 0ij. Let z = ¢(oo1)w be a chain. Turning one
time around zero we see that (1 — ¢*"*)z is homologous to a chain which contains
only simplices with only p;, p3 or p4 as vertices. Using similar arguments one sees
that every 1-dimensional cycle is homologous to a cycle of the form aj3(o13)w +
a34(034)w + a41(041)w. Such a cycle must vanish since otherwise there would exist
an analytic branch of z*dz on an open neighborhood of (o13)w U (034)w U (041)w-
This proves that H,(W, L(w'/?),t,0) = 0.

Finally every vertex of ¢ in W is clearly also a boundary, hence also
Hy(W, L(w"/4),t,0) = 0. Similarly one verifies Hf(W, L(w'/%),t,0) = 0 for
all i and ¢ equal to c(W), c(X —{0) N W or c¢(X — {oc}) N W.

4. Statement of the main results

In this section we assume the following data.

(4.1) Data. Let X be a real differentiable manifold of dimension d and let W
be an open subspace of X. Let L be a ring which is a flat Z-module and let £ be a
locally constant sheaf of L-modules on W which is locally free of finite rank r on
W. Let ¢ be a family of supports on W. Let ¢: (S, A) — X be a triangulation of X
which is good with respect to X — W (see Definition 2.5). Let o be an orientation of
t with respect to which we consider homology. The orientation sheaf of L-modules
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on W will be denoted by Op. Thus O = O ® L where O denotes the orientation
sheaf of Z-modules on W.

In this article we prove the following theorem and propositions.

(4.2) POINCARE DUALITY THEOREM. Assume Data (4.1).
Assume:

1. @ has the union property, i.e., for every K in ¢ and for every locally finite
Sfamily K of elements in ¢ the union U{K € K|K N Ko # @} belongs to ¢.
2. H) (ow,L)=0forallo € A, j > 0.

plow

Then for all i, 0 < i < d, there is a natural isomorphism
HY (W,L,t,0) > H\(W,L®OL).

The cohomology modules here are the classical sheaf cohomology modules (e.g.,
see [Gol). Furthermore these isomorphisms are natural with respect to inclusion of
Sfamilies of supports. More precisely we have commutative diagrams

Hf' . (W,L,t,00 > Hi(W,L®OL)
v ) !
H.(W,L,t,0) > H,(W,L®OL)

if p1, @2 are two families of supports as in Data 4.1 which satisfy conditions 1 and 2
and for which ¢; C ¢,. Here the vertical maps are the natural maps induced by the
inclusion ¢, C ¢;.

(4.3) COROLLARY. The homology modules H,.‘p(W, L,t,0) don’t depend on the
triangulation t nor on the orientation o (as long as t and ¢ satisfy the conditions of
the Poincaré Duality Theorem (4.2)).

(4.4) PROPOSITION A. Assume Data (4.1). Then ¢ has the union property (see
(4.2)) in each of the following cases:

1. X is compact.
2. @ = cl(W), the family of all closed subsets of W.
3. ¢ =c(X — F)N W, where F is a closed subset of X — W.

(4.5) Remark. If X is a compact Hausdorff space, then a closed subset of W
belongs to the family ¢ = ¢(X — F) N W if and only if its closure in X is disjoint
from F. For such a family the second condition of the Poincare Duality Theorem is
also satisfied, at least if we add the very weak condition that ¢ is good with respect
to F.
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(4.6) PROPOSITION B. Assume Data (4.1). Let F be a closed subset of X — W.
Suppose that t is a good triangulation with respectto F. Let ¢ = ¢(X — F)NW.
Then H),, (ow,L) =0forallo € Aand j > 0.

(4.7) Remark. There are two important cases in which the Poincaré Duality
Theorem applies. Take X = W.

If ¢ = c(W), the family of all compact subsets of W, then condition 1 is satisfied
by Proposition A and condition 2 is satisfied by Proposition B. Hence our homol-
ogy modules Hf(w)(W, L, t,0) are isomorphic to the classical singular homology
modules on W.

If ¢ = cl(W), the family of all closed subsets of W, then condition 2 is satisfied
since the oy are contractible. Also condition 1 is satisfied by Proposition A and
our homology modules H,(W, L, t, 0) are isomorphic to the classical Borel-Moore
homology modules on W (e.g., see [Bo, 1,2.2]).

(4.8) Example. We have H'(C — {0}, L(w'/?)) = 0 where w is the differential
form of example 3.11. This follows from the Poincaré Duality Theorem (4.2) and the
results of example 3.11. (Note that the triangulation ¢ in that example satisfies the
conditions of the Poincaré Duality Theorem. Use proposition B with F = @.)

5. Proofs of Propositions A and B

Proof of Proposition A. The first two cases are evident, so suppose ¢ = c¢(X —
F)NW. Let Ko € ¢. Then there exists a compact subset K, of X — F such that
Ko = KyNW. Let K be alocally finite family of elements in ¢. Then there are only
finitely many elements of K that meet K. Hence U{K € K|K N Ky # @} belongs
top. O

(5.1) LEMMA. Lett: S — X be atriangulation of a space X which is good with
respect to a subspace F. Let o be a simplex of S such that ox N F # @. Then there
exists a subsimplex T of o such that ox N F = ty.

Proof. We prove this lemma by induction on dimo. If dimo =0orifox C F
this is clear. So assume ox ¢ F and dimo > 0. Then 0; N F = @ by lemma 2.4.
Hence there exists a vertex p of o with p ¢ F since ¢ is good with respect to F. Let
p = o — {p}. We claim that ox N F = px N F. To prove this claim it suffices, by
Lemma 2.4, to show that for every face A of o with p € A, we have A\, N F = 0.
Choose such a face A and suppose that A, N F # @. Then A, C F, by Lemma 2.4
again, and hence p € Ax C F since F is closed. But this is in contradiction with
p ¢ F. By induction on dim o there exists a subsimplex 7 of p and hence of o such
thatty = px NF. 0O
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Proof of Proposition B. Fixo in A. If ox N F = @ then p|low = cl(ow) and the
proposition follows since ow is contractible. So we may assume that ox N F # 0.
Since ¢ is good with respect to F it follows from Lemma (5.1) that there exists a
subsimplex t of o such that ox N F = tx. Let ¢ := cl(ow U tx), the family of all
closed subsets of o U tx. Since ow U Ty is paracompact this is a paracompactifying
family. Then we have an exact sequence (see [Br, I1,10.2]):

- > H, (0w, L)~ Hj(ow Uty, L)~ H},. (tx, L)> H}f (ow, L)~ -+

Since Ty is closed in oy U Tx we see ¥|tx = cl(tx). One checks that

VYlow = cl(ow U tx)|low
= (c(ox) N (ow U tx))low
= c(ox —tx)Now
= (c(X - F)NW)low

= g¢low

Since ow U tx and tx are both contractible, Hj; (ow U tx, L) and HV’,'ltx (zx, L)
vanish for j > 0. Then the sequence implies that H‘ilﬂw (ow,L) = Ofor j > 2.
Because x # @ the map from H(ow U tx, L) to H’2|fx (tx, L) is an isomorphism,
S0 H«llflaw (ow, L) = 0. Since y¥|ow = ¢|ow this proves the proposition. O

6. Proof of the Poincaré Duality Theorem

In this section we will prove the Poincaré Duality Theorem (4.2). In the first two
paragraphs we give some more results on triangulations and sheaves. The reader who
wants to skip the details of the proof may proceed directly to paragraph 3 in which
we outline the two main steps of the proof. These steps are proved in the two last
paragraphs.

6.1 Triangulations

(6.1) Definition. LetS = (S, A) be asimplicial complex and p € |S|. Let AN,
be the set of all simplices o in A for which p belongs to & together with all their
faces (i.e., non-empty subsets of o). Let SN, be the set of all vertices of simplices
in AN,. Then N, = (SN}, AN,) is a simplicial complex, called the simplicial
neighborhood of p in S. Let AL, be the subset of AN, consisting of all simplices
o in AN, for which p doesn’t belong to & and let SL, be the set of all vertices
of simplices in AL,. Then £, = (SL,, AL,) is a simplicial complex, called the
simplicial link of pin S. O
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(6.2) LEMMA. Let S be a simplicial complex such that |S| is a d-dimensional
topological manifold. Let p € |S|. Then:

1. |N,| is contractible.
2. |Lp| is homeomorphic to the (d — 1)-dimensional sphere S;_;.
3. Hi(IN,l, IC,)) =0for0<i <d —1.

Here H;(—, —) means the standard singular relative homology.

Proof. For parts 1 and 2 we refer to [Mau, Prop. 2.4.4, p. 43; Prop. 3.4.3, p. 89].
The third part follows from parts 1 and 2 and the exact homology sequence for the
pair (IN,|, I£,D). O

(6.3) LEMMA. Let S be a simplicial complex such that |S| is a d-dimensional
topological manifold. Let t be a simplex of S such that |t| is a (d — 1)-dimensional lo-
cally closed submanifold of |S|. Then there exist exactly two d-dimensional simplices
of S which contain t.

Proof. Take a point p in |t| and an open neighborhood U of p in |S| such that
there exists a homeomorphism ¢ from U to an open subset D of R¢ under which
p corresponds to the origin 0 and |7| to the set C = {x € D|x; = 0}. Let o be
a simplex of S of dimension d which contains 7. By making U eventually smaller
we may suppose that |o| N U is a non-empty connected component of U — |7|. But
U — |7| has exactly two connected components whose closure in U contains p. This
proves the lemma. O

(6.4) LEMMA. Let S = (S, A) be a simplicial complex such that |S| is a d-
dimensional topological manifold. Suppose that |o | is a locally closed submanifold
of |S| for each simplex o of S. Fix apoint p in |S| and denote the set of j-dimensional
simplices o of |S| with p € G by A ,. Let 01,07 € Ay, p. Then there exists a finite
sequence 0y = A1, Ay, ..., Ak—1, Mg = Oy With A; € Ag pand A; Ny € Ay_y,p for
alli.

Proof. Define an equivalence relation ~ on A, , by saying that oy ~ o3 if
there exists a finite sequence o1 = Ay, A2, ..., Ak—1, A = 02 With A; € Ay, and
Ai N Ajp1 € Ag_yp forall i. Let A be one of the equivalence classes and let B
be the union of the other classes. Note that A # (. Suppose that B # @. Let
A :=U,ca0 and B := U, 5o and choose an open connected neighborhood U of p
in |S| contained in A U B. Then A N'B N U is a finite union of closed submanifolds
of U of codimension at least 2. Hence U — (A N B) is connected. Then we can find
apath p: [0,1] = U — (AN B) with p(0) € AN U and p(1) € BN U (which is
non-empty). But Im(p) NA and Im(p) N'B are closed in Im(p) and they are disjoint.
This contradicts the connectedness of Im(p). Hence B must be empty which proves
the lemma. O ‘
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o= {po, 1}
o € |C|
P1 95 IC‘

Figure 3

(6.5) Definition. LetS = (S, A)beasimplicial complex and letC be a simplicial
subcomplex of S. Denote |C| by C and |S| — |C| by V. Assume that S is good with
respect to C, which means that for each simplex o of S with |o|N|C| = @ there exists
avertex pofo with pe V. Lett,0 € A and let 0 < € < 1. Then we define

Tty (0, €) := IZAppeVl Z Ap < e€and Z Ap>0}.

pDET pet—o pe(tnNo)-C
We also define
Sty (0, €) 1= Ureatv (0, €),

called the epsilon star of o in V. O

(6.6) LEMMA. Assume the data of Definition (6.5). Then:

1. The sets ty(0,€),0 < € < 1, form a base of open neighborhoods of Ty N oy
inty.

2. y(o,e)=0iftNo CC.

3. ty(o,e) =tvift Co.
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4. Sty(o,€) Nty = Ty (0, €).
5. The sets Sty (0, €),0 < € < 1, form a base of open contractible neighborhoods
ofoyinV.

Proof. Ifx € tyNoy = (tNo)y thenx = Zpetﬁa A, p with Epe(tﬂa)—c Ap>0
because of Lemma (5.1). Thus x € 7y (0, €) for 0 < € < 1. Then part 1 is clear.
If tNo C C then (r No) — C = @ from which part 2 follows. If T C o then
T —0o = @ and T No = 7 from which part 3 follows since S is good with respect
to C. Let x belong to Sty (o, €). Then x € ¢y (0, €) for some ¢ in A. Now suppose
that T € A such thatx € ty. Thenx =} App With 3 c()nry—o Ap < € and
2 pepnnoy—c Ap > 0. Thus x € (p N T)y(0,€) C tv(0o,€). This proves part 4.
Now we prove that Sty (o, €) is open in V. Let x belong to Sty (o, €). Since there
are only finitely many 7 in A for which x € ty, there exists an open disk U in V
around x such that U Nty C ty(0,€)ifx e tyand U Nty = B if x ¢ 1y. But then
U C Sty (o, €) (indeed, suppose y € U and choose 7 in A such that y € ty; then
U Nty # @ and hence x must belong to Ty, so U Nty C Ty (0, €) C Sty (o, €); thus
y € Sty (o, €)).

It is also clear that Sty (o, €) contains oy since oy = oy (0, €) by part 3.

Now we show that Sty (o, €) is contractible. For this purpose we show that oy and
Sty (0, €) are homotopically equivalent. Letg € Sty (o, €) and choose 7 in A such that
q € ty(o,€). Theng =3, AppWwith} .. Ap <€and ) cnp-chrp > 0.
Then we define 7(q) = 3 ,c.ny EP—::E p € oy. This definition is independent

of the choice of 7, so we get a well-defined map n: Sty(o,€) — oy. Moreover
m|oy is the identity and 7 is continuous since it is clearly continuous on the sets
Ty (0, €), which are closed in Sty (o, €) (by part 4) and cover Sty (o, €). Now we
define F: [0, 1] x Sty (o, €) — Sty(o,€): (t,q) — tn(g) + (1 — t)g. Then F is
a homotopy, F (0, —) is the identity on Sty (o, €) and F(1,—) = m. Thusoy is a
strong deformation retract of Sty (o, €). Since oy is contractible by Lemma (5.1),
Sty (o, €) is contractible too.

Finally by part 1 and 4 it follows that the sets Sty (0, €), 0 < € < 1, form a base
of neighborhoods of oy. O

(6.7) Definition. Lett: S — X be a triangulation of a topological space X. Let
t': C — C be a subtriangulation of ¢. Denote |S| — |C| by V and let W := X — C.
Foro,7in A and 0 < € < 1 we define tw (0, €) := t(ty (0, €)) and Sty (0, €) ;=
t(Sty (o, €)), called the epsilon star of o in W. 0O

(6.8) LEMMA. Let X be a topological space and let W be an open subspace of
X. Lett: (S, A) = X be atriangulation of X which is good with respectto X — W.
Lett,0 € Aand0 < € < 1. Then:

1. The sets tw (0, €), 0 < € < 1, form a base of open neighborhoods of Tw N ow
intw.
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ww(o,e)=0iftNoNW =40.

ww(o,€) =ty ift Co.

Stw (0, €) Ntw = tw(o, €).

The sets Sty (0, €),0 < € < 1, forma base of open contractible neighborhoods
ofowin W.

Nk

(6.9) LEMMA. Let X be a topological space and let W be an open subspace of
X. Lett: § — X be a triangulation which is good with respectto X — W. Let L be
a ring and let L be a locally constant sheaf of L-modules on W. Let o be a simplex
of S. Then ow has a base of open contractible neighborhoods in W on which L is
constant.

Proof. This follows from Lemma (6.8) and the fact that locally constant sheaves
are constant on simply connected opens. O

6.2 Sheaves

(6.10) Definition. Let F be a sheaf of L-modules on a topological space W. Let
s be a global section of F on W, i.e. s € F(W). Then we define supp(s), the support
of s, as {p € W|s, # 0}. Note that this is a closed subset of W. All global sections
with support in a family ¢ of supports in W form an L-module, denoted by I', (F).
Moreover I',(—) defines a functor of the category of sheaves of L-modules on W
to the category of L-modules. Let (F', 3") be a cochain complex of sheaves of L-
modules on W. Applying the functor I',(—) we get a cochain complex (I', (F*), 3°)
of L-modules. The i-th cohomology module of this cochain complex we denote by
H i(l'),,(]-" ")). Similarly we get a chain complex (I'y(F.), d.) if (F.,d.) is a chain
complex of sheaves of L-modules on W. The i-th homology module of this chain
complex we denote by H;(I',(F.)). O

(6.11) Definition. Let W be a topological space and F a sheaf of L-modules
on W. Let ¢ be a family of supports on W. The sheaf F is said to be p-acyclic if
HJ (W, F) = 0 for p > 0. The sheaf F is said to be flabby if F(W) — F(U) is
onto for every open subset U of W. A resolution C' of F is called ¢-acyclic, resp.
flabby, if each C' is p-acyclic, resp. flabby. O

(6.12) LEMMA. Let W be a topological space and F a flabby sheaf of L-modules
on W. Then F is @-acyclic for every family of supports ¢ on W.

Proof. See[Br,11,52]. O

(6.13) LEMMA. Let W be a topological space and C' a g;-acyclic resolution of
a sheaf F of L-modules on W, where ¢;,i = 1, 2, are two families of supports on W



660 PHILIPPE JACOBS

with o1 C ¢2. Then we have commutative diagrams for all i > 0:

H (T, (C) > H W, F)
b0
H'(Tp,(€)) > Hy(W,F)

Here the horizontal maps are isomorphisms and the vertical maps are the natural
maps coming from the inclusion ¢; C ¢;.

Proof. See[Br,1I,4.1]. O

6.3 Outline of the proof
There are two important steps in the proof.

1. We construct C.(L), a chain complex of sheaves of L-modules on W and show
that

HY (W, L,t,0) > Hyi(T,(C.(L))).

Then C;_.(L) is a cochain complex of sheaves of L-modules on W and
Hy_i(Ty(C(L))) = H (T,(Ca—.(L))).

2. We show that C,_.(L) is a g-acyclic resolution of £L ® O, so
H'(Ty(Ca-.(£))) > HL(W, L ® Op).

At the same time we will check that the isomorphisms in these steps are natural
with respect to inclusion of families of supports.

6.4 Proof of step 1

(6.14) Notation. We write () and [] for the tensor product and direct product
in the category of sheaves. For the tensor product we need only two factors. In the
case of the direct product however we need an infinite number of terms. Note that the
direct product presheaf of sheaves is again a sheaf. Also note that the tensor product
sheaf of two sheaves is isomorphic to the sheafification of the tensor product presheaf
of these sheaves.

(6.15) Definition. For a simplex o in A let PL, be the presheaf on W with
sections lim Unaw_c)vaﬁ(V) above an open subset U of W, where V runs through
all open neighborhoods of U Now in W. (Note that PL, (W) = L(ow).) Let L, be
the sheaf associated to the presheaf PL,. Note that £, = (¢ )«(L|ow), Where (i,
denotes the embedding oy — W.
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Let C;i(£),0 < i < d, be the sheaf [], A L,. We will define morphisms
0i: Ci(L) - Cioi(L)Yforl <i <d. Lett € A;_; and let o € A; such that T
is a facet of . Let €(o, 7) be as in Definition 3.4. Let U be an open in W. Let
V be an open in W containing ow N U. We have a morphism £L(V) — L(V):
s — €(o, 7)s. These morphisms are compatible with restrictions, hence we get a
morphism £, — £,. Summing over all 0 € A; which have 7 as a facet we get
a morphism C;(L) — L, for every T in A;—;. These morphisms then give rise
vf to a morphism 9;: C;(L) — C;—1(£). O

(6.16) LEMMA. (C.(L), d.) is a chain complex of sheaves of L-modules on W.

Proof. If L = Z, the constant sheaf of Z-modules with stalks Z, then this lemma
follows from Remark 3.5. From this we get the result for general £ by tensoring up.
Indeed, it is straightforward to check that

coecL=[|@eL=cw. O

o€eA.

(6.17) LEMMA. There are natural isomorphisms H,.“’(W, L,t,0) =t
H;(Ty(C.(L))). Furthermore we have commutative diagrams

HP'(W,L,t,0) 5 Hi(Ty, (CL))
i o) l

~

HP(W,L,t,0) = Hi([,(C.(L)))

if g1, @2 are two families of supports on W with ¢ C ;. Here the vertical maps are
the natural maps coming from the inclusion ¢, C ¢;.

Proof. Let W? be the connected component of W which contains oy . Then

rGwL) = [ r,)

oEN;

[T2£.w*

oEA;

[T Pc.owo)

oEA;

=[] £ew

gEA;

= CG;(W,L).

IR
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The isomorphism follows from Lemma (6.18). These isomorphisms
LCi(L)) — Ci(W, L) clearly commute with 3 and respect supports. Hence we
have natural isomorphisms H;(I,(C.(£))) — H,."’(W, L,t,0). The commutativity
of the diagram is evident. O

(6.18) LEMMA. Let L be aring and F a presheaf of L-modules on a topological
space W. Let U be an open path-connected subset of W such that for all points
p € U and all open neighborhoods W, of p in U there exists an open neighborhood
Up C W, of p such that the restriction resy y, FU) — F(Up) is an isomorphism.
Then the natural map 0 (U): F(U) — S(F)(U) is an isomorphism. Here S denotes
the sheafification functor from the category of presheaves to the category of sheaves
(see [Ha, 11, §1, p. 64]).

Proof. We may assume U # @. We will construct an inverse ¥ (U) for 8(U).
Lets € S(F)(U). Choose a point p € U, an open neighborhood W, C U of p and
t € F(W),) such that ¢, = s(q) for all g € W,. By assumption we have an open
neighborhood U, C W), of p such that resy y,: F(U) — F(U,) is an isomorphism.
Define Y (U)(s) in F(U) by resy,u, (¥ (U)(s)) = resw,.v,(t). Using the condition
on U again one sees that ¥ (U)(s) is independent of the choices made. One also
checks that ¢ (U) is the inverse of 6(U). 0O

6.5 Proof of step 2
(6.19) LEMMA. Cy_.(L) is a resolution of L ® O.

Proof. Since L ®z O = L ®, Oy, and since L is a flat Z-module it is sufficient
to prove the lemma in case £ = Z. We denote C;(Z) by C;.

In this proof we introduce some data atached to ad-dimensional simplex o of S. By
Lemma (6.9) we can choose a fixed contractible open neighborhood U, of o in W on
which O is constant. The orientation o(0') of o, represented by [ po, . . ., ps], defines
a unique element o, of O(oy), represented by the chart o — R?: tQoAip) &
(M1, ..., Ag). Then the restriction O(U,) — O(oy,) is an isomorphism. Let g, be
the generator of O(U,) which maps to o, under this isomorphism.

We start by constructing a morphism of sheaves €: O — (4. It suffices to
construct morphisms of presheaves €,: O — PZ, for every o in Ay. Leto € Ay,
let U be an open subset of W and n € O(U). Let {U;} be the set of (non-empty)
connected components of U N U,. Since the restrictions O(U,) — O(U;) are
isomorphisms we can find integers z; such that n|U; = z;8,|U;. Now there is a
natural morphism f: []; Z(U;) — PZ,(U) since [|; Z(U;) = Z(U N U,). Then
we define €, (U)(n) := f([]; zi). One easily verifies that these maps are morphisms
which commute with restrictions, giving us the required morphisms © — PZ,.

We have to prove the exactness of the following sequence:

€ 9, Og—
O——)O-—-)Cd—d)Cd_l —-)l
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It suffices to prove exactness at the stalks in points p in W. So let’s fix a point p
in W. To simplify notations we introduce a new chain complex (C.(W,), d.). Let
Aip(W) := {0 € Ailp € ow}. Define C;(W,) := @aeA,»,,,(W)Z and denote an
element of C;(W,) by > . A, (W) Zo0 - Also define boundary operators

9 Ci(Wp) = Ci_1(Wp): Z 250 > Z Z Z.€(0, T)T.

g€l (W) g€ p(W) ’EtAfgce;or&V)
i~1.p

This chain complex is isomorphic to the chain complex ((C.),, (3.),). This follows
since the stalk (C;), is clearly isomorphic to [],. s Zo)p and (Zy)p = Zif p € ow,
(Zs)p = 0 otherwise. We will denote the composition of the morphism O, — (Cy),
and the isomorphism (Cy), — C4(W,,) alsoby €. Thus we need to prove the exactness
of the following sequence:

0> 0,5 CaW) 3 camy(W,) %5 ..

First we prove exactness at O,. Choose € O, such that e(n) = 0. Now
e(n) = ZaeAM(W) z,0 where the z, are integers such that n = z,(g,)p in O,.
Since Ay ,(W) # 0@ this implies that n = 0.

Now we prove exactness at C4(W,). First we show that im(e¢) C ker(d4). Choose
n € O, and let z, be as above, for o in Ag ,(W). Then €(n) = ZaeAd,,,(W) Z00.
Let T € Ay, p(W). Since X is a d-dimensional manifold 7 is the intersection of
exactly two simplices o, 03 in Ay, ,(W) (see Lemma (6.3)). Moreover if (g4,)p =
5.(85,)p With s € {1, —1} then s = —e(07y, 7).€(02, T) (this can be checked on the
level of simplicial complices by using the topological definition of orientation) and
Zs, = $§.Z5,. Hence the coefficient of T in d4(e(n)) is zero. Thus €(n) belongs to
ker(d,).

Now we show that ker(d;) C im(e). Letz = Y ., p(W) 200 € ker(dg). For
o € Ay p(W) define 1, := z,(gs)p in Op. We check that 1, is independent of o
Let 01,02 € Ay, ,(W). Since X is a manifold we know that there exists a sequence
01 = A, A2, ...y A1, A = 03 With A; in Ad,p(W) and A; N A;4; in Ad_l,p(W)
(see Lemma (6.4)). Thus we may assume that T = o1 N0y € Ay ,(W). Since
z € ker(9,4) we know that € (01, )20, + €(02, T)Z,, = 0. Then

Noy = 2oy (gm)p = —e(01, 7).€(02, T)Zm (gtiz)p = Za;(gaz)p = Noy -
Thus we define n := n, where o € A4 ,(W). Then by construction €(n7) = z. Hence
z € im(e).

Finally we prove exactness at C;(W),) for 0 < i < d — 1. Before we proceed we
need to build up yet another chain complex. Let NV, be the simplicial neighborhood of
t~1(p) in S and let L, be the simplicial link of t~!(p) in S (see Definition (6.1)). Let
Ai(N,) == A; N AN, and let A; (L)) := A; N AL,. Let C;(N) = @aeAiwp) Z
and denote an element of C; (/\f,,) by > e AN 200 Define

8i: Ci(Np) = Cimi(Np): Z 260 > Z Z €(o, t)z,T.

aeAi(Np) oeA;(Np) T facet of &
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Then (C.(N,), 8.) is a chain complex of Z-modules. Note that C;(W,) C C;(N})
but (C.(W)), 9.) is not a subcomplex of (C.(N,,), 8.). In a similar way we define
(C.(Lp), 8.) which is in fact a subcomplex of (C.(N,), 8.). Hence we can define the
relative homology groups H;(C.(N,, £,)) in the obvious way.

(6.20) CLAM. H;(C.(N,,L,))=0for0<i<d-1.

Before proving this claim, we proceed with the proof of the lemma. Fix an integer
i with0 < i <d — 1. Since C;(W,) is a chain complex it suffices to prove that
ker(9;) C im(9;41). Soletn = ZaeA,;p(W) neo € ker(3;). Then

s = Y. e8i(0)

o€h; p(W)

= Z Z ne€(o, T)T

oA (W) T facetof o

= 3 Y mee@n |+ Y > nee(om) | T

T€A;_ w 7 facet of @ TeA;_1(L 7 facet of o
i~1.p(W) e p(W) i-1Lp) e p(W)

=am+ Y, | X Ymew@ |

TeAi-1(Lp) ZJZC,f‘,,"(fv‘/’)
Thus 8;(n) € Ci_1(Lp) since 9;(n) = 0. Hence, by the claim, there exists ¢ in
Cit1(NV,) and u in C;(Lp) such that n = §;41(c) +u. Letc = erA.-H(Np) A
and define ¢ := ZAGAM_,,(W y€xr. Then n — &;41(¥) € Ci(Lp). But by the same
argument as above also 8,~+1(1//) —8ir1(¥) € Ci(Lp). Thus n — 311 (¥) € Ci(L)p).
Since both 7 and 9;41(¥) belong to C;(W,) this means that n = ;11 (¥). O

Proof of Claim (6.20). Let D;(N}) be the free abelian group generated by the
ordered simplices of A;(N,), divided out by the subgroup generated by the elements
(@0, ..., ai)—sgn(p)(@p), - - - » Api)) Where (ay, . . ., a;) denotes an ordered simplex
of Ai(./\/p) and p is a permutation of the set {0, ..., i}. Welet[ay, ..., a;] denote the
class of (ao,...,a;) in D;(Np). Then we define d[ag,...,a;] :=
Z;_—.o("l)j lao, ..., dj,...,a;]. This is well-defined on the generators of D;(N}).
We extend this definition linearly to D; (/\/},). Similarly we define D;(£;). Then again
we have a chain complex of Z-modules (D.(N}), 3.) with (D.(£,), 8.) as a subcom-
plex. So we can also consider the relative chain complex (D.(N,, £,), 8.). We define
morphisms fi: C;(Np) > D;(Np)and g;: D;(N,) = Ci(N,) by fi(0) := o(0) and
gi([ag, ..., a;]) :=sgnlay, ...,a;l{ao, ..., a;} where sgnlay, ..., aillao, ...,ai] =
o({ag, ..., a;}). One easily checks that these morphisms are well-defined, are each
others inverses and commute with 8. The same is true for there restrictions to C; (L)
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and D;(L,). Thus we have isomorphisms H;(C.(N,, £,)) = H;(D.(Nj, Lp)). Now
by [Mau, Theorem 4.3.9 and Corollary 4.3.5], H;(D.(N,, £,)) = H;(IN,|, |Lp)).
(Here the last homology group is the standard singular homology group associated
to the pair (||, |£p]).) Then the claim follows from Lemma (6.2). O

(6.21) LEMMA. Cy_.(L) is a g-acyclic resolution of L @ O if conditions 1 and
2 of the Poincaré Duality Theorem (4.2) hold.

Proof. Choose j > O andi > 0. Since £, vanishes outside oy we have
H)(W,L,) = Hélaw(ﬂw,ﬂaldw) (e.g., see [Br, II,10.1] for general ¢ or
[Go, 11,4.10.1] for ¢ paracompactifying). Thus

[T HW. L) = [] H)py (0w, Lolow)

gEA; o€eN;
= [] H}pyow, L") (by Lemma (6.9))
ogEA;
=0 (by condition 2)

Then the lemma follows from Lemma (6.22) (since ¢ has the union property). O

(6.22) LEMMA. Let Y be a topological space. Let {G;}ic1 be a locally finite
family of closed subsets of Y. Let u;: G; — Y be the inclusions. Let L be a ring.
Let G; be sheaves of L-modules on G; and let F; = (14;)+(Gi). Let ¢ be a family of
supports on Y such that ¢ has the union property (see (4.2)). Then for every j > 0
there is an injection H) (Y, 1, Fi) = [1, Ho(Y, F7).

Proof. For every G; we choose a flabby resolution B;. Let A; = (u;)+(B;). Then
A; is a flabby resolution of F; (see [Br, Corollary 5.6, p. 36]). But then, in addition,
[1; A; is a flabby resolution of []; ;. Thus by Lemmas (6.12) and (6.13) we have
isomorphisms

H)YILF) = H T A,
Il Hp (¥, F) =TT HY(Tp(A)).-

‘We have a natural map

o HI(Ty([LA)) = TLH! T (A)): [T~ [1;0si1
Here [—] denotes the class of an element in its cohomology module. It suffices to
show that « is injective. Let s = [, s; € ker(T,([]; A)) [1 T, (T, A*") such

. 9! .
thats; € im(T"y (.A{ _1) < T',(A])) foreveryi in I. Thus for every i in I there exists
an element ¢; in I', (A =1 such that 3} ~Y(t;) = si. We choose #; = 0if 5; = 0. Note
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that supp(s;) C supp(#;) N supp(s). Hence supp(#;) = @ if supp(#;) N supp(s) = 0.
The family {supp(#;)};; is a locally finite family, so

supp(?) = Ujersupp(t;) = U{supp(#;)|supp(#;) N supp(s) # @} € ¢,

since ¢ has the union property. Because s = ([]; a,.f -1 )(¢) this proves the injectivity

of .

O

Proof of the Poincaré Duality Theorem (4.2). Theorem (4.2) now follows imme-
diately from Lemmas (6.17), (6.21) and Lemma (6.13). O
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