LIKELIHOOD RATIOS FOR STOCHASTIC PROCESSES RELATED BY
GROUPS OF TRANSFORMATIONS I

BY
T. S. PrrcHER!

We will make use of the notation established in Likelthood Ratios for Sto-
chastic Processes Related by Groups of Transformations’ (referred to as (I) in
the following). Thus, X, S,and P are a set,a o-algebra of subsets, and a prob-
ability measure on S. 7, is a one-parameter group of automorphisms of an
algebra F of bounded, real-valued, S-measurable functions satisfying

(i) T, preserves bounds, and T, f(x) has a continuous derivative
D(T.f) (z) in « which is bounded uniformly in « and z for every f
in F and z in X, and

@ii) if f, is a uniformly bounded sequence from F with lim f, (x) = 0 for

all z, then lim 7', f. (x) = O for all .
Examples of this situation will be found in (I).
We will write P, for the measures which are the completions of

() = [ Tosap,

K, () for the Gaussian kernel (2r¢)™"* exp(—0o’/2¢), and P%, for the meas-
ures which are the completions of

() = [ Ko ([ Tusniap) as.

According to Theorem 4.2 of (I) the P, with ¢ > 0 and any « are mutually
absolutely continuous, and for each positive ¢ there is a ¢” in L; (P°) satisfying

f¢"TafdP"= —a—fTafdP"
da

for fin F and
(221 = j; T_ﬁ ¢a dﬁ.
The theorem also asserts that the transformations V(o) on L;(P°) defined
by the equation V°(a)f = (dP%/dP°)T_.f for f in F form a strongly con-
tinuous one-parameter group of isometries whose infinitesimal generator A°
is defined on F and satisfies A°f = ¢°f — Df there.

We note that F, the set of uniform limits from F, contains the functions
f A g=min(f, g) and f v g = max(f, g) whenever it contains f and g,
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272 T. 8. PITCHER

and that T, can be extended to #. We will assume as in (I) that F is dense
in L, (P) since this can always be achieved by cutting down the size of S.

TaeoreMm 1. If the P, are mutually absolutely continuous, then T, can be
extended to all S-measurable finite functions, and the mappings V (a) on Ly (P)
defined by V (a)f = (dPo/dP)T_of form a strongly continuous one-parameter
group of isometries. The extension of T, s linear and positive and satisfies
the following:

Q@) If fu converges to O almost everywhere, so does T o fn .

@) Ta(fg) = Ta(f)T(9).

(3) T. (Tﬁf) = Ta+ﬁf'

4) Ta(dPs/dP,) = dPs_o/dP, ..

(5) If either side of the equation

fTathE = fth§+a

exists, so does the other side, and they are equal.

Proof. Let (f.) be a decreasing sequence of nonnegative functions from F.
If lim,.,, [ fodP = 0, then the functions [ T', f, dP are uniformly bounded
and converge to 0 for every «, so lim,.. | f» dPs = 0 for every ¢ and B, so
Pg is absolutely continuous with respect to P and hence with respect to every
P.. If limu., [ fndP° = 0, then [ T4 f.dP must go to 0 for almost every
a and hence for every a, so every P, is absolutely continuous with respect to
P’ and hence with respect to every Pg.

The mappings V (o) defined on F by V (a)f = (dP./dP)T_.f clearly have
isometric extensions to L1 (P). V(a) (fg) = (V(a)f)T—ag if f and g are in
F, and by an easy continuity argument this equation still holds if ¢ is in #
and f is in L, (P). A similar relation holds for V’(e). If f and g are in F,

then
v (229)
is in Ly (P), and

B v (& r)oar = [ v (1) gar

" dP c .
_fV(a) (d?,fTag) ap° = defT g dP

= [1Tegap = [ V@) (1Tag) P = [ (V(@)p)g aP.

Thus
V(s = 2 vt (%)
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if fis in F7, and by continuity this holds for all f in L, (P). We have
| Vs =71 = [ |4

- [V (1) - e

so the strong continuity of V («) follows from the strong continuity of V* («).

Also
(@ +8) (dp,f) vt (76 (%))

v (% v0)) = V@),

2 v (a )( —f.dP

dP’,

which verifies the group property of V («).
For fin L; (P) we define T, f to be

V(=a)f/V(=a)l = (@dP/dP_a)V (—a)f.

Since 0 < dP/dP_, < « almost everywhere, this is a linear, positivity-
preserving extension of 7', . For bounded f and ¢ if we choose sequences
(f») and (g,) from F so that V(—a) (fugn), V(—a)fs, and V (—a)g. con-
verge almost everywhere to V (—a) (fg), V(—a)f, and V (—a)g, we see that

To(fg) = (@P/dP_o)V (=) (fg) = liMpse (dP/dP_o)V (—a) (fagn)
= limpsof (@P/dP_o)V (=) ful[([@P/dP_a)V (—a)ga] = Ta(f)Ta(g).

In particular, T, takes characteristic functions into characteristic functions,
and disjoint characteristic functions into disjoint characteristic functions.

Let f be a measurable function, ¢ and { the characteristic functions of the
sets where f > 0 and where f < 0, and x, a sequence of characteristic func-
tions increasing to 1 for which each fx, is in L; (P). Then

Ta(fEXn) = Ta(an)Ta(EXn) and ""Ta(fg'Xn) = —Ta(an)Ta(g‘Xn)

are nondecreasing sequences of functions whose supports are disjoint, so
T« (jxxn) is almost everywhere convergent. If 7, is any other sequence with
the same properties and we set w, = (1 — xa) v (1 — 1,), then

| To(fxn — fn) I = 2Ta(lf|wn),

so the support of the difference is contained in the support of 7, w, . Since
w, decreases to 0, V(—a) (w,) decreases to 0 in L;(P) and hence almost
everywhere, so T, w, decreases to 0, proving that lim,.. 7. (fx.) is inde-
pendent of the particular sequence used.

We define T, (f) to be lim,. T« (fx.) for any sequence x. having the prop-
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erties given above. Clearly this is a positivity-preserving extension of T, .
If we choose x. so that both fx. and gx. are bounded, then

Ta(af + bg) = liMnsw Te(afxn + bgxa)
= liMpsew (@7 o (fxn) + 0T« (gxn))
= aTa(f) + bTa(g),

so T, is linear, and
To(fg) = limpse T (fgxa) = limp.e (T (an) Talgxn)) = Ta(f)T(g),

so (3) is also satisfied. If the support of f is contained in a set with charac-
teristic function x, then the support of 7, f is contained in the set whose
characteristic function is T,x. Hence, if f, converges to 0 and x, is the
characteristic function of the set where SUpmsn|fm(x)| = &, then

lTa(fn)l Te (an+ Ifnl(l"'Xn)) &+ gn

where g, converges to 0 since its support is contained in To (1 — x,). This
gives im sup,.eo| Tofr | < € for any ¢ and thus proves (1).

It will be sufficient to prove (5) for nonnegative h. If hisin F, the equa-
tion holds. If h is bounded, we can find a bounded sequence h, from F
converging almost everywhere to h and with V (—a)h, converging almost
everywhere to V (—a)h, so that T, h, converges almost everywhere to 7', h,
and then the equation holds for & by continuity. Finally, by choosing x,
so that hyx, is bounded,

[ Tehaps = 1m [ Tt aPs = tim [ hixa dP5,

n->90 n->0

which proves (5). (4) now follows from

ffT a5 apr = f 779 gpr — ffdP;;_,,.

dpr, dpP;,
LemMa. If there is a ¢ in Ly (dP) satisfying
a
(%) [oregap=2 [ r.sap

for all f in F, then each P s absolutely continuous with respect to each Pg, and

&= [ x@ve (& 4) .

Proof. The existence of dP,/dPj is proved in Theorem 4.2 of (I). For
fin F,

[ s ( [ x@ve ( i >dﬁ) dP*
= [ x® ([1.170) (& ) ar") as
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_ e dP -
= f_w Kv(ﬁ) (f TafT—ﬁ (EF ¢) dPﬁ) dﬂ
= [ %) ([ Tusss ap) ap

[ @) (L [ Tuvas ap) ds

=%fnmﬂ

TuroreEM 2. If the P, are mutually absolutely continuous and there is a
¢ tn Ly (P) satisfying (x), then the generator A of V (a) contains F in its domain
and 1s defined there by Af = ¢f — Df. (dPo/dP)T_o ¢ is almost always in-
tegrable on every finite interval, and the equation

=1 +[ P 11 o4 a8

defines a continuous version of the stochastic process dPo/dP.
Proof. From the fact that
dP" "
Vs =% v (5 5)

and the above lemma we get

dP
apre L

Also f is in the domain of 4, and
dP’ dP
Al =54 (dP" ! )
whenever (dP/dP°)f is in the domain of A°. In particular, if f is in F,
ap’ aP° , .«
A(;ﬂjf) =3P (¢°f — Df).
By Theorem 4.2 of (I),

”dP” ldp fldpq—lydP"ée—:)m”tﬁ”,

and f and Df are bounded, by hypothesis, so (dP°/dP)f and
(dP°/dP)Df converge to f and Df in L, (P). Finally,

¢’ =

" K8 V(B8 .

P’ , w0
=C|dP"’ 4 éCf_wK«(B)HV(B)qs 6|l d8 — 0
as ¢ — 0, proving the first assertion. Taking f = 1 we have

Pe = VW =1+ [ VO @ ds =1+ [ DT s0ds.
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By Fubini’s theorem and the L; continuity of the integrand, (dPs/dP)T_s ¢
is almost always integrable on [0, o], and its integral is equal to the L, integral
almost everywhere. Hence, almost every (dPg/dP)T_s¢ is integrable on
every finite 8 interval, and

dP,
dP
i.e., the pointwise integral is a version of (dP./dP — 1).

Theorem 2 asserts the continuity and almost everywhere differentiability
of the “sample functions’” dP,/dP. The following example shows that no
such smoothness can be expected in general.

X, 8, and P are the real line, the Borel sets, and the measure p (z) dx for
any almost everywhere positive p of integral 1. 7T, represents translation
by «, and F is any algebra of sufficiently smooth functions. Here

(dP./dP) () = p(x — a)/p(@)

which has no smoothness properties at all. The assumption of Theorem 2
is equivalent here to the existence of a derivative of p which is in L, (dz),
and, in this case, ¢ (z) = —p' (x)/p ().

If we set

1+ f aPs T g9 dB = for almost every «,

p) = cexp(—=1/(1 —2%)) for |z| <1,
p) =0 for |z| =1

and replace T, by translation mod 2, the assumptions of Theorem 2 are satis-
fied. T_.¢ is not integrable on any interval [0, a], however, so that the
equation of the theorem cannot be replaced by

dP, _ *
P = exp[0 T s¢ dB.

If there is a solution ¢ of (x) in L, (P), then it is uniquely determined in
Ly (P) but not necessarily in L;(P’). According to Theorem 4.2 of (I),
if a ¢ exists in L, (P), then P is absolutely continuous with respect to P°.
We will call ¢ a normalized solution of (x) if it also vanishes almost every-
where (P’) on the set where dP/dP’ vanishes. Any solution of () can ob-
viously be normalized. Since the P are mutually absolutely continuous,
Theorem 1 implies that T, can be extended to all S-measurable functions.

Lemma. If ¢ us a normalized solution of (), then

I _ ey (22) JEANE
T_a dP‘I,) ap . V(a) ap°) = ape’ and A Fi ¢dP"'

Proof. For any fin F,

[ (Ge) P = [ (o gtap = [ gap,
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which proves the first assertion. The second is an immediate consequence
of the first. For any f in F of absolute bound 1,

U (de - ”“‘> - ¢dP"}fdP¢
1[“ (f ¢TafdP> a8 — f¢fdP1
(V”(ﬁ) ( dP,,) dP,) 7 P dﬁ‘

éf(‘(f V,(ﬁ)< dP> dP

ap:) ~ ¢ ap

The left-hand side of this inequality can be made to approach the L;(P’)
norm of (1/a) (dP./dP° — dP/dP") — ¢ (dP/dP’), and the right-hand side
goes to 0 as « approaches 0.

IIA

dP") dg.

TueoreM 3. Let ¢ be a normalized solution of (x). If, for some v > 0
(or 8 < 0), T_g ¢ s integrable on [0,~] (or [3, 0]) almost everywhere with respect
to P°, then the P, are mutually absolutely continuous, T_g ¢ is almost always
integrable on every finite interval, and

P, [°
log 7 = fo T_s dB.

Proof. We will only deal with the case y > 0. Since ¢ is normalized, the
previous lemma implies that

dP, _ a
P dP" 5+ f 10 G ap- %
T_s¢(dPs/dP’) = V°(B) (¢ (dP/dP’)) is Lj-continuous, so T_g ¢ (dPs/dP")

is integrable on [0, ] almost everywhere, and its pointwise integral is equal
to its L; integral. For a = v,

dP “
Qe = aps &P fo T_s¢dB
is defined almost everywhere, and

=S5+ [ Toaoeds,

80 by a uniqueness argument for real-valued functions

dP, _

are (Il"' exp f T_sddp fora £ 7.

P, is thus absolutely continuous with respect to P for 0 £ o £ ao, but since
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T_.(dP,/dP) = dP4y./dP., P, is absolutely continuous with respect to
Pg for all « and 8. Integrability of T_, ¢ follows from

b N—1 alN
f | 0| dB = ZO Toim oo fo T_s¢ ds,
-and the final equation from

N—1 Nl
log dPa = Z ].Og M = Z T——(n/N)a IOg LT for « > 0’

dP n=>0 dP(n/N)a n=>0 dP
dPe _ dP_,
log P = T_q log iP for @ < 0.

The final theorem is a version of the Cramer-Rao inequality.

Tarorem 4. Suppose the P, are mutually absolutely continuous and that a
¢ exists in Ly (P) satisfying (x). If e is any random variable with

fJ[fegdPaill/zda< 2

for some interval J containing the origin, and if we define the bias b(a) of the
estimate e by a + b(a) = f edP, , then at almost every point of J, b(a) has a

dertative, and
2 ; db 2
/(6—0{) dPaz<1+£>/f¢dP-

If, in addition, Tge is continuous in Ly (P) on J, then b(a) has a continuous
dervative and satisfies the inequality at every point.

Proof. Suppose first that e is bounded. Then

o« + bla) = fedPa - feV(an P = fo (f eV(ﬁ)¢dP> ds,

and, since
f Via)g dP = -‘9—[ V(a)ldP = 0
Jdo ’

we have
(1 + %) - (f (e — ) V(a)é dP>2 < [ (o~ @ dP. [ (Ta9)dP,

which proves the theorem in this case. In general, if we define ey to be e
when | e | = N and 0 elsewhere, then

a + bla) = a + lim by(a) = lim f ex APy = lim fa</ en V(B dP> as
0

~ Tim f0<f Tyexd dP> g = f0<f Tyed dP>d/3.
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Hence b has a derivative equal to lim (dby/da) at almost every point in J,
and

f(e—a)2dPa glim<1+cg)£>2/f¢2d1’= <1+g§>2/f¢2dP

there. If Tse is L, continuous, both sides of the inequality are continuous,
which completes the proof.
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