
LIKELIHOOD RATIOS FOR STOCHASTIC PROCESSES RELATED BY
GROUPS OF TRANSFORMATIONS II

BY

T. S. PITCHER

We will make use of the notation established in Lielihood Ratios for Sto-
chastic Processes Related by Groups of Transformations (referred to as (I) in
the following). Thus, X, S, and P are a set, a z-algebra of subsets, and a prob-
ability measure on S. T. is a one-parameter group of automorphisms of an
algebra F of bounded, real-valued, S-measurable functions satisfying

(i) T preserves bounds, and T.f(x) has a continuous derivative
D (T.f)(x) in a which is bounded uniformly in a and x for every f
in F and x in X, and

(ii) if f is a uniformly bounded sequence from F with lira f (x) 0 for
all x, then lira T.f, (x) 0 for all x.

Examples of this situation will be found in (I).
We will write P. for the measures which are the completions of

1.(f) f T.f dP,

K (a) for the Gaussian kernel (2z)-1/2 exp( a:/2z), and P for the meas-
ures which are the completions of

(s)l:(f) K() T.+f dP d.

According to Theorem 4.2 of (I) the P. with > 0 and any a are mutually
absolutely continuous, and for each positive z there is a in L (P) satisfying

f T.fdP- 0 f T. f dP
for f in F and

log dP"dP fo T_ d.

The theorem also asserts that the transformations V (a) on L1 (P) defined
by the equation V (a)f (dP/dP)T_.f for f in F form a strongly con-
tinuous one-parameter group of isometries whose infinitesimal generator A
is defined on F and satisfies Af f Df there.
We note that /, the set of uniform limits from F, contains the functions

f ^ g min(f, g) and f v g max(f, g)whenever it contains f and g,
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and that T can be extended to .P. We will assume as in (I) that F is dense
in L (P) since this can always be achieved by cutting down the size of S.

THEOREM 1. If the P are mutually absolutely continuous, then T can be
extended to all S-measurable finite functions, and the mappings V (a) on L (P)
defined by V (a)f (dP/dP)T_f form a strongly continuous one-parameter
group of isometries. The extension of T is linear and positive and satisfies
the following:

(1) Iff, converges to 0 almost everywhere, so does Tf,
(2) T(fg)= T(f)T(g).
(3) T(Tf)- T+f.
(4) T(dP$/dP)-dP_/dP_.
(5) If either side of the equation

exists, so does the other side, and they are equal.

Proof. Let (fn) be a decreasing sequence of nonnegative functions from/.
If limn f f, dP O, then the functions f T,f, dP are uniformly bounded
and converge to 0 for every a, so limn f f, dP 0 for every a and , so

P is absolutely continuous with respect to P and hence with respect to every
P,. If limn ff dP O, then f T,f dP must go to 0 for almost every
a and hence for every , so every P, is absolutely continuous with respect to
P and hence with respect to every P.
The mappings V (a) defined on f by V ()f (dP,/dP) T_,f clearly have

isometric extensions to L1 (P). V (a) (fg) (V (a)f)T_, g if f and g are in
/0, and by an easy continuity argument this equation still holds if g is in/
and f is in L1 (P). A similar relation holds for V (a).
then

dP w(o) ( dP fldP

is in L1 (P), and

-d-fi- g dP -d-fi- g dP

Thus

If f and g are in P,

dP v a (dP f)v( )f
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if f is in , and by continuity this holds for all f in L1 (P).

V(a)f f f
-f

We have

-d-F ()

(dPf) dPV(a) f dR,
so the strong continuity of V (a) follows from the strong continuity of V (a).
Also

V(+)f= (+) = ()

dP v(a) (dP f)dP
V() V(.)(V()f),

which verifies the group property of V (a).
For f in L (P) we define T.f to be

V (-a)f/V (-a)1 (dP/dP_.)V (-a)f.

Since 0 < dP/dP_. < almost everywhere, this is a linear, positivity-
preserving extension of T.. For bounded f and g if we choose sequences
(f) and (g) from F so that V (- a) (f g), V (-a)A, and V (- a)g con-
verge almost everywhere to V (- a) (fg), V (- a)f, and V (- a) g, we see that

T. (fg) (dP/dP_.) V (-) (fg) lim. (dP/dP_.) V (- a) (Ag)

lim**[ (dP/dP_.)V (-a)A][ (dP/dP_.) V (-a)g] T. (f) T. (g).

In particular, T. takes characteristic functions into characteristic functions,
and disjoint characteristic functions into disjoint characteristic functions.

Let f be a measurable function, ( and f the characteristic functions of the
sets where f > 0 and where f < 0, and x a sequence of characteristic func-
tions increasing to 1 for which each fx is in Lt (P). Then

T.(fx) T.(fx)T.(x) and -T.(ffx)= -T.(fx)T.(fx)

are nondecreasing sequences of functions whose supports are disjoint, so
T.(Jx) is almost everywhere convergent. If v is any other sequence with
the same properties and we set (1- x) v (1- ), then

T.(fx fn) 2T.([f [),

so the support of the difference is contained in the support of T. . Since
decreases to 0, V (-a)() decreases to 0 in L (P) and hence almost

everywhere, so T. decreases to 0, proving that lim. T.(fx) is inde-
pendent of the particular sequence used.
We define T. (f) to be lim. T. (fx) for any sequence x having the prop-



24 T.S. PITCHER

erties given above. Clearly this is a positivity-preserving extension of
If we choose x so that both fx and gx are bounded, then

T. (af + bg lim. T. (afx, + bgx.

limna= (aT. (fx) + bT. (gx,))

aT.(f) + bT.(g),
so T. is linear, and

T. (fg) limn+= T. (fgx) lim+= (Ta (fx) Ta (gx)) T. (f) T. (g),

so (3) is also satisfied. If the support of f is contained in a set with charac-
teristic function x, then the support of T.f is contained in the set whose
characteristic function is T.x. Hence, if f converges to 0 and x. is the
characteristic function of the set where supm=>lfm(x)i--> C, then

T(f,)l <= Ta(ex + If, I(1 x)) -< e + g
where g converges to 0 since its support is contained in T. (1 x). This
gives lim supl T.f =< e for any e and thus proves (1).

It will be sufficient to prove (5) for nonnegative h. If h is in F, the equa-
tion holds. If h is bounded, we can find a bounded sequence h from /
converging almost everywhere to h and with V (-a)h converging almost
everywhere to V (-a)h, so that T h converges almost everywhere to T. h,
and then the equation holds for h by continuity. Finally, by choosing x
so that hx is bounded,

f T. lim f T.(hx)dP$ lira f
which proves (5). (4) now follows from

LEMMA.

for all f in F, then each P. is absolutely continuous with respect to each P, and

K()V() -ffi dp d.

Proof. The existence of dP./dP is proved in Theorem 4.2 of (I). For
f in F,
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--fTfdp.O

THEOREM 2. If the P. are mutually absolutely continuous and there is a
in L1 (P) satisfying (,), then the generator A of V (() contains F in its domain

and is defined there by Af f Df. (dP./dP)T_. is almost always in-
tegrable on every finite interval, and the equation

dP._ 1 + fo dP
dP -fi T_ d

defines a continuous version of the stochastic process dP./dP.

Proof. From the fact that
dP v(a) ( dP f)V(o)f

nd he bove lemma we geg

C dP f_dp
K()17() d.

Also f is in the domain of A, and

Af=dPA(dPfI
whenever (dP/dP) f is in the domain of A. In particular, if f is in F,

A\dp f)
By Theorem 4.2 of (I),

dP
1 dP=f

and f and Df are bounded,

dp

h-fi (7- Df).

dP (2_)--t dP*<=

by hypothesis, so (dP/dP)f and
(dP/dP)Df converge to f and Df in L1 (P). Finally,

---f Cf < C dP
as a-, 0, proving the first assertion. Taking f 1 we have

dP._ V()(1) 1 -t- g()() d 1 -t-

_
d.

dP
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By Fubini’s theorem and the L1 continuity of the integrand, (dP/dP)T_
is almost always integrable on [0, a], and its integral is equal to the L1 integral
almost everywhere. Hence, almost every (dP/dP)T_ is integrable on
every finite interval, and

dP dP,
1 + - T_4 d dP

for almost every

i.e., the pointwise integral is a version of (dP,/dP 1).
Theorem 2 asserts the continuity and almost everywhere differentiability

of the "sample functions" dP,/dP. The following example shows that no
such smoothness can be expected in general.
X, S, and P are the real line, the Borel sets, and the measure p (x) dx for

any almost everywhere positive p of integral 1. T, represents translation
by a, and F is any algebra of sufficiently smooth functions. Here

(dP./dP (x p (x a)/p (x

which has no smoothness properties at all. The assumption of Theorem 2
is equivalent here to the existence of a derivative of p which is in L (dx),
and, in this case, 4) (x) --p’ (x)/p (x).

If we set
p(x) cexp(-1/(1 -x2)) for Ixl < 1,

p(x) 0 for xl >= 1,

and replace T, by translation mod 2, the assumptions of Theorem 2 are satis-
fied. T_. is not integrable on any interval [0, a], however, so that the
equation of the theorem cannot be replaced by

dP, fodP
exp T_ d.

If there is a solution of (,) in L (P), then it is uniquely determined in
L (P) but not necessarily in L (P). According to Theorem 4.2 of (I),
if a exists in L1 (P), then P is absolutely continuous with respect to P.
We will call a normalized solution of (,) if it also vanishes almost every-
where (P) on the set where dP/dP vanishes. Any solution of (,) can ob-
viously be normalized. Since the P: are mutually absolutely continuous,
Theorem 1 implies that T. can be extended to all S-measurable functions.

LEMMA. If is a normalized solution of (,), then

(dP dP+ V() (dP) dP. andT_. \-] dP+.’ dP’
Proof. For any f in F,

A(dP) dP

f f dP+.
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which proves the first assertion.
of the first. For any f in F of absolute bound 1,

f l ( Po
\dP

The second is an immediate consequence- f dP

( ")

The left-hand side of this inequality can be made to approach the L (P)
norm of (l/a)(dP,/dP dP/dP) -(dP/dP), and the right-hand side
goes to 0 as a approaches 0.

THEOREM 3. Let be a normalized solution of (,). If, for some > 0
(or < 0), T_ is integrable on [0, ] (or [5, 0]) almost everywhere with respect
to P, then the P are mutually absolutely ctinuous, T_ is almost always
integrable every finite interval, and

log dP,dp T_ d.

Proof. We will only deal with the case > 0. Since is normalized, the
previous lemma implies that

dP, dP dP
dp dp + T_a d.

T_ (dP/dP) V () ( (dP/dP)) is Lrcontinuous, so T_ (dP/dP)
is integrable on [0, a] almost everywhere, and its pointwise integral is equal
to its L integral. For a ,

dP

is defined almosg everywhere, and

dP
dp + T-oo d,

so by a uniqueness argumeng for real-valued funegions

dP.dp dPdP exp T_4 d for =< .
P is ghus absolugely eonginuous wigh respeeg go P for 0 N N , bug since
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T_(dP./dP) dP.+/dP, P. is absolutely continuous with respect to
P for all a and/3. Integrability of T_. follows from

=0 vO

and the final equation from
N--1- dP((n+)/), dP./log dP. log ’_(/). log for a > 0,

dP =0 dP(/). =0 dP

log dP. dP_.
for a 0.

dP -T-" log
dP

The final theorem is a version of the Cramer-Rao inequality.

THEOnE 4. Suppose the P. are mutually absolutely continuous and that a
exists in L (P) satisfying (.). If e is any random variable with

for some interval J containing the origin, and if we define the bias b (a) of the
estimate e by a + b (a) f e dP, then at almost every point of J, b (a) has a
derivative, and

((e ) dP 1 + dP.

U, i addition, To e i coniuo in L (P) oe J, hen b () ha a coninuo
derivative and sati@es the inequality at every point.

Proof. Suppose first that e is bounded. Then

and, since

we have

o f v(.)gP o.v(.). gP

db (e a) V(a)ch dP < (e a) dP, (T_.) dP.1 + da]

which proves the theorem in this case. In general, if we define e to be e
when el -<- N and 0 elsewhere, then

a + b(a) a + lim bu(a) lim ex dP, lim eN V() dP d
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Hence b has a derivative equal to lim (dbv/da) at almost every point in J,
and

(e- ) dP, >- lim 1 + dc]
dP= 1 +doll dP

there. If T e is L2 continuous, both sides of the inequality are continuous,
which completes the proof.
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