INVARIANT ATTRACTORS IN TRANSFORMATION GROUPS

BY
JessE PauL Cray

Introduction

In this paper, an attempt is made to generalize the notion of attraction due
to Coddington and Levinson [3] which appears in the theory of ordinary dif-
ferential equations so that it is meaningful in the context of the general notion
of a transformation group.

Let (X, T) be a transformation group whose phase space is a separated
uniform space. The generalized notion of attraction for (X, T') is defined in
Section 1. In Section 2, the general definition of attraction in Section 1 is
specialized. It should be pointed out that the specialization is itself a gener-
alization of notions due to Ellis and Gottschalk [4] and the author [2]. Sec-
tions 3 and 4 are devoted to a brief study of the specialized notions introduced
in Section 2.

The author wishes to express deep appreciation to Professor W. H.
Gottschalk for his very helpful criticism and valuable suggestions.

Standing Notation. Let (X, T) be a transformation group whose phase
space X is always a separated uniform space. Let © be the class of all non-
vacuous invariant subsets of X, let U be the uniformity of X, let ® C ®T,
let & be the class of all compact subsets of T, and for each x ¢ X, let 9T, be
the neighborhood filter of z.

1. The general notion

In this section the general notion of attraction is defined for the transforma-
tion group (X, T') and illustrated for a case in which (X, T') is a one-parameter
continuous flow, which has a singular point.

DerinrrioN 1. Let 2 € X and let D e D.

(1) =z is said to be ®-attracted to D under (X, T) provided that if o €U,
then there exists B ¢ & such that tB C Da. The set of all points of X which
are ®-attracted to D under (X, T') is denoted by S((X, T); ®&; D).

(2) =z is said to be regionally ®-attracted to D under (X, T') provided that
if aew and U eI, , then there exists y ¢ U and there exists B ¢ ® such that
yB < Da. The set of all points of X which are regionally ®-attracted to
D under (X, T) is denoted by R((X, T); ®; D).

Remark 1. Let D, E ¢ ® and let ® € € ®T. Then the following statements
hold:
(1) S((X,T); ® D) C R((X, T); ®; D).
Received April 27, 1963.
473



474 JESSE PAUL CLAY

(2) If D C E, then

S((X,T);®D); c S(X,T); ®; E)and R((X, T); ®; D) C R((X, T); ®; E).
(3) If ® e, then

SUX,T);®;D)cS((X,T);e;D)and R((X,T);®;D) CR((X,T);e;D).

Ezxample. Let X denote n-dimensional euclidean space with its usual
topology where 7 is some positive integer, let T be the additive group of real
numbers with its usual topology and let (X, T') denote a one-parameter con-
tinuous flow which has the origin as a singular point. Let D = {0} where 0
is the origin in X. Let ® be the class of replete semigroups of 7. Then
®-attraction to D under (X, T') is equivalent to the notion of attraction de-
fined in Coddington and Levinson [3, p. 376].

2. Specialization of the general notion

Let D e ®. In this section, the general notion of attraction is specialized
to obtain four sets P(D), L(D), M (D), and Q(D), in such a way that the
proximal and regionally proximal relations of Ellis and Gottschalk [4] and
syndetically proximal and regionally syndetically proximal relations of the
author [2] are obtained as a special case.

DerintTION 2. Let z € X and let D ¢ D.

(1) Let ® = ®T. Then z is said to be {simply} {regionally} attracted to
D under (X, T) provided {z e S(X, T); ®&; D)} {xe((X, T); ®; D)}. The
set, of all points of X which are {simply} {regionally} attracted to D under
(X, T)is denoted by {P((X, T); D)} {Q((X, T); D)} or simply by {P(D)}
{Q(D)} when there is no possibility of ambiguity.

(2) Let ® be the class of syndetic subsets of 7. Then x is said to be
{syndetically} {regionally syndetically} attracted to D under (X, T') provided
{zeS((X, T); ®; D)} {xeR((X, T); ®; D)}. The set of all points of X
which are {syndetically} {regionally syndetically} attracted to D under (X, T)
is denoted by {L((X, T); D)} {M((X, T); D)} or simply by {L(D)} {M (D)}
when there is no possibility of ambiguity.

(3) Let Lx((X, T); D) denote L((X, T); D) when the phase group 7T is
given the discrete topology.

Remark 2. LetR = P,Q,L,or M. Forany transformation group (X, 7'),
define R*(X, T) = R((X X X, T); Ax) where Ay denotes the diagonal of
X X X. Then

(1) P*(X, T) coincides with the simply proximal relation P(X, T).

(2) Q*(X, T) coincides with the regionally simply proximal relation
Q(X, T).

(3) L*(X, T) coincides with the syndetically proximal relation L(X, T).

(4) M™*(X, T) coincides with the regionally syndetically proximal rela-
tion M (X, T).
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For the definition of R(X, T') see [2, Definition 1].
Remark 3. Let D ¢ ®. Then the following statements hold:

(1) L(D) = N,Ug Ny(Da)Kt where e U, K e X, and t e T

(2) M(D) = N, (Ug Ny(Da)Kt) where ae U, Ke X, and te T.

(3) P(D) = N,(Da)T where o € U.

(4) QD) = ﬂa‘(Da)T where « € U.

(6) Dc L(D)c P(D) cQ(D)c X.

(6) Dc L(D)c M(D)cC QD) cC X.

(7) L(D) and P(D) are invariant subsets of X but not necessarily closed.

(8) M(D) and Q(D) are invariant closed subsets of X.

Remark 4. Let De®D and let R denote P or @ or L or M. Then
R((X,T); D) = R((X, T); D).

3. Basic characterizations

Let D e®. Then purpose of this section is to point out some general
facts concerning the basic structure of the sets P(D) and L(D). The main
results of this section are summarized in Theorem 1 and Corollary 1. Theorem
1, in characterizing L(D), points out that L(D) is essentially independent of
the topology on 7. This theorem and corollary are a generalization of
[2, Theorem 3].

Standing Notation. For the remainder of this paper, if (X, T') is a trans-
formation group, we shall use @ to denote the class of all syndetic subsets of
the phase group 7.

LEMMA 1. Let D e® and let x ¢ L(D). Then T C L(D).

Proof. Let yexT. We show yeL(D). Let aeU. Choose 8eU such
that 8 = 8" and 8° C a. There exists 4 € @ such that z4 < DB. Choose
KeX such that T = AK. Let teT. It is sufficient to show that
ytK " nDa 7 0. Choose U e9, such that Utk™ < ytk'Bforallk e K. Choose
seT such that xse U, whence astk™ e ytk™'8 for all ke K. Since 8 = g7,
ytk " e stk ™8 for all k e K. Since ste T, stK ' n A 5 0, whence there exists
ko e K such that ytks" e zstko'8 < (DB)B C Da. Therefore ytK ™ n Do 5 0.
The proof is completed.

LEMMA 2. Let R be a compact invariant subset of P(D). Then
R c L«((X, T); D).

Proof. Let a be an open index of X. For each z ¢ R, there exists ¢, e U
such that zt, e Da and hence there exists U, € 97, such that U, {, © Da. Since
R is compact, there exists a finite subset F of R such that R < U,er U,. Let
K = {t,|zeF} and define 4, = {t|yteDa} for each yeR. Since K is
finite and yA C Da for all y e R, it is sufficient to show that for any te T,
tKnA, = 0for allye R. Let yeR. Since R is invariant, y¢ ¢ R and hence
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there exists z ¢ F such that yte U,. Now yite U,, whence yit, e Do, t, e K,
tt.e Ay, and tK n 4, ¢ §. The proof is completed.

TuEOREM 1. Let X be compact. Then the following statements hold:
(1) L(D) = {z|zeX,zT < P(D)} = U{aT |z e X, 2T < P(D)}.
(2) L(D) = L«((X, T); D).

Proof. Use Lemmas 1 and 2.

CoROLLARY 1. Let X be compact. Then the following statements hold:
(1) The following statements are equivalent:

(i) P(D) = L(D).

(ii) IfxeP(D), then 2T < P(D).
(2) If P(D) is closed, then P(D) = L(D).

Proof. Use Theorem 1.

4. Productivity

Let D e®. In this section, the productivity of L(D), M (D), and P(D)
are studied. The main results are summarized in Theorem 2 and Corollary
2. These results are a generalization of [2, Theorems 4 and 5].

The results obtained in this section are an immediate consequence of the
following lemma:

LemmA 3. Let T be a group, let n be a positive integer, and let Ay, - -, An>
Ky, ---, K, be subsets of T such that T = A;K;fori =1, ..., n. Let Ko
be the identity element of T. Then

T= (N A(IZK)™) I K.

Proof. See [2, Lemma 3].
Remark 5. Let (X, T) and (Y, T) be transformation groups. Let ¢ be a
uniformly continuous homomorphism of (X, T') onto (Y, 7). Then

R((X,T); D)e € R((Y, T); Do)

where R is P or Q or L or M.

Remark 6. Let I beaset. Foriel, let (X;,T) bea transformation group
where X, is a uniform space which is not necessarily compact, and let D,
be an invariant nonvacuous subset of X;. For jel, let ¢; be the canonical
homomorphism of (X X;, T) onto (X;, T). Let R denote P or Q or L
or M. Then

(1) R((XiexX:, T); Xuer D) € Xiaa R((X:, T); D2).

(2) Ifjel, then R((Xia Xi, T); Xsar Di)o; = R((X;, T); Dy).

(3) According to (1) and (2), R((Xir X:, T); Xuier D:) is a subdirect
product of (R((X,, T); D;) |iel).

LevMmA 4. Let n be a positive integer. For 1e{l, ---, n}, let (X, T)
be a transformation group, let x; e X; , and let D; be a nonvacuous tnvariant com-
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pact subset of X;. Then the following statements hold:
I. The following statements are patrwise equivalent:

(1) Foreachiefl, ---,n},zie {M((X:, T); Di)}.

(2) Ifa;(ze{l, ---,n})isanindex of X;,andif U; (te{l, ---,n})
is a neighborhood of xi, then there exist y; e U; (ie{l, ---, n}) and Ae@
such that y;A € D, a; (e{l, ---,n}).

(8) (wiltefl, - -, n}) e M((Xia Xi, T); XiaDs).

II. The following statements are pairwise equivalent:
(1) Foreachiefl, ---,n}, z. e L((X;, T); D;).
(2) If a; (e{l, .-, n} isan index of X; then there exists A € @ such
that ;A € Doy (2e{l, --.,n}).
(8) (wiliel, -+, n) e L((Xia Xi, T); Xiza Dy).

Proof. We prove I. Assume (1). We prove (2). There exist y; e U;
and A, e @ such that y1 A1 € Dya;. Choose K; e X such that T = A, K, .
There exists an index B8, of X, such that (D. ﬁz)K?l C D;as. There exist
yoe Uy and A, e@ such that y, 4, © D, B,, whence 42 A Ki* © Dias.
Choose Kz e X such that T = A, K;. Choose an index (8; of X3 for which
(D3 B3)(K1Ks)™ C Dsay. There exist yse Us and Ase@ such that
ys A3 © D35, whence ys3 A3(Ky Ks)™ < Dsyas. Choose Kse & such that
T = A3;K;. This process is continued. Hence, there exist for each
ie{l, -+ ,n},y.eU;, A;ie@and K, e X such that y; A;([[/= K;) ™" < Dy o
and T = A; K; (K, = identity element in 7). Define

A =N A= k)™

Now y, A C D;a;forie{l, ---,n}. By Lemma 3, A e @ The proof that
(1) implies (2) is completed.

Assume (2). We prove (3). Let a be an index of Xi—; X; and let U be
a neighborhood of (x1, ---, 2,). There exists an index a; (¢ {1, -, n})
in X; such that X7 D;a; € (Xi= D;)a. There exists a neighborhood
U, (tef{l, ---, n}) of z; such that X7 U, € U. There exist y,¢ U;
(1e{l, ---, N}) and A € @ such that y; A < D, a; for each 7¢{1, ..., n}.
Now

(yi[ie{li "’7n})€X;L=1Uz'C U

and

(yilie{l, ---,n})A C XiaDsa; € (Xiz Di)a.

The proof that (2) implies (3) is completed.
That (3) implies (1) follows from Remark 6. The proof of I is completed.
To prove 11, we simply observe that if

xzeL((Xz, T),Dw) n M((Xz, T),Dw)

then in the proof of I we may take y; (¢ = 1, ..., ») to be equal to
z; (=1, -.-,n). The proof is completed.
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Lemma 5. Let ((X;, T) |2el) be a family of transformation groups. For
vel, let x; ¢ X;, and let D; be an invariant compact subset of X;. Then the
following statements hold:

1. The following statements are pasrwise equivalent:
(1) Foreachiel, x,e M((X,, T); D;).
(2) IfJ is a finite subset of I, if o; (jeJ) 1is an index of X;, and of
U, (jedJ) is a neighborhood of x;, then there exist A ¢ Q and y;e U; (jeJ)
such that y; A C D;a; (jed).
(8) IfJ 1s a finite subset of I, then

(zj|jed) e M((Xjer X, T); Xjer D;).

(4:) (x,IiEI)GM((X“[X,;,T); X«iqu).
II. The following statements are pairwise equivalent:
(1) Foreachiel, z;e L((X;,T); Dy).
(2) IfJ is a finite subset of I, and if o; (jeJ) is an index of X;,
then there exists A € @ such that for each jeJ, x; A C Dj a;,
(8) Ifd is a finite subset of I, then

(zj|jed) e L((Xjer Xj, T); Xjer Dj).
(4) (zi|tel) e L((Xier Xi, T); Xier Dy).

Proof. We prove I. By Lemma 4, it is sufficient to prove (2) implies
(4) and (4) implies (1). That (4) implies (1) is immediate by Remark 6.

Assume (2). We prove (4). Let a be an index of X X; and let U
be a neighborhood of (x;|%eI). Then there exist finite subsets J and Jy,
a neighborhood U; (jeJ) of z;, and an index oy (keJ), of X; such that
Njer U; ;" < U and Njer a; 97" C « where ¢; and ¢ are the canonical homo-
morphisms of (X Xy, T) onto (X;, T') and ((Xir X:)°, T) onto (X7, T)
respectively. We may assume without loss of generality thatJ, = J. There
exist ;€ U; and A € @ such that y; A € D;a;. Now

(yi|iel) e Ny Ui < U
and
(yi|teD)A C (Xier Di)(Njer @ 97") © (Xier Di)er,
whence
(:1:,' | ieI) GM((XielXi, T); XieI-Di)-

The proof of I is completed.

We prove II. We observe that by Lemma 4 and Remark 6 it is sufficient to
prove that (2) implies (4). Assume (2). Weprove (4). Let a be an index
of X4rX;. Choose a finite subset J of I and an index a; (j€J) of X; such
that Nj; a; 97" C o where 9 is as above. There exists A ¢ @ such that for
each jeJ, z; A C D;o; whence
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(@] 4 e)A C (Xier Di)(Nies 2;97") © (Xier Di)ar
and

(z:i|tel) e L((Xier Xiy T); Xaer D).
The proof is completed.

THEOREM 2. Let ((X;, T)|iel) be a family of transformation groups.
For i e 1, let D, be an invariant compact subset of X;. Then

(1) L((XserXi, T); Xear Di) = Xier L((X:, T); Dy).

(2) M((XuIX'i ’ T), Xier Dz) = XieIM((Xl' ’ T)a Di)'

Proof. Use Lemma 5.

CorOLLARY 2. Let ((X:, T)|2eI) be a family of transformation groups
whose phase spaces are compact. For each © € I, let D; be a nonvacuous invariant
compact subset of X;. Then the following statements hold:

I.  The following statements are equivalent:
(1) P((Xser Xi, T); Xier D) 1s closed in Xier X .
(2) Foreachiel, P((X:, T); D;) is closed in X; .
II. IfP((X;,T);D;)isclosed in X; for eacht ¢ I, then

P((Xier Xiy, T); Xier D) = Xier P((Xi, T); Dy).
Proof. Use Theorems 1 and 2 and Remark 6.
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