### Z-A GROUPS WHICH SATISFY THE mth ENGEL CONDITION

# BY KENNETH W. WESTON<sup>1</sup>

#### I. Introduction

Suppose that A and B are subgroups of a group G. If there exists a positive integer m such that the commutator

$$(\cdots((a,\underbrace{b),\cdots),b}_{m})=1$$

for all a in A and b in B, then we write  $A \mid e:m \mid B$ . A group G which satisfies  $G \mid e:m \mid G$  is said to satisfy the  $m^{\text{th}}$  Engel condition.

The problem of determining for what groups the  $m^{\rm th}$  Engel condition implies nilpotence has been studied by several authors. For example, K. Gruenberg in [2] has shown that finitely generated soluble groups which satisfy the  $m^{\rm th}$  Engel condition are nilpotent. R. Baer in [1] adds groups which satisfy the maximal condition to the list. In [3] Gruenberg includes the torsion-free soluble groups

This paper grew out of an investigation of the commutator structure of Z-A groups, that is groups in which G itself is a term of its upper central series. The class of a Z-A group is the smallest ordinal n such that  $Z_n = G$  where  $Z_n$  denotes the n<sup>th</sup> term in the upper central series of G. The investigation resulted in a curious classification of Z-A groups. This classification is based on a class of Z-A groups which it seemed natural to call Z-A(q) groups for integer q. We will show that Z-A(1) is equal to the above class of groups and that Z-A(1) > Z-A(2) > Z-A(3). The class of Z-A(3) groups proved to be interesting. For instance, an example of a metabelian Z-A(3) group is found which has exponent 4 and satisfies the  $3^{\rm rd}$  Engel condition, but is not nilpotent. However, every Z-A(3) group with prime exponent is automatically nilpotent. It may not be significant but no example of a Z-A(3) group has been found which is not of class  $\omega + 1$  and where  $Z_{\omega}$  is not abelian. The following pages will investigate under what conditions the Engel condition implies nilpotence for Z-A(3) groups.

We will recall some definitions and notations. If x and y are elements of a group, then denote the product  $x^{-1} \cdot y^{-1} \cdot x \cdot y$  of a group by the commutator (x, y). We define commutators of higher order by the recursive rule  $(x_1, \dots, x_{n-1}, x_n) = ((x_1, \dots, x_{n-1}), x_n)$ . Define the weight w(c) of the commutator c constructed from the elements  $x_1, \dots, x_n$  recursively by defining the weight of the elements  $x_1, \dots, x_n$  to be 1, and if  $c = (c_i, c_j)$ 

Received April 24, 1963.

<sup>&</sup>lt;sup>1</sup> This paper is from the author's doctoral dissertation which was prepared under the guidance of Marshal J. Osborn.

then  $w(c) = w(c_i) + w(c_j)$  where both  $c_i$  and  $c_j$  are commutators in  $x_1$ ,  $\cdots$ ,  $x_n$ . For the sake of convenience, designate the commutator

$$(x, \underbrace{y, \cdots, y}_{k})$$
 by  $(x, {}_{k}y)$ .

If A and B are two subgroups of G then the subgroup generated by the commutators (a, b) where a is in A and b is in B will be designated by (A, B).

Suppose that G is a **Z**-A group of class n for some ordinal n. If for some positive integer q we have  $(Z_{\alpha+q}, Z_{\beta}) \leq Z_{\alpha}$  for all ordinals  $\alpha$ ,  $\beta$  with  $\alpha + q$ ,  $\beta < n$  then G will be called a **Z**-A(q) group.

Suppose G is a Z-A group of class n. Since for all ordinals  $\alpha$  and  $\beta$ ,  $(Z_{\alpha+1}, Z_{\beta}) \leq Z_{\alpha}$  we have that G is a Z-A(1) group. Obviously Z-A(q)  $\geq$  Z-A(q+1).

There are examples of nilpotent groups of class 3 which have a nonabelian upper central term  $Z_2$ . For instance consider the group of 2 by 2 integral matrices with components reduced modulo 4 of the form I + P + 2Q where I is the identity, P is an integral matrix with zeros in every row except the last and in the main diagonal and Q is an integral matrix. Hence Z-A(1) > Z-A(2).

The following example presents a Z-A(2) group G which is not a Z-A(3) group. The example G will be a semidirect product of an abelian group A by a nilpotent group N. Let A be a torsion-free abelian group generated by the elements  $a_1$ ,  $a_2$ ,  $a_3$  and b.

We define the following automorphisms on A.

$$egin{array}{lll} A & 
ightarrow A^{lpha} & & A & 
ightarrow A^{eta} \ \hline a_1^{lpha} = a_1 \,, & & a_1^{eta} = a_1 \,, \ & a_2^{lpha} = a_2 \cdot a_1 \,, & a_3^{eta} = a_2 \cdot a_1 \,, \ & a_3^{lpha} = a_3 \,, & a_3^{eta} = a_3 \cdot a_2 \,, \ & b^{lpha} = b \cdot a_3 \,, & b^{eta} = b \,. \end{array}$$

Let N be the automorphism group generated by  $\alpha$  and  $\beta$ . Since G is the semidirect product of A by N then A is a normal subgroup of G and N is a subgroup of G whose elements are the coset representatives of G/A. From the definitions of  $\alpha$  and  $\beta$  we have  $(b, \alpha) = a_3$ ,  $(a_3, \beta) = a_2$  and  $(a_2, \beta) = a_1$ . Consequently G is generated by the elements  $\alpha$ ,  $\beta$  and b.

It will be convenient to represent the commutator (x, y) by  $x \to y$  in order to diagram the commutators in the elements  $\alpha$ ,  $\beta$  and b. Of course we mean  $x \to y \to z$  to be  $(x \to y) \to z$ . For  $x \ne 1$  and  $y \ne 1$ , if (x, y) = 1 we write  $x \to y = 1$ . The accompanying diagrams will show the values of all of the commutators in the elements  $\alpha$ ,  $\beta$  and b.



The following tables of automorphisms will be included in order to verify these diagrams.

$$a_1^{(lpha,eta)} = a_1 \,, \qquad a_1^{(lpha,eta,eta)} = a_1 \,, \qquad a_1^{(eta,lpha,lpha)} = a_1 \,, \qquad a_1^{(eta,lpha,lpha)} = a_1 \,, \qquad a_1^{(eta,lpha,lpha)} = a_1 \,, \qquad a_2^{(eta,lpha,lpha)} = a_2 \,, \qquad a_2^{(eta,lpha,lpha)} = a_2 \,, \qquad a_3^{(eta,lpha,lpha)} = a_2 \,, \qquad a_3^{(eta,lpha,lpha)} = a_3 \,, \qquad a_3^{(eta,lpha,lpha)} = a_3 \,, \qquad b^{(lpha,eta,eta)} = b \,. \qquad b^{(eta,lpha,lpha)} = b \,$$

The terms of the lower central series of G are generated from the commutators of its generators. Hence the diagrams show that G is nilpotent of class 4. If B is a group, we designate the  $r^{\text{th}}$  term of the lower central series by  $B_r$ . By using P. Hall's collection process [4, pp. 165–168] we can express every element x of G by the product  $\alpha^p \cdot \beta^q \cdot b^r \cdot (\alpha, \beta)^s \cdot (\alpha, b)^t \cdot z$  where z is in  $G_2$ .

In the calculations that follow we will make repeated use of the commutator identity, which appears in [4, Theorem 10.2.12, p. 150]:

$$(1) \qquad (x \cdot y, z) = (x, z) \cdot (x, z, y) \cdot (y, z).$$

Therefore, if x and z commute, we have  $(x \cdot y, z) = (y, z)$ .

If H designates the group generated by elements x and (x, a), then for any integer n by [4, Theorem 12.49, p. 185] we have

(2) 
$$(x^n, a) \equiv (x, a)^n \mod H_1.$$

The diagrams show that  $\alpha$ ,  $\beta$  and b are not in  $Z_3$ . Suppose that for some p, q and r,  $\alpha^p \cdot \beta^q \cdot b^r$  is in  $Z_3$ . Then  $(\alpha^p \cdot \beta^q \cdot b^r, \alpha) \equiv 1 \mod Z_2$ . But from (1) and (2) we have

$$egin{aligned} (lpha^p \cdot eta^q \cdot b^r, \, lpha) &= (eta^q \cdot b^r, \, lpha) \ &\equiv (eta^q, \, lpha) \cdot (b^r, \, lpha) \mod Z_2 \ &\equiv (eta, \, lpha)^q \cdot (b, \, lpha)^r \mod Z_2 \,. \end{aligned}$$

Consequently we must have that  $(\beta, \alpha)^q \cdot (b, \alpha)^r$  is in  $\mathbb{Z}_2$ . Therefore by (1)

$$((\beta, \alpha)^q \cdot (b, \alpha)^r, b) = ((\beta, \alpha)^q, b) \cdot ((\beta, \alpha)^q, b, (b, \alpha)^r) \cdot ((b, \alpha)^r, b)$$

$$\equiv ((\beta, \alpha)^q, b) \mod Z_1$$

$$\equiv (\beta, \alpha, b)^q \mod Z_1.$$

But from the tables we have

$$(\beta, \alpha, b)^q = [b^{-1(\beta,\alpha)} \cdot b]^q = a_2^q \cdot a_1^q$$
.

Since  $(a_2^q \cdot a_1^q, \alpha) = (a_2^q, \alpha) = a_1^q$ , we have that  $a_2^q \cdot a_1^q$  is not in  $Z_1$  unless q = 0. If  $\alpha^p \cdot b^r \equiv 1 \mod Z_3$ , then by (2)

$$(\alpha^p \cdot b^r, b) = (\alpha^p, b) = (\alpha, b)^p = a_3^{-p}$$
$$\equiv 1 \mod Z_2.$$

But  $(a_3^{-p}, \beta, \beta) = a_1^{-p} \neq 1$ . Thus p = 0 if  $\alpha^p \cdot b^r \equiv 1 \mod Z_3$ . Now  $(b^r, \alpha) = a_3^r$  is not in  $Z_2$ . If an element x is in  $Z_3$  it must be represented by the product  $(\alpha, \beta)^s \cdot (\alpha, \beta)^t \cdot z$  where z is in  $G_2$  since  $\alpha^p \cdot \beta^q \cdot b^r$  is not in  $Z_3$  unless p = q = r = 0. Suppose the product  $(\alpha, \beta)^s \cdot (\alpha, \beta)^t \equiv 1 \mod Z_2$ . Then by (1) and (2) we have

$$((\alpha, \beta)^{s} \cdot (\alpha, b)^{t}, b) = ((\alpha, \beta)^{s}, b) = (\alpha, \beta, b)^{s}$$
$$= a_{2}^{-s} \cdot a_{1}^{-s}$$
$$\equiv 1 \mod Z_{1}.$$

Thus s = 0. Since  $(\alpha, b)^t = a_3^{-t}$  the commutator  $(\alpha, b)^t$  is not in  $\mathbb{Z}_2$  unless t = 0. Consequently  $(\alpha, \beta)^s \cdot (\alpha, b)^t \equiv 1 \mod \mathbb{Z}_2$  only if s = t = 0. Since every element x of G can be expressed in the form

$$\alpha^p \cdot \beta^q \cdot b^r \cdot (\alpha, \beta)^s \cdot (\alpha, b)^t \cdot z$$

where  $z \in G_2$ , then  $x \equiv 1 \mod Z_2$  only if p = q = r = s = t = 0. Hence  $Z_2$  is in  $G_2$ . Also x is in  $Z_3$  only if p = q = r = 0 and hence  $Z_3$  is in  $G_1$ . Since  $G_4 = 1$  we have that  $(G_1, G_2) \leq G_4 = 1$ . Therefore  $(Z_3, Z_2) = 1$ . We also have that  $(Z_3, Z_3) \leq (G_1, G_1) \leq G_3 \leq Z_1$ . Therefore G is a

Z-A (2) group. But  $(\alpha, \beta)$  and  $(\alpha, b)$  are in  $\mathbb{Z}_3$  and

$$((\alpha, \beta), (\alpha, b)) = ((\alpha, \beta), a_3^{-1}) = a_1^{-1} \neq 1.$$

Therefore  $(Z_3, Z_3) \neq 1$ . Hence G is not a Z-A(3) group.

Since this paper will be primarily concerned with determining the nilpotent groups from among the Z-A(3) groups, we will next present an example of a metabelian Z-A(3) group which satisfies the 3<sup>rd</sup> Engel condition and has exponent 4 but is not nilpotent.

Suppose  $A^*$  is the direct sum of a countable number of copies of the cyclic group C of order two. Designate the  $\alpha^{\text{th}}$  summand by  $C_{\alpha}$  where  $C_{\alpha}$  is generated by  $a_{\alpha}$ . Let A be the subgroup of  $A^*$  consisting of the direct sum of the summands  $C_{\alpha}$  where for no prime p does  $p^2$  divide  $\alpha$ . Now for each prime p define the automorphism  $\lambda_p$  on A by the following equations. Suppose  $\alpha_{\alpha}$  is in A. Then if the prime p divides  $\alpha$  we define  $a_{\alpha}^{\lambda_p} = a_{\alpha} + a_{\alpha/p}$ , and if p does not divide  $\alpha$ ,  $a_{\alpha}^{\lambda_p} = a_{\alpha}$ . If the prime p divides  $\alpha$  where  $a_{\alpha}$  is in A then  $a_{\alpha}^{\lambda_p^2} = a_{\alpha}^{\lambda_p} + a_{\alpha/p}^{\lambda_p} = a_{\alpha}^{\lambda_p}$ . Therefore  $a_{\alpha}^2 = a_{\alpha}^2 =$ 

$$a_{\alpha}^{\lambda_p \lambda_p \prime} = a^{\lambda_p \prime \lambda_p} = a_{\alpha/p} + a_{\alpha/p'} + a_{\alpha/pp'}$$
.

Obviously if only one or none of the primes divides  $\alpha$ , the corresponding automorphisms still commute. Let B designate the abelian group generated by the automorphisms  $\lambda_p$ . We define H to be the semidirect product of A by B. Then A is a normal subgroup of H, H/A is isomorphic to B and H is the union of A and B. The following are some properties of H.

(a) A | e:2 | B.

Let the symbol  $\prod$  designate a finite product. So if  $b = \prod_{i=1}^k \lambda_{p_i}$  then for  $q = \prod_{i=1}^k [\lambda_{p_i} - 1]^2$  and a in A we have  $(a, b, b) = a^q = 1$ .

(b) 
$$(A, A) = (B, B) = 1$$
.

Both A and B have been shown to be abelian.

(c) 
$$(B, A, A) = 1$$
.

The subgroup A is normal in H. Hence (c) follows from (b).

(d) A | e:2 | H.

In [4, Theorem 11.1-6, p. 167] we find the commutator identity,

(3) 
$$(x, y \cdot z) = (x, z) \cdot (x, y) \cdot (x, y, z).$$

Thus (d) follows from (3), (a) and (c).

(e) H is metabelian (i.e. the second term of the derived series of H is 1). Since (H, H) is in A, (e) follows from (b).

(f)  $(h_1, h_2, h_3, h_4) = (h_1, h_2, h_4, h_3)$  for all  $h_1, h_2, h_3$  and  $h_4$  in H.

For H is metabelian.

(g)  $(b, a \cdot b', a \cdot b') = (b, a, b')$  for all b, b' in B and a in A.

 $(b, a \cdot b', a \cdot b') = (b, a \cdot b', b')$  as  $(b, a \cdot b')$  and a commute, both being contained in A;

$$(b, a \cdot b', b') = ((b, a) \cdot (b, a, b'), b') = (b, a, b') \cdot (b, a, b', b')$$
  
=  $(b, a, b')$ .

(h) B | e:3 | H.

Suppose that b is in B and  $a \cdot b'$  is in H. By (g) we have

$$(b, a \cdot b', a \cdot b') = (b, a, b').$$

Therefore by (3), (a) and (b)

$$(b, a \cdot b', a \cdot b', a \cdot b') = (b, a, b', b') \cdot (b, a, b', a) \cdot (b, a, b', a, b')$$
$$= 1.$$

(i) 
$$(a, a_1 \cdot b_1, \dots, a_n \cdot b_n) = (a, b_1, \dots, b_n)$$
 for all  $a, a_1, \dots, a_n$ .

If n = 1,  $(a, a_1 \cdot b_1) = (a, b_1)$  as a and  $a_1$  commute. Assume (i) is true for n = k. By the induction hypothesis

$$(a, a_1 \cdot b_1, a_2 \cdot b_2, \cdots, b_k \cdot a_k, a_{k+1} \cdot b_{k+1}) = (a, b_1, \cdots, b_k, a_{k+1} \cdot b_{k+1}).$$

Now  $(a, b_1, \dots, b_k)$  and  $a_{k+1}$  commute as elements of A; therefore

$$(a, b_1, \dots, b_k, a_{k+1} \cdot b_{k+1}) = (a, b_1, \dots, b_k, b_{k+1}).$$

For any number n let  $\alpha = \prod_{i=1}^n p_i$  where  $p_i \neq p_j$  for  $i \neq j$ . Suppose  $b_i = \lambda_{p_i}$ ,  $i = 1, \dots, n-1$ . Then if  $t = \prod_{i=1}^{n-1} [\lambda_{p_i} - 1]$  and  $s = \prod_{i=1}^n p_i$ ,

$$(a, b_1, \dots, b_{n-1}) = a_s^t = a_{p_n} \neq 1.$$

Therefore H is not nilpotent.

Suppose that  $\lambda_p$  is in B and  $a_{\alpha}$  is in A, where  $\alpha$  is the product of at most n primes. If the prime p does not divide  $\alpha$  then  $(a_{\alpha}, \lambda_p) = 1$ . If p divides  $\alpha$  then  $(a_{\alpha}, \lambda_p) = a_{\alpha/p}$ . Therefore  $(a_{\alpha}, \lambda_{p_1}, \dots, \lambda_{p_m}) = 1$  for all primes  $p_1, \dots, p_m, m > n$ .

Suppose  $a_i \in A$  and  $b_i \in B$  for  $i = 1, \dots, m$ . Then by (i) we have

$$(a_{\alpha}, a_1 \cdot b_1, \cdots, a_m \cdot b_m) = (a_{\alpha}, b_1, \cdots, b_m).$$

Since each  $b_i$  is the product of elements  $\lambda_p$ , by (1), (3) and the following identity from [5, 1.1, p. 107]

$$(4) \qquad (x \cdot y, z) = (x, z) \cdot (x, z, y) \cdot (y, z),$$

we can expand  $(a_{\alpha}, b_1, \dots, b_m)$  into factors of the form  $(a_{\alpha}, \lambda_{p_1}, \dots, \lambda_{p_r})$ ,  $r \geq m > n$ . Therefore  $(a_{\alpha}, a_1 \cdot b_1, \dots, a_m \cdot b_m) = 1$  and  $a_{\alpha} \in Z_m$ . Hence  $A \leq Z_{\omega}$ .

Given  $\lambda_{p_0}$  and primes  $p_1, \dots, p_{n+1}$  where  $p_i \neq p_0$  for  $i \neq 0$  if  $r = \prod_{i=0}^{n+1} p_i$  and  $a_r \in A$ , we have

$$(\lambda_{p_0}, a_r, \lambda_{p_1}, \cdots, \lambda_{p_n}) = -a_{p_{n+1}} \neq 1.$$

Therefore  $\lambda_{p_0} \notin Z_{\omega}$  for every prime  $p_0$  and hence B is not in  $Z_{\omega}$ . Thus  $A = Z_{\omega}$  since  $H = A \cdot B$ . Since  $H/Z_{\omega} = B$  we have that  $H = Z_{\omega+1}$ .

Consider any two elements  $a \cdot b$  and  $a' \cdot b'$  of H where a,  $a' \in A$  and b,  $b' \in B$ . By (i), (e), and (a)

$$(a \cdot b, a' \cdot b', a' \cdot b', a' \cdot b') = (a \cdot b, a' \cdot b', b', b') = 1.$$

Thus  $H \mid e:3 \mid H$ .

Since  $Z_{\omega} = A$  we have that  $(Z_{\alpha}, Z_{\omega}) = 1$  for  $\alpha = 1, 2, \cdots$  by (b). Therefore H is a Z-A(3) group. If  $a \cdot b$  is any element of H where a is in A and b is in B, then since  $A^2 = B^2 = 1$  we have

$$[a \cdot b]^2 = a \cdot b \cdot a \cdot b = a \cdot b^2 \cdot a \cdot (a, b) = (a, b).$$

Since A is normal in H,  $(a, b) \in A$ . Therefore  $H^4 = 1$  since  $A^2 = 1$ .

## II. The derived module and ring of a Z-A(2) group

The verification that Z-A(2) groups cannot be of class equal to a limit ordinal is trivial and therefore omitted. We will assume throughout the following discussion that G is a Z-A(2) group of class n+1. We define the derived module M of G to be the direct sum of the abelian groups  $Z_{\alpha+1}/Z_{\alpha}$  for  $0 \leq \alpha < n$ . The elements of  $Z_{\alpha+1}/Z_{\alpha}$  will be called homogeneous of degree  $\alpha + 1$ .

If  $x \in G$  then there exists only one quotient group  $Z_{\alpha+1}/Z_{\alpha}$  in which x represents a nonunit coset. Designate the coset by  $\bar{x}$ . If  $\bar{x}$  and  $\bar{y}$  are both homogeneous of degree  $\alpha + 1$  then the sum of  $\bar{x}$  and  $\bar{y}$  in M is their quotient group product.

Suppose that  $\bar{t} \in Z_{n+1}/Z_n$  and  $\bar{x} \in Z_{\alpha+1}/Z$  for  $\alpha < n$ . If  $\alpha$  is not a limit ordinal, define  $\bar{x}\bar{t}$  to be the coset in  $Z_{\alpha}/Z_{\alpha-1}$ , which is represented by the commutator (x, t). Otherwise  $\bar{x}\bar{t} = 0$ . The operation  $\bar{x}\bar{t}$  is well defined. Suppose that y is in  $Z_{\alpha}$  and z is in  $Z_n$ . Then  $(x \cdot y, z)$  is in  $Z_{\alpha-1}$  since  $(Z_{\alpha+1}, Z_n)$  is in  $Z_{\alpha-1}$ . On expanding commutators we also find that

$$(x \cdot y, t) \equiv (x, t) \mod Z_{\alpha-1}$$
 and  $(x \cdot y, t, z) \equiv 1 \mod Z_{\alpha-1}$ .

Consequently  $(x \cdot y, t \cdot z) \equiv (x, t) \mod Z_{\alpha-1}$ .

Suppose that  $\bar{x}$  and  $\bar{y}$  are homogeneous of degree  $\alpha + 1$  where  $1 \leq \alpha + 1 \leq n$  and  $\bar{t}$  is homogeneous of degree n + 1. Since

$$(x \cdot y, t) = (x, t) \cdot (y, t) \mod Z_{\alpha-1}$$

then  $\bar{t}$  represents a homomorphism of  $Z_{\alpha+1}/Z_{\alpha}$  into  $Z_{\alpha}/Z_{\alpha-1}$ . We extend the domain of  $\bar{t}$  to M by linearity so that  $\bar{t}$  is an endomorphism of M. The derived ring  $\Gamma$  over M is the endomorphism ring generated by elements of  $Z_{n+1}/Z_n$ . Since

$$\bar{x}(\bar{t}_1 + \bar{t}_2) = (\overline{x_1 t_1}) + (\overline{x_1 t_2}) = (\overline{x_1 t_1 \cdot t_2})$$

then endomorphism addition of elements from  $Z_{n+1}/Z_n$  coincides with the quotient group multiplication.  $\Gamma$  is of course an associative ring, since endomorphism multiplication is associative.

The important connection between a Z-A(2) group and its derived ring is stated in the following theorem.

THEOREM 1. If G is a Z-A(2) group of class n + 1 and if the derived ring  $\Gamma$  is nilpotent of class k then k = n + 1.

We state first the following lemma.

LEMMA 1. If G is a Z-A(2) growp of class n+1 and if  $\bar{x}\bar{t}_1\cdots\bar{t}_k=0$  for x in  $Z_{k+1}$  and all  $\bar{t}_1, \dots, \bar{t}_k$  in  $Z_{n+1}/Z_n$ , then x is in  $Z_k$ .

If x is not in  $Z_k$  then  $\bar{x}$  is homogeneous of degree k+1. Thus  $\bar{x}\bar{t}_1\cdots\bar{t}_k=0$  implies that for all homogeneous elements  $\bar{t}_1$ ,  $\cdots$ ,  $\bar{t}_k$  of degree n+1, the commutator  $(x, t_1, \dots, t_k)$  is the unit of  $Z_1/Z_0=1$ . But since G is a Z-A(2) group we have  $(x, Z_{\alpha_1}, \dots, Z_{\alpha_k})=1$  if  $Z_{\alpha_j} \leq Z_n$  for some  $j=1, \dots, k$ . Therefore

$$(x, \underbrace{G, \cdots, G}_{h}) = 1,$$

and x is in  $Z_k$ .

If  $\Gamma$  is nilpotent of class k, then for x in  $Z_{k+1}$  we must have

$$\bar{x}\bar{t}_1\cdots\bar{t}_k=0$$

for all  $\bar{t}_1$ ,  $\cdots$ ,  $\bar{t}_k$  in  $Z_{n+1}/Z_n$ . Thus by the lemma  $Z_{k+1}$  is  $Z_k$  and hence  $G=Z_k$ . Since  $\Gamma$  is nilpotent of class k there must be an element x in  $Z_k$  and elements  $\bar{t}_1$ ,  $\cdots$ ,  $\bar{t}_{k-1}$  such that  $\bar{x}\bar{t}_1\cdots\bar{t}_{k-1}\neq 0$ . Hence  $(x,\,t_1\,,\,\cdots\,,\,t_{k-1})\neq 1$  and G is nilpotent of class k.

Of course if G is nilpotent of class k then it is a trivial matter to show that  $\Gamma$  is nilpotent of class k.

The following arguments will show that the derived ring of a Z-A(3) group is commutative. We will demonstrate later that this is an important property of Z-A(3) groups.

THEOREM 2. Suppose G is a Z-A(2) group of class n+1. If  $\bar{x}$  is in  $Z_{\alpha+1}/Z_{\alpha}$  for  $\alpha < n$  and both  $\bar{t}_1$  and  $\bar{t}_2$  are in  $Z_{n+1}/Z_n$ , then  $\bar{x}\bar{t}_1\bar{t}_2 = \bar{x}\bar{t}_2\bar{t}_1 + \bar{q}$  where  $\bar{q}$  is the coset in  $Z_{\alpha-1}/Z_{\alpha-2}$  which is represented by the commutator  $(x, (t_1, t_2))$ .

Lemma 2. If G is a Z-A group and if x is in  $Z_{\alpha+1}$ , then for all  $g_1$  and  $g_2$  in G we have

$$(x, g_1, g_2) \equiv (x, g_2, g_1) \cdot (g_1, g_2, x)^{-1} \mod Z_{\alpha-2}.$$

From [5, p. 108], [4, Theorem 1.1, p. 107], and [4, Theorem 11.1–6, p. 167], the commutator identities follow respectively.

(5) 
$$(x, y, z^{y}) \cdot (y, z, x^{z}) \cdot (z, z, y^{x}) = 1.$$

(6) 
$$(x, y^{-1}) = (x, y, y^{-1})^{-1} \cdot (x, y)^{-1}.$$

Therefore by (5), (3) and (6) we have

$$(7) (x, g_1, g_2^{g_1}) \cdot (g_1, g_2, x^{g_2}) \cdot (g_2, x, g_1^x) = 1,$$

$$(8) (x, g_1, g_2^{g_1}) = (x, g_1, g_2 \cdot (g_2, g_1)) \equiv (x, g_1, g_2) \mod Z_{\alpha-2},$$

$$(9) (g_2, x, g_1^x) = (g_2, x, g_1 \cdot (g_1, x)) \equiv (g_2, x, g_1) \mod Z_{\alpha-2},$$

$$(10) (g_2, x, g_1) = ((x, g_2)^{-1}, g_1) \equiv (x, g_2, g_1)^{-1} \operatorname{mod} Z_{\alpha-2}.$$

Then by (9) and (10)

$$(11) (g_2, x, g_1^x) \equiv (x, g_2, g_1)^{-1} \mod Z_{\alpha-2}.$$

It follows from (3) that

(12) 
$$(g_1, g_2, x^{g_2}) = (g_1, g_2, x \cdot (x, g_2))$$

$$\equiv (g_1, g_2, (x, g_2)) \cdot (g_1, g_2, x) \mod Z_{\alpha-2}.$$

But

$$(g_1, g_2, (x, g_2)) \equiv 1 \mod Z_{\alpha-2}$$
.

Therefore by (12)

$$(13) (g_1, g_2, x^{g_2}) \equiv (g_1, g_2, x) \mod Z_{\alpha-2}.$$

The lemma follows from (7), (8), (9) and (13).

If  $\bar{x}$  is in  $Z_{\alpha+1}/Z_{\alpha}$  and  $\bar{g}_1$  and  $\bar{g}_2$  are in  $Z_{n+1}/Z_n$ , Theorem 2 follows from the lemma.

Theorem 2 shows that  $\Gamma$  is commutative on  $Z_{\alpha+1}/Z_{\alpha}$  if and only if  $(x, (t_1, t_2)) \equiv 1 \mod Z_{\alpha-2}$  for all elements  $x, t_1$ , and  $t_2$  such that  $\bar{x}$  is in  $Z_{\alpha+1}/Z_{\alpha}$  and both  $\bar{t}_1$  and  $\bar{t}_2$  are in  $Z_{n+1}/Z_n$ . If G is a Z-A(3) group of class n+1, then  $(Z_{\alpha+1}, Z_n)$  is in  $Z_{\alpha-2}$  for every  $\alpha < n$ . Thus if  $\bar{x}$  is in  $Z_{\alpha+1}/Z_{\alpha}$  and both  $\bar{t}_1$  and  $\bar{t}_2$  are in  $Z_{n+1}/Z_n$ , it follows that  $(x, (t_1, t_2)) \equiv 1 \mod Z_{\alpha-2}$ , and we have the following theorem.

Theorem 3. The derived ring of a Z-A(3) group is commutative.

Theorem 3 certainly is not true for Z-A(2) groups. In the example of a Z-A(2) group given above,  $\bar{a}_3$  is in  $Z_3/Z_2$  and both  $\bar{\alpha}$  and  $\bar{\beta}$  are in  $Z_4/Z_3$ , but  $\bar{a}_3 \ \bar{\alpha}\bar{\beta} = 0$  and  $\bar{a}_3 \ \bar{\beta}\bar{\alpha} = \bar{a}_1$ .

## III. Z-A(2) groups with a commutative derived ring

A Z-A(2) group G of class n+1 with a commutative derived ring means of course that elements of  $Z_{n+1}/Z_n$  operate commutatively on the direct sum of the groups  $Z_{\alpha+1}/Z_{\alpha}$  for  $\alpha < n$ . Denote the above class of groups by Z-A<sub>c</sub>(2). Theorem 3 shows that Z-A(3)  $\leq$  Z-A<sub>c</sub>(2). Whether or not this is really an equality is still unknown. It seems unlikely, but as of yet the evidence is still inconclusive.

Let  $C_{m,i}$  designate the binomial coefficient of m with i. The symbol  $\prod$  will denote a product and (m, j) will designate the greatest common divisor of the integers m and j. We shall also use  $H_{\alpha}$  for the set of elements x of a  $\mathbb{Z}$ -A(2) group where  $\bar{x}$  is homogeneous of degree  $\alpha$ .

The following theorem is a generalization of [3, Lemma 4.1].

THEOREM 4. Suppose that  $G \in \mathbb{Z}$ - $A_c(2)$  and  $G \mid e:m \mid G$ ; then  $G/\mathbb{Z}_{2^{m-1}}$  is periodic where the periods divide some power of

$$k = \prod_{i=0}^{m-2} (C_{m-i,1}, \dots, C_{m-i,m-i-1}).$$

The proof will consist of first proving that  $k\Gamma^{2^{m-1}} = 0$  where  $\Gamma$  is the derived ring of G and from this the theorem will be shown to follow.

LEMMA 3. If G is a Z-A<sub>c</sub>(2) group of class n+1 and x is in  $H_{\alpha+1}$ ,  $\alpha+1 < n+1$ , then for all  $t_1$  and  $t_2$  in  $H_{n+1}$  we have

$$(x, it_1, jt_2) \equiv (x, jt_2, it_1) \mod Z_{\alpha-i-j}.$$

Since  $G \in \mathbb{Z}$ -A<sub>c</sub>(2) the derived ring is commutative.

The lemma then follows from the equation

$$\bar{x}\bar{t}_1 \cdots \bar{t}_1 \underbrace{\bar{t}_2 \cdots \bar{t}_2}_{j} = \bar{x}\bar{t}_2 \cdots \bar{t}_2 \underbrace{\bar{t}_1 \cdots \bar{t}_1}_{j}.$$

LEMMA 4. If  $x_1, \dots, x_k$  are elements of a group G which are located in the upper central term  $Z_{\alpha+1}$ , then for all  $g_1, \dots, g_r$  in G we have

$$\left(\prod_{i=1}^{k} x_{i}, g_{1}, \dots, g_{r}\right) \equiv \prod_{i=1}^{k} (x_{i}, g_{1}, \dots, g_{r}) \mod Z_{\alpha-r}.$$

The proof will use an induction on k and r. If k = r = 1 the lemma is trivial. For k = q + 1 and r = 1 by using (1) we have

$$\left(\prod_{i=1}^{q+1} x_i, g\right) \equiv \left(\prod_{i=1}^{q} x_i, g\right) \cdot (x_{q+1}, g) \mod Z_{\alpha-1}.$$

Thus the lemma follows by the induction hypothesis. If r = m + 1 we have by the induction hypothesis

$$(\prod_{i=1}^{k} x_i, g_1, \dots, g_m, g_{m+1})$$

$$\equiv (\prod_{i=1}^{k} (x_i, g_1, \dots, g_m), g_{m+1}) \mod Z_{\alpha-m-1}$$

$$\equiv \prod_{i=1}^{k} (x_i, g_1, \dots, g_m, g_{m+1}) \mod Z_{\alpha-m-1}.$$

LEMMA 5. Suppose that G is a Z-A<sub>c</sub>(2) group of class n+1, x is in  $H_{\alpha+1}$  for  $\alpha < n$ , and  $t_1$  and  $t_2$  are both in  $H_{n+1}$ . Then

$$(x, m[t_1 t_2]) \equiv \prod_{i=0}^{m} (x, m-it_1, it_2)^{C_{m,n}} \mod Z_{\alpha-m}.$$

Since each factor  $(x, m-it_1, it_2)$  is in  $Z_{\alpha+1-m}$  they must commute modulo  $Z_{\alpha-m}$ . Thus the order of the factors in the above product is immaterial.

Since  $(x, t_1 \cdot t_2) = (x, t_2) \cdot (x, t_1) \cdot (x, t_1, t_2)$ , the lemma is true for m = 1. For m = q + 1 if we designate  $(x, {}_{q+1}[t_1 \cdot t_2])$  by A we have

$$\begin{split} A &= (x, {}_{q}[t_{1} \cdot t_{2}], \, t_{1} \cdot t_{2}) \\ &= (x, {}_{q}[t_{1} \cdot t_{2}], \, t_{2}) \cdot (x, {}_{q}[t_{1} \cdot t_{2}], \, t_{1}) \cdot (x, {}_{q}[t_{1} \cdot t_{2}], \, t_{1}, \, t_{2}), \\ A &\equiv (x, {}_{q}[t_{1} \cdot t_{2}], \, t_{2}) \cdot (x, {}_{q}[t_{1} \cdot t_{2}], \, t_{1}) \mod Z_{\alpha - q - 1}. \end{split}$$

If we apply the induction hypothesis, we get

$$A \; \equiv \; \left( \prod\nolimits_{i=0}^{q} \; (x, \; {}_{q-i}t_1 \; , \; {}_{i}t_2 \right)^{C_{q,i}}, \; t_2 \right) \cdot \left( \; \prod\nolimits_{i=0}^{q} \; (x, \; {}_{q-i}t_1 \; , \; {}_{i}t_2 ), {}^{C_{q,i}}, \; t_1 \right) \mod \; Z_{\alpha-q-1} \; .$$

By Lemma 4 we have

$$A \equiv \prod_{i=0}^{q} (x, _{q-i}t_1, _{i+1}t_2)^{C_{q,i}} \cdot \prod_{i=0}^{q} (x, _{q-i}t_1, _{i}t_2, _{t_1})^{C_{q,i}} \mod Z_{\alpha-q-1}.$$

If we use Lemma 3 to permute  $t_1 \mod Z_{\alpha-q-1}$  past the elements  $t_2$  in  $(x, t_1, t_2, t_1)^{C_{q,i}}$  we get

$$A \equiv \prod_{i=0}^{q} (x, q_{-i}t_1, i_{+1}t_2)^{C_{q,i}} \cdot \prod_{i=0}^{q} (x, q_{+1-i}t_1, it_2)^{C_{q,i}} \mod Z_{\alpha-q-1}$$

$$\equiv \prod_{i=1}^{q+1} (x, q_{+1-i}t_1, it_2)^{C_{q,i-1}} \cdot (x, q_{+1}t_1) \cdot \prod_{i=1}^{q} (x, q_{+1-i}t_1, it_2)^{C_{q,i}}$$

 $\mod Z_{\alpha-q-1}$ .

Since the factors commute modulo  $Z_{\alpha-q-1}$  we have

$$A \equiv (x, {}_{q+1}t_2) \cdot (x, {}_{q+1}t_1) \prod_{i=1}^{q} (x, {}_{q+1-i}t_1, {}_{i}t_2)^{C_{q,i-1}} \prod_{i=1}^{q} (x, {}_{q+1-i}t_1, {}_{i}t_2)^{C_{q,i}}$$

$$\mod Z_{\alpha-q-1}$$

$$\equiv (x, {}_{q+1}t_2) \cdot (x, {}_{q+1}t_1) \prod_{i=1}^{q} (x, {}_{q+1-i}t_1, {}_{i}t_2)^{C_{q,i-1}+C_{q,i}} \mod Z_{\alpha-q-1}$$

$$\equiv \prod_{i=0}^{q+1} (x, {}_{q+1-i}t_1, {}_{i}t_2) C_{q+1,i} \mod Z_{\alpha-q-1}.$$

This completes the induction.

COROLLARY. Suppose that N is a  $\Gamma$ -invariant submodule of the derived module M of a Z- $A_c(2)$  group of class n+1. Further suppose that  $N\bar{t}^m=0$  for all  $\bar{t}$  in  $Z_{n+1}/Z_n$  and for some integer m which is independent of  $\bar{t}$ . Then  $qN\bar{t}_1^{m-1}\bar{t}_2^{m-1}=0$  for all  $\bar{t}_1$  and  $\bar{t}_2$  in  $Z_{n+1}/Z_n$  where  $q=(C_{m,1},\cdots,C_{m,m-1})$ .

Every element of N can be expressed in the form

$$\bar{x}_1 + \cdots + \bar{x}_i + \cdots + \bar{x}_i + \cdots + \bar{x}_k$$

where for  $i \neq j$ ,  $\bar{x}_i$  and  $\bar{x}_j$  are in different summands of the derived module M.

If for instance  $\bar{x}_i$  and  $\bar{x}_j$  are in  $Z_{\alpha+1}/Z$  then combine them. But

$$(\bar{x}_1 + \cdots + \bar{x}_k)\bar{t}^m = 0$$

implies that  $\bar{x}_j \bar{t}^m = 0$  for  $j = 1, \dots, k$ . Suppose that  $\bar{t}_1$  and  $\bar{t}_2$  are in  $Z_{n+1}/Z_n$ . The group product  $t_1 \cdot t_2$  may or may not be in  $Z_n$ . If  $t_1 \cdot t_2$  is in  $Z_n$  then, since  $G \in \mathbb{Z}$ -A<sub>c</sub>(2), we have that  $(x_j, {}_m t_1 \cdot t_2) \equiv 1 \mod Z_{\alpha_j - m}$ , where  $\bar{x}_j$  is in  $Z_{\alpha_j + 1}/Z_{\alpha_j}$ . Should  $t_1 \cdot t_2$  not be in  $Z_n$ , then  $\bar{x}_j (t_1 \cdot t_2)^m = 0$  implies that

$$(x_j, m[t_1 \cdot t_2]) \equiv 1 \mod Z_{\alpha_j - m}.$$

Thus in either case we have  $(x_j, {}_m[t_1 \cdot t_2]) \equiv 1 \mod Z_{\alpha_j-m}$  for  $\bar{t}_1$  and  $\bar{t}_2$  in  $Z_{n+1}/Z_n$ ,  $x_j$  in  $Z_{\alpha_j+1}/Z_{\alpha_j}$ . But by Lemma 5

$$(x_j, m[t_1 \cdot t_2]) \equiv \prod_{i=0}^m (x_j, m_{-i}t_1, it_2)^{C_{m,i}} \mod Z_{\alpha_j - m}.$$

Then for  $l = 1, 2, \dots, m-1$  we have

$$(x_i, m[t_1 \cdot t_2], l_{-1}t_1, m_{-l-1}t_2)$$

$$\equiv \left( \prod_{i=0}^{m} (x_i, _{m-i}t_1, _{i}t_2)^{C_{m,i}}, _{l-1}t_1, _{m-l-1}t_2 \right) \mod Z_{\alpha_j-2m+2}.$$

If we use Lemma 4 we have

$$\equiv \prod_{i=0}^{m} (x_i, _{m-i}t_1, _{i}t_2, _{l-1}t_1, _{m-l-1}t_2)^{C_{m,i}} \mod Z_{\alpha_j-2m+2}.$$

But by Lemma 3 we can permute the elements  $t_{-1}t_1$  past  $t_2$  in

$$(x_j, m_{-i}t_1, it_2, l_{-1}t_1, m_{-l-1}t_2)$$

to get

$$\equiv \prod_{i=0}^{m} (x_{j}, \,_{m+l-i-1}t_{1}, \,_{m-l+i-1}t_{2})^{C_{m,i}} \mod Z_{\alpha_{j}-2m+2}.$$

Thus since  $(x_j, m[t_1 \cdot t_2]) \equiv 1 \mod Z_{\alpha_j - m}$  we have

$$(14) 1 \equiv \prod_{i=0}^{m} (x_j, {}_{m+l-i-1}t_1, {}_{m-l+i-1}t_2)^{c_{m,i}} \mod Z_{\alpha_i-2m+2}.$$

But we assumed that  $N\bar{t}_1^m = 0$ . This means that  $(x_j, {}_m t_1) \equiv 1 \mod Z_{\alpha_j - m}$ . Therefore if i < l then  $m - i + l - 1 \geq m$  and

$$1 \equiv (x_j, _{m+l-i-1}t_1, _{m-l+i-1}t_2) \mod Z_{\alpha_j-2m+2}.$$

By Lemma 3, we have

$$(x_j, m+l-i-1t_1, m-l+i-1t_2) \equiv (x_j, m-l+i-1t_2, m+l-i-1t_1) \mod Z_{\alpha_j-2m+2}.$$

Using the assumption  $n\tilde{t}_2^m = 0$  for all n in N we have that

$$(x_j, {}_mt_2) \equiv 1 \mod Z_{\alpha_j-m}.$$

Then if i > l and thus  $m - l + i - 1 \ge m$ , we have that

(16) 
$$1 \equiv (x_j, _{m-l+i-1}t_2, _{m+l-i-1}t_1) \mod Z_{\alpha_j-2m+2}.$$

Using (14), (15) and (16) we get

$$1 \equiv (x_i, m-1t_1, m-1t_2)^{C_{m,l}} \mod Z_{\alpha_i-2m+2}$$
 for  $l = 1, \dots, m-1$ .

Therefore  $C_{m,l} N t_1^{m-1} t_2^{m-1} = 0$  and the corollary follows.

LEMMA 6. Suppose that G is a Z- $A_c(2)$  group of class n+1 and N is a  $\Gamma$ -invariant submodule of the derived module M where  $\Gamma$  is the derived ring. Further suppose that  $Nt^m = 0$  for all t in  $Z_{n+1}/Z_n$  and for some integer m which is independent of t. Then

$$kN\Gamma^{2^{m-1}} = 0$$
 where  $k = \prod_{i=1}^{m-2} (C_{m-i,1}, \dots, C_{m-i,m-i-1})^{2^i}$ .

If m=1 the proof is obvious. Suppose that m=r+1. By the corollary of Lemma 5,  $(C_{r+1,1}, \cdots, C_{r+1,r})N\bar{t}_1^r\bar{t}_2^r=0$  for all  $\bar{t}_1$  and  $\bar{t}_2$  in  $Z_{n+1}/Z_n$ . Define  $N_1$  to be the submodule  $(C_{r+1,1}, \cdots, C_{r+1,r})N\bar{t}_1^r$  for  $\bar{t}_1$  in  $Z_{n+1}/Z_n$ . Obviously  $N_1$  is  $\Gamma$ -invariant since  $\Gamma$  is commutative, and N is  $\Gamma$ -invariant. But  $N_1\bar{t}^r=0$  for all  $\bar{t}$  in  $Z_{n+1}/Z_n$ . By the induction hypothesis

$$bN_1 \Gamma^{2^{r-1}} = 0$$
 where  $b = \prod_{i=1}^{r-2} (C_{r-i,1}, \dots, C_{r-i,r-i-1})^{2^i}$ .

Since  $\Gamma$  is commutative

$$hN^{2^{r-1}}\bar{t}_1^r = 0$$

for every  $\bar{t}_1$  in  $Z_{n+1}/Z_n$  where  $h=(C_{r+1,1},\cdots,C_{r+1,1})\cdot b$ . Let  $N_2=hN\Gamma^{2^{r-1}}$ . Then  $N_2$  is  $\Gamma$ -invariant and  $N_2$   $\bar{t}^r=0$  for  $\bar{t}$  in  $Z_{n+1}/Z_n$ . The induction hypothesis implies that  $dN_2$   $\Gamma^{2^{r-1}}=0$  for  $d=\prod_{i=1}^{r-2}(C_{r-i,1},\cdots,C_{r-i,r-i-1})^{2^i}$  and the lemma follows.

Lemma 7. Suppose that G is a Z- $A_c(2)$  group of class n + 1. If for some integer q,

$$(Z_{\alpha+1}^k, \underbrace{H_{n+1}, \cdots, H_{n+1}}_{q}) \equiv 1 \mod Z_{\alpha-q}$$

then  $Z_{\alpha+1}^k \leq Z_{\alpha}$ .

Suppose that x is in  $Z_{\alpha+1}$ . Since G is a Z-A<sub>c</sub>(2) group we have

$$(x^k, Z_{\alpha_1}, Z_{\alpha_2}, \cdots, Z_{\alpha_j}, \cdots, Z_{\alpha_q}) \equiv 1 \mod Z_{\alpha-q}$$

if  $Z_{\alpha_j} \leq Z_n$  for some j. But since

$$(x^k, \underbrace{H_{n+1}, \cdots, H_{n+1}}_{q}) \equiv 1 \mod Z_{\alpha-q}$$

it follows that  $(x^k, \underbrace{G, \cdots, G}_q) \equiv 1 \mod Z_{\alpha-q}$ . Therefore

$$(x^k, \underbrace{G, \cdots, G}_{q-1}) \equiv 1 \mod Z_{\alpha+1-q}$$
.

Lemma 7 follows from q-1 repetitions of this last step.

Corollary. Suppose that G is a Z-A<sub>c</sub>(2) group of class n + 1. If there

exist positive integers k and q such that for all  $\alpha < n$ ,

$$(H_{\alpha+1}^k, \underbrace{H_{n+1}, \cdots, H_{n+1}}_q) \equiv 1 \mod Z_{\alpha-q}$$

then  $G/\mathbb{Z}_q$  is periodic and the periods are powers of k.

Suppose x is in  $H_{\alpha_0+1}$  for  $q < \alpha_0 + 1 < n + 1$ . Since

$$(x^k, \underbrace{H_{n+1}, \cdots, H_{n+1}}_{q}) \equiv 1 \mod Z_{\alpha_0-q},$$

the element  $x^k$  is in  $H_{\alpha_1}$  for  $\alpha_1 < \alpha_0$  by Lemma 7. Repeating this argument on the element  $x^k$  we have that  $x^{k^2}$  is in  $H_{\alpha_2}$  where  $\alpha_2 < \alpha_1$ . Continuing this process we arrive at a sequence  $x^k$ ,  $x^{k^2}$ ,  $x^{k^3}$ ,  $\cdots$ ,  $x^{k^i}$ ,  $x^{k^{i+1}}$ ,  $\cdots$  where  $x^{k^i}$  is in  $H_{\alpha_i}$  and  $\alpha_i > \alpha_{i+1}$ . But this sequence is finite since the upper central series is well ordered.

We return now to proof of Theorem 4. Since G|e:m| G we have  $M\overline{t}^m=0$  for all  $\overline{t}$  in  $Z_{n+1}/Z_n$ , where M is the derived module of G. By Lemma 6 we have  $kM\Gamma^{2^{m-1}}=0$  where  $k=\prod_{i=1}^{m-2}\left(C_{m-i,1},\cdots,C_{m-i,m-i-1}\right)^{2^i}$ . But this means for all  $\alpha< n$ ,

$$(H_{\alpha+1}^k, \underbrace{H_{n+1}, \cdots, H_{n+1}}_{2m-1}) \equiv 1 \mod Z_{\alpha-2m-1}.$$

Therefore the theorem follows from the corollary of Lemma 7.

The following corollary states an obvious consequence of Theorem 4.

COROLLARY. If G is a Z-A<sub>c</sub>(2) group where  $G \mid e:m \mid G$  and in addition if  $G/Z_{2^{m-1}}$  is k-torsion-free where k is defined as above, then G is nilpotent.

By Theorem 4, every Z-A<sub>c</sub>(2) group which satisfies the Engel condition of class m is periodic modulo  $Z_{2^{m-1}}$ . It is a simple matter to show that if G is a Z-A<sub>c</sub>(2) group which satisfies the Engel condition of class m then so must  $G/Z_{\alpha}$  for every ordinal  $\alpha$ . So it seems natural to study periodic Z-A<sub>c</sub>(2) groups which satisfy the Engel condition.

THEOREM 5. Suppose that  $G \in \mathbb{Z}-A_c(2)$  and  $G \mid e:m \mid G$ . If in addition G is also periodic where every element x of G has a period g(x) such that all of the prime divisors of g(x) are larger than those of g(x), then G is nilpotent.

Since G is periodic then  $G/Z_{2^{m-1}}$  must also be. Every element x of  $G/Z_{2^{m-1}}$  must have a period dividing q(x) where the prime divisors of q(x) are larger than those of m Hence q(x) and k are relatively prime where

$$k = \prod_{i=1}^{m-2} (C_{m-i,1}, \dots, C_{m-i,m-i-1})^{2^i}$$

Consequently  $G/Z_{2^{m-1}}$  is k-torsion-free. The theorem follows from the corollary of Theorem 4.

The condition on the periods q(x) in Theorem 5 are necessary when q(x)

is not a prime exponent for the group G. We presented an example of a Z-A(3) group H such that H | e:3 | H and  $H^4 = 1$  but H is not nilpotent. However we next show that every Z-A(3) group of prime exponent is nilpotent.

THEOREM 6. If G is a Z-A<sub>c</sub>(2) group of class n + 1 and  $G^p = 1$  for prime p then G is nilpotent.<sup>2</sup>

Suppose that  $x \in H_{\alpha+1}$  for  $\alpha + 1 \leq n$ , and  $t \in H_{n+1}$ . In [4, equation 18.4.13, p. 327] M. Hall showed that  $(x, y_1, \dots, y_p)$  where  $y_i$  is x or t. But

$$(x, y_1, \dots, y_p) \equiv 1 \mod Z_{\alpha+1-p}$$

and hence  $(x, p_{-1}t) \equiv 1 \mod Z_{\alpha+1-p}$ . But in terms of the derived module M, this means that  $\bar{x}\bar{t}^{p-1} = 0$ . Thus  $M\bar{t}^{p-1} = 0$  for all  $\bar{t}$  in  $Z_{n+1}/Z_n$ . Therefore by Lemma 6,  $kM\Gamma^{2^{p-2}} = 0$  where  $k = \prod_{i=1}^{p-3} (C_{m-i,1}, \dots, C_{m-i,m-i-1})^{2^i}$  Thus

$$(H_{\alpha+1}^k, \underbrace{H_n, \cdots, H_n}_{2p-2}) \equiv 1 \mod Z_{\alpha-2p-2}.$$

Then by the corollary of Lemma 7 we have that  $G/Z_{2p-2}$  is periodic and the periods divide powers of k. But the elements of  $G/Z_{2p-2}$  have period p. Since k and p are relatively prime  $G \leq Z_{2p-2}$ .

#### BIBLIOGRAPHY

- R. Baer, Engelsche Elemente Noetherscher Gruppen, Math. Ann., vol. 133 (1957), pp. 256-270.
- 2. K. Gruenberg, Two theorems on Engel groups, Proc. Cambridge Philos. Soc., vol. 49 (1953), pp. 377-380.
- 3. ———, The upper central series in soluble groups, Illinois J. Math., vol. 5 (1961), pp. 436-466.
- 4. M. Hall, Jr., The theory of groups, New York, Macmillan, 1959.
- M. LAZARD, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. École Norm. Sup. (3), vol. 71 (1954), pp. 101-190.

University of Wisconsin Milwaukee, Wisconsin University of Notre Dame Notre Dame, Indiana

<sup>&</sup>lt;sup>2</sup> The author is grateful to the referee for suggesting Hall's equation [4, equation 18.4.13] in order to simplify the proof of Theorem 6.