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!. Introduction

Suppose that A and B are subgroups of a group G. If there exists a positive
integer m such that the commutator

(...((a, b), ...), b) 1

for all a in A and b in B, then we write A le:mJ B. A group G which satisfies
G le:ml G is said to satisfy the mt Engel condition.
The problem of determining for what groups the mth Engel condition

implies nilpotence has been studied by several authors. For example, K.
Gruenberg in [2] has shown that finitely generated soluble groups which
satisfy the mth Engel condition are nilpotent. R. Baer in [1] adds groups
which satisfy the maximal condition to the list. I1 [3] Gruenberg includes
the torsion-free soluble groups

This paper grew out of an investigation of the commutator structure of
Z-A groups, that is groups in which G itself is a term of its upper central
series. The class of a Z-A group is the smallest ordinal n such that Z G
where Zn denotes the nth term in the upper central series of G. The investi-
gation resulted in a curious classification of Z-A groups. This classification
is based on a class of Z-A groups which it seemed natural to call Z-A(q) groups
for integer q. We will show that Z-A(1) is equal to the above class of groups
and that Z-A( 1 > Z-A(2) > Z-A(3). The class of Z-A(3) groups proved
to be interesting. For instance, an example of a metabelian. Z-A(3) group is
found which has exponent 4 and satisfies the 3rd Engel condition, but is not
nilpotent. However, every Z-A(3) group with pime exponent is auto-
matically nilpotent. It may not be significant but no example of a Z-A(3)
group has been found which is not of class -t- 1 and where Z is not abelian.
The following pages will investigate under what conditions the Engel condition
implies nilpotence for Z-A(3) groups.
We will recall some definitions and notations. If x and y are elements of a

group, then denote the product x-l.y-l.x.y of a group by the commutator
(x, y). We define commutators of higher order by the recursive rule
(xl, ..., xn_l, xn) ((x, ..., x_), xn). Define the weight w(c)of the
commutator c constructed from the elements x, x. recursively by
defining the weight of the elements x, x. to be 1, and if c (c, c.)
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then w(c) w(ci) + w(cj) where both ci and c. are commutators in xl,
For the sake of convenience, designate the commutator

Xn.

(x, y, ...,y) by (x, ky).

If A and B are two subgroups of G then the subgroup generated by the
commutators (a, b) where a is in A and b is in B will be designated by (A, B).
Suppose that G is a Z-A group of class n for some ordinal n. If for some

positive integer q we have (Z,+q, Z) <- Z, for all ordinals a, with
a - q,/ <: n then G will be called a Z-A(q) group.

Suppose G is a Z-A group of class n. Since for all ordinals a and ,
(Z,+I, Z) __< Z, we have that G is a Z-A(1) group. Obviously Z-A(q) _>-
Z-A(q -t- 1).
There are examples of nilpotent groups of class 3 which have a nonabelian

upper central term Z2. For instance consider the group of 2 by 2 integral
matrices with components reduced modulo 4 of the form I -[- P -[- 2Q where
I is the identity, P is an integral matrix with zeros in every row except the
last and in the main diagonal and Q is an integral matrix. Hence
Z-A(1) > Z-A(2).
The following example presents a Z-A(2) group G which is not a Z-A(3)

group. The example G will be a semidirect product of an abelian group A
by a nilpotent group N. Let A be a torsion-free abelian group generated by
the elements al, a., a and b.
We define the following automorphisms on A.

A - A" A -+ A
al al, a al,

62 a2.al a a2.61

a. aa, a aa. a2

b" b.a3, b b.

Let N be the automorphism group generated by a and . Since G is the
semidirect product of A by N then A is a normal subgroup of G and N is a
subgroup of G whose elements are the coset representatives of G/A. From
the definitions of a and we have (b, a) a, (a, ) a. and (a2, ) a.
Consequently G is generated by the elements a./ and b.

It will be convenient to represent the commutator (x, y) by x -- y in order
to diagram the commutators in the elements a, and b. Of course we mean
x--y-ztobe(x-+y)-z. Forx landy 1, if(x,y) lwewrite
x -- y 1. The accompanying diagrams will show the values of all of the
commutators in the elements a, and b.
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The following tables of automorphisms will be included in order to verify
these diagrams.

a,aa’) al, a’’) al, al,

aa’fl)
a2 a2 a2 a2

a’fl)
a3 a], a3, a,

b’’) b.b(’) b a a, b"’’) b .a,

The terms of the lower central series of G are generated from the commu-
tators of its generators. Hence the diagrams show that G is nilpotent of
class 4. If B is a group, we designate the rth term of the lower central series
by B. By using P. Hall’s collection process [4, pp. 165-168] we can express
every element x of G by the product av .fq .b. (a, )8. (a, b)t.z where z is in G2.

In the calculations that follow we will make repeated use of the commutator
identity, which appears in [4, Theorem 10.2.12, p. 150]"

(1) (x.y, z) (x, z).(x, z, y).(y, z).

Therefore, if x and z commute, we have (x .y, z) (y, z).
If H designates the group generated by elements x and (x, a), then for any

integer n by [4, Theorem 12.49, p. 185] we have

(2) (x=,a) (x,a) modH1.
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The diagrams show that a, and b are not in Z3. Suppose that for some
p, q and r, aP.q.b is in Z3. Then (a’.q.b", a) 1 mod Z.. But from
1 and (2) we have

(aP..b’, a) (.b", a)

(, a). (br, a) mod Z.

=- (, a).(b, a)" mod Z.

Consequently we must have that (, a) ". (b, a) is in Z,. Therefore by (1)

((, a)q.(b, a)", b) ((, a) q, b).((, a) q, b, (b, a)").((b, a)", b)

=- ((/,a)q,b) modZl

---= (f, a, b) mod Z1.

But from the tables we have

(t, a, b) q [b-(’) .b] ag.a.

Since (ag .a, a) (ag, a) a, we have that ag .a is not in Z unless q 0.
If a" .b 1 rood Z3, then by (2)

(a.b, b) (a, b) (a, b ) a;-
1 mod Z..

But (a-, , ) a-p 1. Thus p 0 if a.b 1rood Z3. Now
(b, a) a is not in Z. If an element x is in Za it must be represented by
the product (a,/)’. (a, )*.z where z is in G since a*’.q.b is not in Za unless
p q r 0. Suppose the product (a, )’. (a, )* -= lmodZ. Then
by (1) and (2) we have

((a, ).(a, b)’, b) ((a, )’, b) (a, ,
a2 a
1 mod Z1.

--tThus s 0. Since (a, b)t a3 the commutator (a, b)* is not in Z unless
0. Consequently (a, )8. (a, b)t _-__ 1 mod Z2 only if s 0.

Since every element x of G can be expressed in the form

a’.q.b".(a, )8.(o, b).z
wherezeG2,thenx 1 modZonlyifp q r s 0. Hence
ZisinG. AlsoxisinZ only ifp q r 0andhenceZaisinG1.
Since G 1 we have that (G, G) =< G 1. Therefore (Z, Z) 1.
We also have that (Z3, Za) =< (G, G) =< G -<_ Z. Therefore G is a
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Z-A (2) group. But (a, ) and (a, b) are in Z3 and
--.1((a, ), (a, b)) ((a, ), a;1) al 1.

Therefore (Z3, Z3) 1. Hence G is not a Z-A(3) group.
Since this paper will be primarily concerned with determining the nilpotent

groups from among the Z-A(3) groups, we will next present an example of a
metabelian Z-A(3) group which satisfies the 3ra Engel condition and has
exponent 4 but is not nilpotent.

Suppose A* is the direct sum of a countable number of copies of the cyclic
group C of order two. Designate the a*h summand by C, where C, is gener-
ated by a,. Let A be the subgroup of A* consisting of the direct sum of the
summands C, where for no prime p does p2 divide a. Now for each prime p
define the automorphism X on A by the following equations. Suppose a, is
in A. Then if the prime p divides a we define a a, -t- a,/, and if p does
not divide a, as as. If the prime .p divides a where as is in A then
aX,g ax - a’/, as. Therefore X 1 for every prime p. Suppose the
primes p and p’ both divide a where as is in A. Then

aX, aX,x al -t- al, al,.

Obviously if only one or none of the primes divides a, the corresponding
automorphisms still commute. Let B designate the abelian group generated
by the automorphisms X. We define H to be the semidirect product of A
by B. Then A is a normal subgroup of H, H/A is isomorphic to B and H
is the union of A and B. The following are some properties of H.

(a) A le’2[B.
Let the symbol II designate a finite product. So if b I=1 X then for
q II=l [x 1] and a in A we have (a, b, b) a 1.

(b) (A,A)= (B,B)= 1.

Both A and B have been shown to be abelian.

(c) (B,A,A)- 1.

The subgroup A is normal in H. Hence (c) follows from (b).

(d) A le’2[ H.

In [4, Theorem 11.1-6, p. 167] we find the commutator identity,

(3) (x, y.z) (x, z).(x, y).(x, y, z).

Thus (d) follows from (3), (a) and (c).

(e) H is metabelin (i.e. the second term of the derived series of H is 1).

Since (H, H) is in A, (e) follows from (b).
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(f) (hi, h, ha, h4) (hi, h., h4, ha) for all hi, h, ha and h4 in H.

For H is metabelian.

(g) (b, a.b’, a.b’) (b, a, b’) for all b, b’ in B and a in A.

(b, a.b’, a.b’) (b, a.b’, b’) as (b, a.b’) and a commute, both being contained
in A;

(b, a.b’, b’) ((b, a).(b, a, b’), b’) (b, a, b’).(b, a, b’,

(b,a,b’).

(h) Ble’31H.
Suppose that b is in B and a .b’ is in H. By (g) we have

(b, a.b’, a.b’) (b, a, b’).

Therefore by (3), (a)and (b)

(b, a.b’, a.b’, a.b’) (b, a, b’, b’).(b, a, b’, a).(b, a, b’, a, br)

1.

(i) (a, a.b, a.b) (a, b, b.) for all a, a, a.

If n !, (a, al .bl) (a, bl) as a and al commute. Assume (i) is true for
n k. By the induction hypothesis

(a, al.b,a..b, ...,bk.ak, ak+.bk+l) (a, bl, ...,bl,a+.b+l).

Now (a, b, b) and a+l commute as elements of A; therefore

(a, bl ..., b a+l.bk+l) (a, bl b b+l).

For any number n let a IIl pi where p p. for i j. Suppose b X,
i 1, ...,n- 1. Then ift IIz:[x 1]ands IIlp,

(a, b, ..., b,,_) at, a,, 1.

Therefore H is not nilpotent.
Suppose that X is in B and a, is in A, where a is the product of at most n

primes. If the prime p does not divide a then (a,, X) 1. If p divides
a then (a,, X) a,/. Therefore (a,, X, ..., X) 1 for all primes
p, ...,pm,m > n.

Supposea, eAandbieBfori 1, ...,m. Then by (i) we have

(a,, a.b ..., a.b,) (a,, 51, ..., b,).

Since each b is the product of elements X, by (1), (3) and the following
identity from [5, 1.1, p. 107]

(4) (x.y, z) (x, z).(x, z, y).(y, z),



464 KENNETH W. WESTON

we can expand (a,, bl bin) into factors of the form (a,, 1, "", hr),
r => m > n. Therefore (a,, al.bl, ...,a,.b,,) landaeZ. Hence
A<__Z.
Given 0 and primes p, pn+ where p p0 for i .0 if r II ’-+0 pi

and ar e A, we have

(0,ar,l, "",)) -a+l 1.

Therefore h0 e Z for every prime p0 and hence B is not in Z. Thus A Z
since H A .B. Since H/Z B we have that H Z+.

Consider ny two elements a .b and a .b of H where a, a’ A and b, b e B.
By (i), (e), and (a)

(a.b, a’.b, a’.b, a’.b’) (a.b, a.b’, b’, b) 1.

Thus H[e" 31 H.
Since Z A we have that (Z,, Z) i for a 1, 2, by (b). There-

fore H is a Z-A(3) group. If a .b is any element of H where a is in A and
b is in B, then since A B 1 we have

[a.b] a.b.a.b a.b.a.(a, b) (a, b).

Since A is normal in H, (a, b) e A. Therefore H 1 since A 1.

!1. The derived module and ring of a Z-A(2) group
The verification that Z-A(2) groups cannot be of class equal to a limit

ordinal is trivial and therefore omitted. We will assume throughout the
following discussion that G is a Z-A(2) group of class n + 1. We define the
derived module M of G to be the direct sum of the abelian groups Z,+/Z, for
0 __< a < n. The elements of Z,+/Z, will be called homogeneous of degree
a+l.

If x hen here exists only one quoien group Z+/Z in which x repre-
sents nonuni coseC. Designate he ose by a. If a nd re boh homo-
geneous of degree a q- 1 {hen he sum of a and in M is heir quoien group
produ.
Suppose hg Z,,+I/Z, and a Z+/Z for a < n. If a is no a limi

ordinal, define a o be he eose in Z/Z_,, which is represented by he
ommuaor (,, t). Oherwise a O. he operion a is well defined.
Suppose that y is in Z, and z is in Z. Then (x .y, z) is in Z,_ since (Z,, Z)
is in Z,_. On expanding commutators we also find that

(x.y,t) (x,t) modZ,__ and (x.y,t,z) --- 1 modZ,_.

Consequently (x.y, t.z) =- (x, t) mod Z,_.
Suppose that and are homogeneous of degree a + i where 1 __< a 1 __< n

and is homogeneous of degree n - 1. Since

(x.y, t) (x, t). (y, t) mod Z,_
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then represents a homomorphism of Z+I/Z into Z/Z_I. We extend the
domain of to M by linearity so that is an endomorphism of M. The
derived ring r over M is the endomorphism ring generated by elements of
Z,+/Z,. Since

(1- ) (, t) - ( t) (X, t.t;)

then endomorphism addition of elements from Z+/Z,, coincides with the
quotient group multiplication. F is of course an associative ring, since endo-
morphism multiplication is associative.
The important connection between a Z-A(2) group and its derived ring is

stated in the following theorem.

THEOREM 1. If G is a Z-A (2) group of class n 1 and if the derived ring
F is nilpotent of class tc then k n 1.

We state first the following lemma.

LEPTA 1. If G is a Z-A (2) grovp of class n 1 and if 1...k 0 for
x in Z+ and all , in Z,+I/Z, then x is n Zk.

If x is not in Zk then is homogeneous of degree k 1. Thus i... 0
implies that for all homogeneous elements , ..., i of degree n 1, the
commutator (x, tl, ..., tk) is the unit of Z/Zo 1. But since G is a Z-A(2)
group we have (x, Z ..., Z) 1 if Z _-< Z for some j 1, ..., k.
Therefore

(x,G,...,G) 1,
k

and x is in Z.
If F is nilpotent of class k, then for x in Z+ we must have... 0

for all , , inZ+/Z. Thus by the lemmaZ+ is Z and hence G Z.
Since 1 is nilpotent o.f class k there must be an element x in Z and elements
i, ..., i_1 such that i...i_ 0. Hence (x, t, ..., t_) landG is
nilpotent of class k.
Of course if G is nilpotent of class k then it is a trivial matter to show that

I is nilpotent of class k.
The following arguments will show that the derived ring of a Z-A(3) group

is commutative. We will demonstrate later that this is an important property
of Z-A(3) groups.

THEOREM 2. Suppose G is a Z-A (2) group of class n - 1. If is in
Z+/Z, for a < n and both il and . are in Zn+l/Zn, then 2i . zr l
where is the coset in Z._/Z,_ which is represented by the commutator
(x, (t, t)).
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LEMMA 2. If G is a Z-A group and if x is in Z.+I then for all gl and g2 in
G we have

(x, gl, g2) (x, g2, gl).(g, g., x)-1 mod Z,_.

From [5, p. 108], [4, Theorem 1.1, p. 107], and [4, Theorem 11.1-6, p. 167],
the commutator identities follow respectively.

(5) (x, y, zy) .(y, z, xz) .(z, z, y) 1.

(6) (x, y-) (x, y, y-)-l.(x, y)-.

Therefore by (5), (3) and (6) we have

(7)

(8)

(9)

(10)

Then by (9) and (10)

(11) (g2, x, g) (x, g, gl)-1
It follows from (3) that

(gl, g2, x2) (gl, g, x.(x, g2))
(12)

But

(X, gl, gl). (gl, g, X) "(g2, X, g) 1,

(X, gl, g) (X, gl, g’(g, g)) =-- (x, gl, g.)

(g, X, g) (g2, X, gl"(gl X) (g, X, gl)

(g, x, gl) (X, g)-l, g) (X, g., g)-I

mod Z._2.

------ (gl, g2, (X, g2))’(gl, g2, X)

(gl,g, (x,g)) ------ 1 modZ._.

mod Z,_:,

mod Z,_,

mod Z,_.

mod Z._2.

Therefore by (12)

(13) (gl, g, xg2) (gl, g, x) mod Z,_:.

The lemma follows from (7), (8), (9) and (13).
If is in Z,+I/Z, and gl and are in Z+I/Zn, Theorem 2 follows from the

lemma.
Theorem 2 shows that r is commutative on Z,+I/Z, if and only if

(x, (h, t2) 1 mod Z,_ for all elements x, h, and t such that is in
and both 1 and are in Zn+I/Z,. If G is a Z-A(3) group of class n + 1,
then (Z,+I, Z) is in Z,_2 for every a < n. Thus if is in Z,+I/Z, and both
and are in Zn+I/Z, it follows that (x, (h, t.)) 1 mod Z,_, and we

have the following theorem.

THEOREM 3. The derived ring of a Z-A (3) group is commutative.

Theorem 3 certainly is not true for Z-A(2) groups. In the example of
Z-A(2) group given above, is in Z/Z. and both and t are in Z4/Z, but
d at 0 and ch
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III. Z-A(2) groups with a commutative derived ring
A Z-A(2) group G of class n + 1 with a commutative derived ring means

of course that elements of Z+I/Z,, operate commutatively on the direct sum
of the groups Z+I/Z for a < n. Denote the above class of groups by
Z-Ac(2). Theorem 3 shows that Z-A(3) _<_ Z-Ac(2). Whether or not this
is really an equality is still unknown. It seems unlikely, but as of yet the
evidence is still inconclusive.

Let Cm, designate the binomial coefficient of m with i. The symbol II
will denote a product and (m, j) will designate the greatest common divisor
of the integers ra and j. We shall also use Ha for the set of elements x of a
Z-A(2) group where is homogeneous of degree a.

The following theorem is a generalization of [3, Lemma 4.1].

THEOREM 4. Suppose that GZ-Ac(2) and G le’m G; then G/Z2,,-1 is
periodic where the .periods divide some power of

H i=o(Cm-i,1, Cm-i,m-i-1).

The proof will consist of first proving that kF2-1 0 where F is the derived
ring of G and from this the theorem will be shown to follow.

LEMMA 3. If G i8 a Z-At(2) group of class n -k 1 and x is in H,+I,
a -5 1 < n -5 1, then for all t and t in H+ we have

(x, t, t:) (x, t, t) rood Z,__.

Since G e Z-A(2) the derived ring is commutative.
The lemma then follows from the equation

[ tq t... [ ..-t tq... .
LEMMA 4. If x x are elements of a group G which are located in the

upper central term Z,+ then for all g g in G we have

(H=x, g, ..., gr) H=,.(x, g, ..., gr) mod

The proof will useninductiononkndr. If r 1 thelemmis
trivial. Forlc q + lndr lbyusing (1)wehve

=x, ) (H: x, ). (+, ) od z_.

Thus the lemm follows by the induction hypothesis. If r m + 1 we
hve by the induction hypothesis

(H4=z x, g, g, g+z)

(H= (, , ..., ), +) od z,__

H= (x, , ..., , +) od Z__.
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LEMMA 5. Suppose that G is a Z-A,(2) group of class n + 1, x is in H,+
for o < n, and t and t are both in H,+ Then

(x, [t t]) IX=0 (x, _t, t) c,. mod Z,_.

Since each factor (x, _tl, t) is in Z,+I_ they must commute modulo
Z,_. Thus the order of the factors in the above product is immaterial.

Since (x, t.t) (x, t). (x, t). (x, t, t), the lemma is true for m 1.
For m q + 1 if we designate (x, q+[t .t]) by A we have

A (x, q[t.t], h.t)

(x, o[t. t], t). (x, [t. t], t). (x, [t. t], t, t),

A (x, [t.t], t). (x, [t.t], t) mod Z__.

If we pply the induction hypothesis, we get

A (H=0 (x, _t, t)c’, t). (H=0 (x, _t, t),%, t) rood Z__.

By Lemms 4 we hve

A =o (x, _&, +t)%’.H=o (x, q_t, ,t, t)c’ mod Z,_q_,..

If we use Lemma 3 to permute t mod Z,__I past the elements t in
(x, _t, #, t)c, we get

a =o (x, _t, +t)cq,,.=o (x, +_t, #) cq., rood Z,__

,= x, +_,t, ,t ".’-. (x, ,+t ).H= x, ,+_,t, t ",’

rood Z__.

Since the fctors commute modulo Z__ we hve

A (x, .+t). (, .+t)H= (, +-#, t) .,’ H,= (x, +_#,

mod Z__
mod Z__(x, q+t.).(x, q+lt)H__ (x, q+l_it, t.)

-+ (x, t) Cq+. rood Z,_q_i=o q+-it

This completes the induction.

COROLLARY. Suppose that N is a F-invariant submodule of the derived
module M of a Z-A(2) group of class n + 1. Further suppose that N 0
for all in Z+/Z and for some integer m which is independent of . Then

rm--17m--1qv 0 for all and in Z+/Z where q C, C,_1).

Every element of N can be expressed in the form

where for i j, nd re in different summnds of the derived module M.
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If for instance and . are in Z.+I/Z then combine them. But

( / / )F= 0

implies that ’ 0 forj 1, ,/c. Suppose that and are in Z+/Z.
The group product t .t: may or may not be in Z. If t .t is in Z then, since
G Z-A(2), we have that (x, t.t) i mod Z,_, where is inZ,+./Z,.
Should h.t not be in Z, then (t.t) 0 implies that

(x, [t.t]) 1 rood Z,_.
Thus in either case we have (x, [t .t]) 1 rood Z,_ for and in
Z+/Z, x in Z,+/Z,. But by Lemma 5

(x, [t.t]) o x _t its) c. rood Z,_.
Then for 1, 2, m 1 we have

(x [t.t:], _t, __t)

(=0 (x, _t, t2)c’, t_t, __t2) mod Z,-2m+2.
If we use Lemma 4 we have

0 (x, _#, t2, _t, __t2)c’ rood Z,_+2.
But by Lemma 3 we can permute the elements t-it past #2 in

(Xl m-it1 #2, l-ltl --t2)
to get

0 (x, +__t, _+_t2)’ mod Z,_2+.
Thus since (x, [h. t2]) 1 rood Z,_,, we have

(14) 1 0 (x, +r__xt, _ei_lt2) c’ mod Z,_+.
But we assumed that N 0. This means that (x, t) 1 rood Z,_.
Therefore if i < lthenm- i+ l- 1 mand

(15) 1 (x, +__t, _+_xt2) mod Z,_+.
By Lemma 3, we have

(Xi, m+l-i-ti m-+i-t2) (Xi m-l+i-t2 m+-i-ltl) rood Za--2m+2.
Using the assumption ni 0 for all n in N we have that

(x,t) 1 modZ,_.

Thenifi> landthusm- l+i- 1 m, wehavethat

(16) 1 (x, _+_t2, +__t) mod Z,_2+2.

Using (14), 15 and (16) we get

1 (x, m-ti m-t2)c’ rood Z,_+ for 1, m 1.
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Therefore C,,z Ntl t2 0 and the corollary follows.

LEMMA 6. Suppose that G is a Z-At(2) group of class n - 1 and N is a
F-inariant submodule of the derived module M where F is the derived ring.
Further suppose that Ni 0 for all in Z,,+I/Z,, and for some integer m which
is independent of i. Then

kNF’-1 0 where tc IIi%-i (c,,_,1, ., c,_,,_i_).

if m i the proof is obvious. Suppose that m r + 1. By the corollary
of Lemma 5, (Cr+l,1, Cr+I,)Ni { 0 for all 1 and : in Z,,+I/Z,,. Define
N1 to be the submodule (C+1,1, Cr+l,r)Ni for il in Z,+I/Z,. Obviously
N1 is F-invariant since F is commutative, and N is F-invariant. But N1 r 0
for all in Z,+i/Z. By the induction hypothesis

bN1 1r-1 0 where b =i (C-,i, C-,-_i).

Since r is commutative

hN-[ 0

for every in Znw1/Zn where h (Or_hi,i, Cr-t-l,1).b.
Then N2 is r-invariant and N 0 for in Z,,+/Z,.
pothesis implies that dN. Fr- 0 for d II-
and the lemma follows.

Let N hNF-.
The induction

.., Cr_i,r_i_l) 2’

LEMMA 7. Suppose that G is a Z-Ac(2 group of class n - 1.
integer q,

(Za+l Hn+i Hn+l) 1 mod

then Z,+I <-_ Z,.

Suppose that x is in

(x, Z., Z..,

if Z,. _-< Z for some j. But since

(x, H,,+I, ..., Hn+l) =----- 1

it follows that (x, G, G) 1 mod Z,_q.

(x,G, ...,G) =- 1
q--1

Since G is a Z-A(2) group we have

Z,, ..., Z,) 1 mod Z,_q

mod

Therefore

mod Z,+_q.

Lemma 7 follows from q 1 repetitions of this last step.

If for some

COROLLARY. Suppose that G is a Z-A(2) group of class n - 1. If there
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exist positive integers tc and q such that for all a n,

H,+I Hn+ Hn+ 1 rood Z,_q

then G/Zq is periodic and the periods are powers of ].

Suppose x is in H,0+ for q < a0+ 1 <n+ 1. Since

X, Hn+l Hn+l) 1 mod Z,o_q
q

the element x is in H. for a a0 by Lemma 7. Repeating this argument
on the element x we have that x is in H. where a a. Continuing this
process we arrive at a sequence x, x x ..., x x where x
is in H, and a > a+. But this sequence is finite since the upper central
series is well ordered.
We return now to proof of Theorem 4. Since G e: m[ G we have M 0

for all in Z+/Z, where M is the derived module of G. By Lemma 6 we
have MF- 0 where % (C_,, , C_,__). But this
means for all a < n,

Ha+, Hn+, Hn+) 1 rood Z,_:_.
2

Therefore the theorem follows from the corollary of Lemma 7.
The following corollary states an obvious consequence of Theorem 4.

COROLLARY. U G is a Z-A(2) group where G ]e:m G and in addition if
G/Z,- is k-torsion-free where k is defined as above, then G is nilpotent.

By Theorem 4, every Z-A(2) group which satisfies the Engel condition of
class m is periodic modulo Z-. It is a simple matter to show that if G is a
Z-A(2) group which satisfies the Engel condition of class m then so must
G/Z for every ordinal a. So it seems natural to study periodic Z-Ac(2)
groups which satisfy the Engel condition.

TEonn 5. Suppose that G Z-A(2) and G ]e:m G. If in addition G
is also periodic where every element x of G has a period q(x) such that all of the
prime divisors of q(x) are larger than those of m, then G is nilpotent.

Since G is periodic then G/Z- must also be. Every element x of G/Z:-
must have a period dividing q(x) where the prime divisors of q(x) are larger
than those of m Hence q(x) and re relatively prime where

= C_, C_i,__ .
Consequently G/Z- is.k-torsion-free. The theorem follows from the corol-
lary of Theorem 4.
The condition on the periods q(x) in Theorem 5 are necessary when q(x)
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is not a prime exponent for the group G. We presented an example of a
Z-A(3) group H such that H [e:3[ H and H 1 but H is not nilpotent.
However we next show that every Z-A(3) group of prime exponent is nil-
potent.

THEOREM 6. If G is a Z-At(2) group of class n 1 and G’ 1 for prime
p then G is nilpotent.

Suppose that x e H,+I for a + 1 -< n, and e H,+I. In [4, equation 18.4.13,
p. 327] M. Hall showed that (x, _t) can be expressed as a product of com-
mutators of the form (x, y, ..., y) where yi is x or t. But

(x,y, ...,y) 1 modZ,+l_

and hence (x, _t) --- 1 mod Z,+I_. But in terms of the derived module M,
this means that F-1 0. Thus MF-1 0 for all in Z,+/Z,,. Therefore
by Lemma 6, ]cMr- 0 where tc II= (C,_i,, ..., Cn_,,__)’
Thus

(H+I, H, H) 1 mod Z,_.-,..

Then by the corollary of Lemma 7 we have that G/Z.- is periodic and the
periods divide powers of/c. But the elements of G/Z- have period p. Since
h and p are relatively prime G =< Z-,..
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