Z-A GROUPS WHICH SATISFY THE mth ENGEL CONDITION

BY
KenNETH W. WESTON!

I. Introduction

Suppose that A and B are subgroups of a group . If there exists a positive
integer m such that the commutator

(---((a,b),---),b) =1

m

for all a in A and b in B, then we write A |e:m| B. A group G which satisfies
G |e:m| G is said to satisfy the m'* Engel condition.

The problem of determining for what groups the mt* Engel condition
implies nilpotence has been studied by several authors. For example, K.
Gruenberg in [2] has shown that finitely generated soluble groups which
satisfy the mt Engel condition are nilpotent. R. Baer in [1] adds groups
which satisfy the maximal condition to the list. In [3] Gruenberg includes
the torsion-free soluble groups

This paper grew out of an investigation of the commutator structure of
Z-A groups, that is groups in which G itself is a term of its upper central
series. The class of a Z-A group is the smallest ordinal » such that Z, = @G
where Z, denotes the nt* term in the upper central series of G. The investi-
gation resulted in a curious classification of Z-A groups. This classification
is based on a class of Z-A groups which it seemed natural to call Z-A(q) groups
for integer ¢. We will show that Z-A(1) is equal to the above class of groups
and that Z-A(1) > Z-A(2) > Z-A(3). The class of Z-A(3) groups proved
to be interesting. For instance, an example of a metabelian Z-A(3) group is
found which has exponent 4 and satisfies the 3™ Engel condition, but is not
nilpotent. However, every Z-A(3) group with prime exponent is auto-
matically nilpotent. It may not be significant but no example of a Z-A(3)
group has been found which is not of class w -+ 1 and where Z,, is not abelian.
The following pages will investigate under what conditions the Engel condition
implies nilpotence for Z-A(3) groups.

We will recall some definitions and notations. If  and y are elements of a
group, then denote the product £='-y~!-z-y of a group by the commutator
(x, y). We define commutators of higher order by the recursive rule

(@1, , Ta1, ) = (@1, **+ , Tu-1), To). Define the weight w(c) of the
commutator ¢ constructed from the elements z;, ---, z, recursively by
defining the weight of the elements ;, -+, z, to be 1, and if ¢ = (¢, ¢;)
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then w(c) = w(c:) + w(c;) where both ¢; and ¢; are commutatorsinz; , -+ , Za.
For the sake of convenience, designate the commutator

(x’ Y, - 7y) by (x; ky)'
—

k

If A and B are two subgroups of G then the subgroup generated by the
commutators (a, b) where a is in A and b is in B will be designated by (4, B).

Suppose that G is a Z-A group of class n for some ordinal n. If for some
positive integer ¢ we have (Zutq, Zs) = Z, for all ordinals «, B with
o + ¢, 8 < n then G will be called a Z-A(q) group.

Suppose G is a Z-A group of class n. Since for all ordinals o and B,
(Zas1, Zg) = Z, we have that G is a Z-A(1) group. Obviously Z-A(q) =
Z-A(g + D).

There are examples of nilpotent groups of class 3 which have a nonabelian
upper central term Z, . For instance consider the group of 2 by 2 integral
matrices with components reduced modulo 4 of the form I 4 P + 2Q where
I is the identity, P is an integral matrix with zeros in every row except the
last and in the main diagonal and @ is an integral matrix. Hence
Z-A(1) > Z-A(2).

The following example presents a Z-A(2) group G which is not a Z-A(3)
group. The example G will be a semidirect product of an abelian group A
by a nilpotent group N. Let A be a torsion-free abelian group generated by
the elements ay, as, a; and b.

We define the following automorphisms on A.

A — A° A — A°

]
at = a, ar = a,
a _ 8 __
Ay = 0A2:Q1, Q2 = Q2-0Q1,
a; = ag, o = az-0s,
b = b-as, v = b.

Let N be the automorphism group generated by « and 8. Since G is the
semidirect product of A by N then A is a normal subgroup of G and N is a
subgroup of G whose elements are the coset representatives of G/A. From
the definitions of « and 8 we have (b, @) = a3, (as,8) = azand (az2,8) = a; .
Consequently G is generated by the elements «, 8 and b.

It will be convenient to represent the commutator (z, y) by £ — ¥ in order
to diagram the commutators in the elements «, 8 and b. Of course we mean
z—y—ztobe (x> y) >z Forx = landy = 1,if (z,y) = 1 we write
x — y = 1. The accompanying diagrams will show the values of all of the
commutators in the elements «, 8 and b.
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The following tables of automorphisms will be included in order to verify
these diagrams.

{a.ﬁ) a§a.6.ﬁ) — a;ﬁ.a.a)

a =, ay, = a1,
a;a.ﬂ) = gy, aéa,ﬂ,ﬂ) = g, a;ﬁ.a.a) = gy,
aéw.ﬂ) = a3-a1, aéa,ﬁ,ﬂ) = a3, a;ﬂ.a.a) = as,
b*P =b.gar, P =b.a, b0 =,

The terms of the lower central series of G are generated from the commu-
tators of its generators. Hence the diagrams show that G is nilpotent of
class 4. If B is a group, we designate the rt* term of the lower central series
by B.. By using P. Hall’s collection process [4, pp. 165-168] we can express
every element z of G by the product o -8-b"- (a, 8)°- (e, b)* -z where z is in G5 .

In the calculations that follow we will make repeated use of the commutator
identity, which appears in [4, Theorem 10.2.12, p. 150]:

(1) (x'y7 z) = (, z)(x: 2, y)(y: 2).

Therefore, if x and z commute, we have (z-y, 2) = (y, 2).
If H designates the group generated by elements z and (z, @), then for any
integer n by [4, Theorem 12.49, p. 185] we have

(2) (2", a) = (z,a)" mod H; .
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The diagrams show that «, 8 and b are not in Z;. Suppose that for some
p, gand r, o -8%-b" is in Z;. Then (a”-8%b", @) = 1mod Z,. But from
(1) and (2) we have

(o g%V, @) = (8%, )
= (8% a)-(b', @) mod Z,
= (8, a)’-(b,a)" mod Z;.
Consequently we must have that (8, )% (b, @) isin Z;. Therefore by (1)
((B, @)+ (b, @), b) = ((B, @), b)-((B, @), b, (b, @)")-((b, @), )
= ((B, @)%, b) mod Z,
= (8, a b)! modZ,.
But from the tables we have
(8, @, b)* = b7 B = af-af .

Since (a3-af , @) = (a3, a) = af , we have that a3 -af is not in Z; unless ¢ = 0.
If 0" = 1 mod Z;, then by (2)

(@b, b) = (%, b) = (b )" = a5”
=1 modZ,.

But (a3%, 8, 8) = ai” % 1. Thus p = 0 if &b = 1mod Z;. Now
(b, @) = azisnot in Z,. If an element z is in Z; it must be represented by
the product (e, 8)°- (e, 8) -z where 2 is in G since o” -8%-b" is not in Z; unless
p=q=r=0. Suppose the product (a, 8)°-(a, 8)' = 1mod Z,. Then
by (1) and (2) we have

((OA, ﬁ)s'(a) b)t; b) = ((aa :B)a’ b) = (a, 8, b)‘s
= a;a.a;‘
=1 mod Z1 .
Thus s = 0. Since (a, b)' = a3’ the commutator (a, b)’ is not in Z, unless
t = 0. Consequently (o, 8)*-(a, b)" = 1 mod Z, only if s = ¢ = 0.
Since every element x of G can be expressed in the form
o 870" (a, B)"- (o, )"

where z € G2, then x = 1 mod Z;, only if p
Zyisin Gy. Alsoz isin Zs only if p = ¢ = r = 0 and hence Z; is in G; .
Since G4 = 1 we have that (G, Go) £ Gy = 1. Therefore (Z;, Z,) = 1.
We also have that (Z;, Z3) = (Gi, Gi) £ Gs £ Z,. Therefore G is a

n

g=1r=s8=1t=0. Hence
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Z-A (2) group. But (o, 8) and («, b) are in Z; and
((a 8), (@, 0)) = ((,8),63") = a7 # L.

Therefore (Z;, Z;) % 1. Hence @ is not a Z-A(3) group.

Since this paper will be primarily concerned with determining the nilpotent
groups from among the Z-A(3) groups, we will next present an example of a
metabelian Z-A(3) group which satisfies the 3™ Engel condition and has
exponent 4 but is not nilpotent.

Suppose A ™ is the direct sum of a countable number of copies of the cyclic
group C of order two. Designate the o'* summand by C, where C, is gener-
ated by a.. Let A be the subgroup of A™ consisting of the direct sum of the
summands C, where for no prime p does p’ divide a. Now for each prime p
define the automorphism A, on A by the following equations. Suppose a, is
in A. Then if the prime p divides o we define @) = ao + @ayp, and if p does
not divide o, ay = a,. If the prime p divides « where a, is in A then
at = o + a¥p= a,. Therefore \} = 1 for every prime p. Suppose the
primes p and p’ both divide a where a, is in A. Then

Aphp Apr
AL =@ = Qojp + Qo+ Gapp -

Obviously if only one or none of the primes divides «, the corresponding
automorphisms still commute. Let B designate the abelian group generated
by the automorphisms A,. We define H to be the semidirect product of A
by B. Then A is a normal subgroup of H, H/A is isomorphic to B and H
is the union of A and B. The following are some properties of H.

(a) A l|e:2| B.

Let the symbol ] designate a finite product. So if b
g = [[i=i\p; — 1] and @ in 4 we have (a, b,b) = a’ =

(b) (4,4) = (B,B) = 1.
Both 4 and B have been shown to be abelian.
(¢) (B,4,4)=1.
The subgroup A is normal in H. Hence (¢) follows from (b).

(d) A le:2| H.

Il

IT:= N\, then for
1.

In [4, Theorem 11.1-6, p. 167] we find the commutator identity,
(3) (@, y-2) = (2,2) (2,9) (2,9, 2).
Thus (d) follows from (3), (a) and (c).
(e) H is metabelian (i.e. the second term of the derived series of H is 1).

Since (H, H) is in A, (e) follows from (b).
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() (hi,he,hs, hs) = (h1, ha, ha, hs) for all by, he, hs and hy in H.
For H is metabelian.

(g) (byab,ab) = (byab)forallb, b in Band ain 4.
(b,a-b',a-b") = (b,a-b’,b") as (b, a-b’) and & commute, both being contained
in 4;

(b,a-b,b') = ((b,a)-(b,a,b),b) = (b,a,b) (b,ab,b)
= (b, a, V).
(h) Ble:3| H.
Suppose that b is in B and a¢-b’ is in H. By (g) we have
(b, a-v',a-b") = (b, a,b).
Therefore by (3), (a) and (b)
(b,a-b,a-b,a-b) (b, a, b, b")-(b, a, b, a)-(b, a, b, a, b")
= 1.

(i) (@, a1b1, -, As-by) = (a, by, ---,b,) foralla,a:, -+, a,.

Ifn = 1, (a, a1-b1) = (@, b1) as a and a; commute. Assume (i) is true for
n = k. By the induction hypothesis

(a, ar-by, as-ba, -+, be-ar, Gegr-brgs) = (@, b1, -+, bi, Gogr-brya).
Now (a, b1, ---, bx) and ax1 commute as elements of A ; therefore
(G,, by y Tt by, 3 ak+1‘bk+l) = (a, bl, ey, b , bk+1).

For any numbern let o = HLI ps where p; % p;fore 5% 5. Supposeb; = Ay, »
i=1,---,n— 1. Thenift = [[iZ \py — 1Jand s = [[iip:,

(a;bly "')bn-—l) =a§=a,,”?51.

Therefore H is not nilpotent.

Suppose that N\, is in B and a, is in A, where « is the product of at most n
primes. If the prime p does not divide o then (a., N\p) = 1. If p divides
a then (@., N\p) = @up. Therefore (o, Np,, -+, Np,) = 1 forall primes
Py 5 Pm, M > N

Suppose a, ¢ A and b;e Bfors = 1, .-, m. Then by (i) we have

(aa,al‘bl, "‘,am‘bm) = (aaybly 7bm)

Since each b; is the product of elements \,, by (1), (3) and the following
identity from [5, 1.1, p. 107]

(4) (x-y,2) = (x,2) (2,2, 9)(y, 2),
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we can expand (@« ,b1, - -+, bn) into factors of the form (ae, Ap,, -+, Ap,),
r = m > n. Therefore (ag, 0101, +++, @n+bp) = 1 and a,€Z,,. Hence
A=ZZ,.

Given A, and primes p1, - - -, Ppy1 Where p; 5% po for ¢ #-0if r = Jars i

and a, e A, we have
()‘Po y Or )‘111 y Ty >\Pn) = T lpyyy #= 1.

Therefore N, ¢ Z., for every prime po and hence Bisnotin Z,. ThusAd = Z,
since H = A-B. Since H/Z, = B we have that H = Z,,; .

Consider any two elements a-b and o’ -b’ of H where a, a’ ¢ A and b, b’ ¢ B.
By (i), (e), and (a)

(a-b, a’-b,a-b,ab) = (ab,a b, b,b) = 1.

Thus H |e:3| H.

Since Z, = A we have that (Z,,Z,) = lfora = 1,2, --- by (b). There-
fore H is a Z-A(3) group. If a-b is any element of H where ¢ is in A and
b is in B, then since 4> = B* = 1 we have

@b = a-b-a-b =a-b’-a-(a,b) = (a,b).
Since A is normal in H, (a, b) e A. Therefore H* = 1 since A* = 1.

Il. The derived module and ring of a Z-A(2) group

The verification that Z-A(2) groups cannot be of class equal to a limit
ordinal is trivial and therefore omitted. We will assume throughout the
following discussion that G is a Z-A(2) group of class n + 1. We define the
derived module M of G to be the direct sum of the abelian groups Z,.:1/Z. for
0 = o < n. The elements of Z,1/Z, will be called homogeneous of degree
a -+ 1.

If 2 e G then there exists only one quotient group Zu.1/Z, in which x repre-
sents a nonunit coset. Designate the coset by £ If £ and § are both homo-
geneous of degree o + 1 then the sum of Z and 7 in M is their quotient group
product.

Suppose that e Z,41/Z, and & e Zo1/Z for @ < n. If a is not a limit
ordinal, define & to be the coset in Z,/Z. 1, which is represented by the
commutator (z, t). Otherwise # = 0. The operation & is well defined.
Suppose that yisin Z,andzisin Z, . Then (z-y,2)isin Z,ysince (Zyt1,Zx)
isin Z,_;. On expanding commutators we also find that

(x-y, ) = (x,t) mod Zoy and (z-y,¢ 2) = 1mod Zo.

Consequently (z-y,t-2) = (z,t) mod Z,; .
Suppose that £ and 7 are homogeneous of degree « + 1 wherel S a4+ 1= n
and 7 is homogeneous of degree n + 1. Since

(x'y7 t) = (II?, t)' (y7 t) mod Za;
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then ? represents a homomorphism of Z,41/Z, into Zo/Z.—1. We extend the
domain of f to M by linearity so that 7 is an endomorphism of M. The
derived ring T over M is the endomorphism ring generated by elements of
Zn+l/Zn . Since

gl + b)) = (2, ) + (2 ta) = (T tarty)

then endomorphism addition of elements from Z,.1/Z, coincides with the
quotient group multiplication. T is of course an associative ring, since endo-
morphism multiplication is associative.

The important connection between a Z-A(2) group and its derived ring is
stated in the following theorem.

TueoreM 1. If G is a Z-A(2) group of class n + 1 and <f the derived ring
T 4s nalpotent of class k then k = n 4 1.

We state first the following lemma.

Lemma 1. If G is a Z-A(2) group of class n + 1 and if &y« - = 0 for
xmZypandallly, -, & Zpa/Zn , then x 18 tn Zy, .

If z is not in Z; then Z is homogeneous of degree k¥ + 1. Thus & - - = 0
implies that for all homogeneous elements #;, ---, & of degree n + 1, the
commutator (x, &, - - -, &) is the unit of Z;/Zy, = 1. But since G'is a Z-A(2)
group we have (2, Zo,, -+, Zoy) = 1if Zo; < Z, forsomej = 1, .-, k.
Therefore

-

(x’G’ e ,G) =1
k
and x is in Z; .
If T is nilpotent of class k, then for x in Z;,, we must have

The- B =0

forall?;, ---,%inZ,1/Z,. Thusby the lemma Z;, is Z, and hence G = Z;, .
Since T is nilpotent of class k there must be an element z in Z; and elements
t1, -+, k1 such that & - - L1 ¥ 0. Hence (2,8, -+, &) ## land G is
nilpotent of class k.

Of course if G is nilpotent of class & then it is a trivial matter to show that
I' is nilpotent of class k.

The following arguments will show that the derived ring of a Z-A(3) group
is commutative. We will demonstrate later that this is an important property
of Z-A(3) groups.

TueorREM 2. Suppose G is a Z-A(2) group of class n + 1. If T is in
Z¢+1/Za fOT a < n and both Z1 and Zz are in Zn+1/Zn, then le 22 = szz 21 + q
where § 1s the coset tn Zo_1/Za 2 which vs represented by the commutator

(x: (tl ) t2))
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LemMa 2. If G is a Z-A group and if x is in Zey1 , then for all g, and gz in
@G we have

(x, g1, g2) = (II}, gz, gl) (gl y 02, x)_l mod Zos .

From [5, p. 108], [4, Theorem 1.1, p. 107], and [4, Theorem 11.1-6, p. 167],
the commutator identities follow respectively.

(5) (@, 9,2")-(y,2,27) - (3,2,4°) = 1.
(6) (@ y™) = (&, 9,5 )7 (2, 9)7
Therefore by (5), (3) and (6) we have

(7) (%, 91, 95) (g1, g2, 2") (g2, %, g7) = 1
®) (&g, ") = (@ 0,0:(02,00)) = (¥, 01,¢92) mod Zas,

-

(9) (g2 » Ly galc) = (92 » Ly gl‘(gl ) x)) = (92 » Ly gl) mod Zas ’
(10) (g2 » Ly gl) = ((.’13, 92)—1: gl) = (il), g2, gl).—1 mod Za—2 .
Then by (9) and (10)

(11) (g2, 97) = (x,02,01)"" mod Z,_,.

It follows from (3) that
") = z-(z
(12) (gl,g2’ ) (gl,gZ’ ( ’gﬁ))
= (gl y g2 (.’1), 92)) '(gl y g2, x) mod Za-—2 .
But
(gl y 92, (xi g2)) =1 mod Za—-2 .
Therefore by (12)

(13) (gl,g2ax92) = (glyg27x) mod Za—2'

The lemma follows from (7), (8), (9) and (13).

If Tisin Z,41/Ze and §; and §s are in Z,11/Z,, Theorem 2 follows from the
lemma.

Theorem 2 shows that I' is commutative on Z.yi/Z, if and only if
(z, (t,t2)) = 1 mod Z,_, for all elements z, t; , and ¢, such that $is in Z,1/Z,
and both # and % are in Z,y1/Z,. If Gis a Z-A(3) group of class n + 1,
then (Zaq1, Z,) is in Z,_s for every o < m. Thus if & is in Z,41/Z, and both
t,and % are in Z,y1/Z, , it follows that (x, (&1,%)) = 1 mod Z,_», and we
have the following theorem.

TueoreEM 3. The derived ring of a Z-A(3) group is commutative.

Theorem 3 certainly is not true for Z-A(2) groups. In the example of a
Z-A(2) group given above, d; is in Z3/Z; and both @ and § are in Z,/Z; , but
dsaf = 0and a; Ba = a; .
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ll. Z-A(2) groups with a commutative derived ring

A Z-A(2) group G of class n + 1 with a commutative derived ring means
of course that elements of Z,.1/Z, operate commutatively on the direct sum
of the groups Z.y1/Z, for & < mn. Denote the above class of groups by
Z-A.(2). Theorem 3 shows that Z-A(3) =< Z-A.(2). Whether or not this
is really an equality is still unknown. It seems unlikely, but as of yet the
evidence is still inconclusive.

Let C,,; designate the binomial coefficient of m with <. The symbol ]
will denote a product and (m, 7) will designate the greatest common divisor
of the integers m and j. We shall also use H, for the set of elements z of a
Z-A(2) group where & is homogeneous of degree .

The following theorem is a generalization of [3, Lemma, 4.1].

TueoreM 4. Suppose that GeZ-A.(2) and G le:m| G; then G/Zwm—1 is
periodic where the periods divide some power of
k=150 Cniny -y Conism—i1)-

The proof will consist of first proving that kT*" " = 0 where I' is the derived
ring of G and from this the theorem will be shown to follow.

LemmaA 3. If G is a Z-A.(2) group of class n + 1 and z is in H,pa,
a+ 1 <n+ 1, then for all t; and ty in H,y1 we have

(@, i1, it2) = (@, jt2, 1) mod Zaij .

Since G e Z-A.(2) the derived ring is commutative.
The lemma, then follows from the equation
Fly oo b =Gy Tl

— et e NN
7 J J 7

Lemma 4. If zi, ---, 2y are elements of a group G which are located in the
upper central term Zayy , then for all g1, - - -, g. in G we have
(H’;=1xi7 gi, " gr) = H];=1 (xi, g, * -y gr) mod Za—r-

The proof will use an induction on % and . If &k = r = 1 the lemma is
trivial. Fork = ¢ + 1 and r = 1 by using (1) we have

H%t} Ti, (H%=1 Ti, g) (xﬁ-l ) g) mod Za—l

Thus the lemma follows by the induction hypothesis. If » = m + 1 we
have by the induction hypothesis

(H,:'=1 Tiy g1, * 5 0m, gm+1)
= (le=l (xt y G, 0y, gm)y gm-l-l) mod Za—m—l
= H’:'=1 (xi y g1y 5y Gmy gm+1) mod /P
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Lemma 5. Suppose that G is a Z-A.(2) group of classn + 1, x 45 in Hoyy
for @ < n, and t, and ty are both in Hpyy . Then
(@, mltr t2)) = [Ti0 (@, meits, it2) ™ mod Zg .

Since each factor (&, m—idi, i2) 18 In Zai1—m they must commute modulo
Za-m . Thus the order of the factors in the above product is immaterial.

Since (z, t1-t2) = (z, ta) -(x, t1) -(x, t1, t2), the lemma is true for m = 1.
For m = ¢ + 1if we designate (&, ¢41[t:1-t2]) by A we have

A = (&, Jti-td], ta-ts)
= (&, oltr-tal, 82) - (&, glt1-ta], 1) - (=, J[tr-ta], 1, 1),
A = (x, ftr-ta], t) - (@, Jti-ta], 1) mod Zegs .
If we apply the induction hypothesis, we get
A = (Il (2, omitr, 2)°, ta) - (100 (=, ooits, t2),%%, &) mod Ze_gs .
By Lemma 4 we have
A = %o (2, ouiti, arats) [0 (2, oiti, 2, t1)°* mod Z._,_;.

If we use Lemnma 3 to permute & mod Z, ,; past the elements ., in
(&, guiti, iz, 1) we get

A = [T (@ goitry inate) @ I Th0 (%, qraits, it2)®* mod Zo_ gy
= T4 (=, graitn, 82) (@, gatt) T3 (2, qpamity, o) 0
mod Z, 4 ;.
Since the factors commute modulo Z,_,_; we have
A = (2, gits) - (@, grat)[ o (&, ity , it2) @ [T (2, qradts , ita) %
mod Z,_ 41
= (&, gnte) - (@, eratt) [ L% (2, gpaits, it2) °@ 1% mod Z, oy
90 (2, gya—its, i) Coyrs mod Zag s .
This completes the induction.

CoroLLARY. Suppose that N is a T-tnvariant submodule of the derived
module M of a Z-A.(2) group of class n + 1. Further suppose that Ni" = 0
for all T in Z,1/Z, and for some integer m which is independent of I. Then
gNTT 5™ = 0 for all ty and % in Zny1/Zn where ¢ = (Coxy -+ 5 Count).

Every element of N can be expressed in the form
L+ e+t o+t T

where for ¢ # j, Z; and &; are in different summands of the derived module M.
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If for instance Z; and Z; are in Z,y1/Z then combine them. But
@&+ -+ 7)N"=0

implies that Z;#" = Oforj = 1, - .- , k. Suppose that f; and &, are in Z,,1/Z, .
The group product ¢, -t; may or may not be in Z, . If t;-f, is in Z,, then, since
G € Z-A.(2), we have that (2, mt1-t2) = 1 mod Z,;_n , where F;is in Zo,11/Z.; .
Should ¢ -t not be in Z,, then Z;({;-f:)" = 0 implies that

(7, mltr-ta]) = 1 mod Zaj .

Thus in either case we have (z;, mlti-t2]) = 1 mod Z.;_» for #; and 7, in
Znit/Zn y % i Zoj1/Za; . But by Lemma 5

(@i, mitr-ta]) = ITim0 (27, moatr, 2)°™ 100d Zoy .
Then forl = 1,2, ..., m — 1 we have
(25, mlts-te], 1mat1 , m—tata)
= (H?mo (X ) meitsy ot2) ™ 1aty, m_t_atz) mod Z, j—amt2 -
If we use Lemma 4 we have
= I (@5, mitr, oy 1ttty motcate) ™ mOd Zoj—omss -
But by Lemma 3 we can permute the elements ; it past i in

(%5 5 meily , itoy 1-1b1 5 m—t1te)

to get
C .
= H?=0 (wj 5 m+l-i—-lt1 5 m—-H—z—lt2) e mOd Zaj-2m+2 .

Thus since (;, w[ti-t:]) = 1 mod Z,; . we have
(14) 1= H?—-—o (xj I} m+l—7§—1t1 ) m—l+¢_1t2)cm’i mod Zaj_2m+2 .

But we assumed that Nii" = 0. This means that (z;, »t1)) = 1 mod Z,,—m .
Therefore if © < [ thenm — 74+ 1 — 1 = m and

(15) 1 = (2, mpiiotlt ) metrioate) 100d Za;_omys .
By Lemma 3, we have
(% 5 mriicitt ) metpiotte) = (@55 metpicley myt—icall) MOA Zoj_omis .
Using the assumption nf; = 0 for all # in N we have that
(@i, mts) =1 mod Zg; .
Then if 7 > land thusm — [ 4+ ¢ — 1 = m, we have that
(16) 1= (&, motyote, mpr—i—its) MOd Zo;_omys .

Using (14), (15) and (16) we get

1= (xj, m—101 y m_ltg)cm’l mod Zaj_2m+2 forl = 1, s, M — 1.
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Therefore C,,,; Nti't3"" = 0 and the corollary follows.

LeMMa 6. Suppose that G is a Z-A.(2) group of classn + 1 and N is a
T-invariant submodule of the derived module M where T s the derived ring.
Further suppose that NI™ = 0 for all T in Zni1/Zn and for some integer m which
1s independent of I. Then

ENT™ ™ =0 where k = [[73 (Coeiny - 5 Concimeic1)®

If m = 1 the proof is obvious. Suppose that m = r 4 1. By the corollary
of Lemma 5, (Crya1, -+, Crp1r)NE & = Oforallfyand & in Z,11/Z, . Define
N; to be the submodule (Cry1,1, -+, Crpar)NE for &y in Z,41/Z, . Obviously
N, is T-invariant since T is commutative, and N is T-invariant. But N; ¢ = 0
for all { in Z,41/Z,. By the induction hypothesis

bN1 I‘2r-l =0 where b = H:;% (Cr——i,l y Tty Cr_i,r_i_l)‘ﬁ.
Since T is commutative
AN =0

for every &y in Zny1/Zy, where b = (Cpp11, -+, Co11) -b. Let Ny = ANT* .
Then N, is I'-invariant and N#" = 0 for { in Z,41/Z,. The induction hy-
pothesis implies that dNaT* " = 0 for d = [[i=f (Crin, -+ 5 Croivi1)®
and the lemma follows.

Levmma 7. Suppose that G is a Z-A.(2) group of class n 4+ 1. If for some
integer q,
(ZIZ+1, Huopiy ooy Hyyn) =1 mod Z,,
\—.ﬂ___/

then Z,;t+1 < Za .

Suppose that z is in Z,1. Since G is a Z-A,(2) group we have
(2" Zayy Zay, s Zayy vy Zag) = 1 mod Za,
if Zo; < Z, for some j. But since

(xk, Huypry - , Hn+1) =1 mod Za—q
[ ——
q
it follows that (2", @, -+, @) = 1 mod Za_,. Therefore
2 >

q

(:vk, G, ey G) =1 mod Za-l—l_..q .
—

—_—

qg—1
Lemma 7 follows from ¢ — 1 repetitions of this last step.

CoroOLLARY. Suppose that G is a Z-A.(2) group of class n 4+ 1. If there
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exist positive integers k and q such that for all @ < n,

(Hﬁ+1,Hn+1, «++yHpy) =1 mod Zyy
~—— ———

q

then G/Z, is periodic and the periods are powers of k.
Suppose ¢ is in Hyyp1 forg < ap+ 1 < n + 1. Since
(il?k, Hn+1, e, Hn+1) =1 mod Zao—q,
;—_._—v_.___/

q

the element z* 1s in H,, for oy < o by Lemma 7. Repeating this argument
on the element 2" we have that «* 1s in H,, where as < a1 . Contmumg this
process we arrive at a sequence zf, z*, z*°, .-, &, 2", ... where "'
isin H,, and a; > a;1. But this sequence is finite since the upper central
series is well ordered.

We return now to proof of Theorem 4. Since G |e:m| G we have Mi™ = 0
for all 7 in Z,,+1/Z,, , where M is the derived module of G. By Lemma 6 we
have kMT™ " = 0 where k = [[iZ’ (Ceiity -5 Crem—i1)’. But this
means for all o < n,

(H: i  Hutry -+ yHog1) =1 mod Zoom1 .
;..__.—v___/

om—1

Therefore the theorem follows from the corollary of Lemma, 7.
The following corollary states an obvious consequence of Theorem 4.

CoroLLARY. If G is a Z-A.(2) group where G le:m| G and in addition if
G/ Zm—1 18 k-torsion-free where k is defined as above, then G is nilpotent.

By Theorem 4, every Z-A.(2) group which satisfies the Engel condition of
class m is periodic modulo Zs»-1 . It is a simple matter to show that if G is a
Z-A.(2) group which satisfies the Engel condition of class m then so must
G/Z, for every ordinal a. So it seems natural to study periodic Z-A.(2)
groups which satisfy the Engel condition.

TueoreM 5. Suppose that G e Z-A.(2) and G |e:m| G. If in addition G
1s also periodic where every element x of G has a period q(x) such that all of the
prime divisors of q(x) are larger than those of m, then G is nilpotent.

Since @ is periodic then G/Zs»—1 must also be. Every element x of G/Zyn—1
must have a period dividing ¢(z) where the prime divisors of ¢(x) are larger
than those of m Hence g(x) and k are relatively prime where

k = H2n=—12 (C —3,1y "y Cm—i,m—i——l)2i-

Consequently G/Zan—1 is k-torsion-free. The theorem follows from the corol-
lary of Theorem 4.

The condition on the periods ¢(x) in Theorem 5 are necessary when ¢(z)
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is not a prime exponent for the group G. We presented an example of a
Z-A(3) group H such that H |e:3| H and H* = 1 but H is not nilpotent.
However we next show that every Z-A(3) group of prime exponent is nil-
potent.

TueoreM 6. If G is a Z-A(2) group of class n + 1 and G° = 1 for prime
p then G is nilpotent.”

Suppose that x e Hoyifora + 1 < n,and t e Hyyn . In[4, equation 18.4.13,
p. 327] M. Hall showed that (z, ,—it) can be expressed as a product of com-
mutators of the form (x, y1, -+, yp) Where y; is z or £. But

(@, 41, -+, Yp) =1 mod Zat1p

and hence (2, p—it) = 1 mod Z,41, . But in terms of the derived module M,
this means that Z* " = 0. Thus M#*™" = 0 foralliin Z,;1/Z.. Therefore
by Lemma 6, kMT* " = 0 where k = J[2% (Coeiny -+ 5 Coeimeic1)®
Thus

(H%41,Hy, +++ ,H,) =1 mod Z,_go-2 .

20=2

Then by the corollary of Lemma 7 we have that G/Zg-2 is periodic and the
periods divide powers of k. But the elements of G/Zs-2 have period p. Since
k and p are relatively prime G £ Zg-2 .
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