ON THE CONTINUITY OF LATTICE AUTOMORPHISMS
ON CONTINUOUS FUNCTION LATTICES

BY
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1. Introduction

Let E be a compact Hausdorff space, C(E) the lattice of all real-valued
continuous functions on E, and let 7' : f — f” be a lattice automorphism of
C(E).

I. Kaplansky has proved in [2] the following two results.

(I) If T is homeomorphic in the topology of uniform convergence, then
T can be characterized in the following form:

(@) = ®(f(2), ) (zeE,feC(E))

where  — z' is a homeomorphism of E, and ®(¢, z) (§eR, z ¢ E) is a con-
tinuous function on R X E, and for any fixed z ¢ E, ®( , x) is a lattice auto-
morphism of R.

(II) If E satisfies a first axiom of countability, then all lattice auto-
morphisms of C(E) are homeomorphic in the topology of uniform con-
vergence. However, generally speaking, lattice automorphisms are not neces-
sarily continuous.

It may be natural to consider the following problem: What is the charac-
teristic topological property of E in order that all lattice automorphisms of
C(E) be continuous in the topology of uniform convergence?

In view of this problem the following three classes of compact Hausdorff
spaces are considered.

(1) E has property (K): Alllattice automorphisms of C(E) are con-

tinuous.

(2) E has property (Ko): All compact subspaces of E have property (K).

(3) E has property (K;): A lattice automorphism 7' of C(E) is con-

tinuous if and only if 77" is continuous.
The above three classes obviously satisfy the relations

(Ko) < (K) < (Ky).

Our purpose in this paper is to give a complete topological characterization
of properties (Ko) and (Kji).

TueorEM 1. E has property (Ki) if and only if E # BU for any dense
open F,-subset U C E, U # E, where U 1is a Stone- Ceech compactification’ of U.

Received March 7, 1963.
1 For the definition and the fundamental properties of Stone-Cech compactification
the reader is referred to [3, Chapter 6].
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TueoreM 2. E has property (Xo) if and only if E D BN. N is a natural
number space with discrete topology and BN is a Stone-Cech compactification
of N.

2. Some lemmas
Before the proof of theorems we shall begin with some lemmas.

Lemma 1. (Kaplansky)
(i) A lattice automorphism T of C(E) induces uniquely a homeomorphism
t of E such that for any xo e E and f, g e C(E)

(%) flxe) < g(xo) tmplies fT(xb) = g"(xb).

Furthermore,
(ii) If T is continuous, then f(xo) = g(xo) implies f*(x5) = g7 (x8).
(iii) If T 4s continuous, then f(20) < g(xo) implies f*(x6) < g”(x).

Proof. (i) was proved in [1] and [2].

(ii) Using the property (x) and the ¢-continuity of (£1)7(x5) for each
o € B, we can see f'(z5) = (f(2)1)"(25) = (g(20)1)"(25) = ¢"(x0) from
(@) = g(x).

(iii) 1is evident from (ii) and the fact that the homeomorphism induced
by T is the inverse ¢ of ¢.

Lemma 2. A lattice automorphism T of C(E) s continuous ¢f and only if
(£1)"(x) is a continuous function of £ € R for each fixed x ¢ E.

Proof. The ¢-continuity of (£1)”(z) and the property () imply f"(z6) =
(f(20)1)"(x¢) for each x, e E. Therefore if {f,} converges pointwise to g,
then {f»} also converges pointwise to g°, because for each x; ¢ E,

My f5(20) = limpon(fa(20)1)"(28) = (g(2)1)"(ak) = ¢"(ai).
Moreover if {f,} converges uniformly to g, it follows that
g— &l =fisg+el (n=12 )

for some sequence {&,} of decreasing positive numbers. Since {(g — &, 1)"}
and {(g + €, 1)} are monotone and converge pointwise to g”, they converge
uniformly to ¢g”. Therefore the uniform convergence of {fs} follows from
G-—&al)' Sfis@+eal) (n=12" ).

3. Proof of Theorem 1

1. Ee¢(Ki) = E 5= BU for any dense open F,-subset U C E, U # E.

If we assume the existence of a dense open F,-subset Uy C E, U # E,
such that U, = E, then we can construct a lattice automorphism 7' of
C(E) such that T is discontinuous and 7" is continuous. The method is
due to a slight generalization of Kaplansky’s example in [2].

For U, we can find a nonnegative fo e C(E) such that the zero-set of fo
coincides with the complement Uj of Uy :  {z | fo(z) = 0} = Up = 0. Using
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fo we may define the following mapping 7 from C(E) to C(E). For all
feC(E) and z ¢ Uy we put

(2) = f(=) if f(z) 20,
= f(x)/fo(x) if 0= f(x) = fo(x),
= f(z) — folz) +1 if fi(z) = f(x).

Then we have | f"(z)| < |f(z)| + 1 (z € Uy), and obviously f” is a bounded
continuous function on Us. Therefore, by the assumption 38U, = E, f* can
be extended continuously to a function on E. That unique continuous
extension of f* may be denoted by the same notation f. The inverse mapping
T is defined by the following: For all g ¢ C(E) and z ¢ E

g () = g(x) if g(z) =0,
= fo(x)g(x) if 0sg¢g(x) =1,
=g(x) + fo(z) — 1 if 1= g().

It is almost obvious that T is a lattice automorphism such that 0" = 0. T'is
discontinuous at 0, because infio(£1)7(z) = 1 for zeU;. However
(81)"'(z) is a continuous function of £ ¢ R, and therefore 7™ is continuous
by Lemma 2.

2. Ee(Ky) < E = BU for any dense open F,-subset U C E, U = E.

To prove this, we can, without loss of generality, assume the existence of a
lattice automorphism T satisfying (1) and (2) below, and show that this
assumption leads to a contradiction.

(1) T is continuous,
(2) 0% = 0, and T is discontinuous at 0; furthermore,

Maxzez ¢o(x) = 1, where ¢o(z) = infio(£1)"(2) (z € E).

Let Zo = {x|¢o(z) = 1} and Z; = {z|p(z) = }};then Z; D Z, # 6,
and obviously Z; and Z3 are dense open F,-subsets.

For Z, and Z; we can find subsets F; and F such that

(i) Zi D F,, F.,

(li) F-'lnIf-'gnZS "--‘ﬂ,

(i) Fin F: # 0.
To show this, we note that E = BZi by hypothesis, so that we can find
Y eC(Z5) such that 0 < ¢(z) < 1 (zeZf) and X1 n X, 5 0 in E for two
sets X; = {z|¢(z) = 1} and X» = {z|¢(x) = 0} (see [3, Chapter 6]).
If we put

Fi={z|y(x) 23}nZi, Fi={z|¥(@@)=4inZi,

then (i) is obvious, (ii) follows from
FinZic {z|¥() 2 3}, F.nZic (x| =3,
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and the denseness of Z{ implies F; D X; (¢ = 1, 2); therefore (iii) is obvious.
Next, if we put, forn = 1,2, ---,

Gn = {z|((1/(n + 1))1)"(z) £ 3 = (I/n)1)"(2)},
Hy, = {z|((1/(n + 1)1)"(z) £} = ((1/0)1)"(2)},
the sequences of compact sets {G,} and {H,} have the following properties:
(IV) Zg:)Gn,Hn (n=1,2:'”),
(V) G. n (Uvgn+2 Gv) = ﬂ, H,n (Uvgn+2Hy) =0 (’I’L = 1’ 2y "')’

(vi) U,,;l(G,.n[f_’l) DF]FIF’Q, Ungl(Hnnﬁz) DF1OF2.
(iv) is obvious. (v) follows from the continuity of 7", that is, since

(Upzni2 @) € {z | 3 < ((1/(n 4+ 2))1)7(2)}, we have from Lemma, 1(iii)
o (Uyznia )

C {z|((/(n+ 1)) (@) S $ nfz|} = (1/(n+2)1)(2)} =0
We show (vi): Zi D F,implies U,51(G. n F1) = {2 |} £ 1°(z)} n Fy, and

since Zo D Fin Fy, {x |3 < 17(x)} is a neighbourhood of Fyn Fy ; therefore
{xl% = lT(x)} nF, D F’1l’lF’2.

Without loss of generality, for a fixed point po ¢ F; n F, we can assume

Po € Ungl(G% n Fl) n Ungl(Hzn n Fz).

If we put _ _
C,,=G2,,nF1, D, = Hy,n F, (n=1,2"")7

C = Ung1Cn, D = Unngn,
then we have
(vii) poeCn D,
(vii) § = ((1/20)1)"(2) (zeCa),_} = ((1/(2n + 1))1)"(z) (z € Dy),
(lX) Cnn(Uv>n Cv) = ﬂ) Dnn(Ul'>an) =0 (n= 1, 2, "')’
(x) ConD=g, D,nC=0 (n=12 --).
(vil) and (viil) are evident from the construction of C and D. (ix) follows
from (v). (x) is shown from (ii):
C,,nDCC,,nF}CZSnFlnF_'g = .

Finally from properties (vii)—(x), we obtain a contradiction as follows:
We can define a continuous function & on (C u D) such as

h(z) = 1/(2n — 1) if 2'eC,,
1/(2n + 2) if ' eD,,
=0 if #'¢eCuD — CuD.

Properties (ix) and (x) guarantee the definition of & and the continuity on
(Cu D). If foe C(E) is one of the continuous extensions of h, then from
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(viii) and Lemma 1 we have
fi(z) 2% (zeC) and fi(z) =3 (zeD).
Therefore from (vii) we have a contradiction: f; (p) = % and f3 (po) < 3.

4, Proof of Theorem 2

1. Ee¢(Xy,) & EDBN.

The proof is done by the same idea as Theorem 1, but it is more simple
than Theorem 1. It is sufficient to prove E ¢ (K) under the assumption
E D BN.

Let T be a discontinuous lattice automorphism of C(E), and ¢ an induced
homeomorphism of E. Without loss of generality we can assume 7' is dis-
continuous at 0 and Max,ez ¢o(x) = MaXzer(infeso(£1)7(z)) = 1.

By mathematical induction, we can find a sequence of z, e £ (v = 1,2, - +)
and the sequence n, (v = 1, 2, - --) of natural numbers such that

i) < (=12 --)
i) ((/n)1)'(@)z3 (v=1,2 ),

(i) ((U/m)D)(@) =3 (b =1,2,---).

Assuming the existence of z;¢ E (¢ = 1,2, ---,»v) and n; (¢= 1,2, ---,
v + 1), we can define x,, ¢ E and n,4» as follows:

U = {z |((1/n,,+1)l)T(:c) z 3}

is a neighbourhood of {z |¢(z) = 1} and V = {z|ei(z) < %} is a dense
open set; therefore U,;u n V #£ @. x,4, is defined to be one of the points
of U,1nV. Next,since 2,41¢ V,thatis infeo(£1)7(2,41) < %, we can find
Ty > Myyy such that ((1/7,42)1) (2,41) < 3.

From (ii) and (iii) we see z,¢ U, (v < v) and z, ¢ U, (p = »); therefore
x, #x (u#v)and {x, |v = 1,2, ---} = A4 is a discrete subset of E: A is
homeomorphic to N. By the assumption E D BA we shall find infinite
subsets B and C of A such that A = BuC,BnC = @,and Bn C # 0.

We shall define a continuous function 4 on (4 )t_l as follows:

h(z) = 2/n, if 2' = 2,¢B,
=1/2n,4 if z'=m¢C,
=0 if z'ed — A.
Let fo e C(E) be one of the continuous extensions of h; then from Lemma 1
and (ii) and (iii) we see that
fi(z) =% (zeB) and fi(z) <% (zeC).
Therefore we have a contradiction: % = fi (20) < 1 for a point x ¢ C n B.

2. E¢(Ky) = EDBN.
If E D F = 8 N, then we can construct a discontinuous lattice automorphism
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of C(F) in the same manner as in the first part of the proof of Theorem 1.
(It is Kaplansky’s example of discontinuous lattice automorphisms in [2].)
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