
ON THE CONTINUITY OF LATTICE AUTOMORPHISMS
ON CONTINUOUS FUNCTION LATTICES

BY

TIASII I6

1. Introduction

Let E be a compact Hausdorff space, C(E) the lattice of all real-valued
continuous functions on E, and let T f -, fr be a lattice automorphism of
C(E).

I. Kaplansky has proved in [2] the following two results.

(I) If T is homeomorphic in the topology of uniform convergence, then
T can be characterized in the following form:

fr(xt) (f(x), x) (x e E, f e C(E)

where x -- x is a homeomorphism of E, and (, x) ( e R, x e E) is a con-
tinuous function on R X E, and for any fixed x e E, ( x) is a lattice auto-
morphism of R.

(II) If E satisfies a first axiom of countability, then all lattice auto-
morphisms of C(E) are homeomorphic in the topology of uniform con-
vergence. However, generally speaking, lattice automorphisms are not neces-
sarily continuous.

It may be natural to consider the following problem: What is the charac-
teristic topological property of E in order that all lattice automorphisms of
C(E) be continuous in the topology of uniform convergence?
In view of this problem the following three classes of compact Hausdorff

spaces are considered.
(1) E has property (K) All lattice automorphisms of C(E) are con-

tinuous.
(2) E has property (K0) All compact subspaces of E have property (K).
(3) E has property (K1) A lattice automorphism T of C(E) is con-

tinuous if and only if T-1 is continuous.
The above three classes obviously satisfy the relations

(K0) c (K) c

Our purpose in this paper is to give a complete topological characterization
of properties (K0) and (K1).

THEOaE 1. E has property (K) if and only if E # U for any dense
compactificat,on of U.open F-subset U c E, U # E, where U is a Stone-Cech
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For the definition and the fundamental properties of Stone-(ech compactificution

the reader is referred to [3, Chapter 6].
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THEOREM 2. E has property (Ko) if and only if E : N. N is a natural
number space with discrete topology and N is a Stone-ech compactification
of N.

2. Some lemmas
Before the proof of theorems we shall begin with some lemmas.

LEMMA 1. (Kaplansky)
(i) A lattice automorphism T of C(E) induces uniquely a homeomorphism

of E such that for any Xo e E and f, g e C(E)

f (xo) <-g (xo).(.) f(xo) <g(x0) implies r r

Furthermore,
(ii) If T is continuous, then f(xo) g(xo) implies fr(x) gr(xo).
(iii) If T- is continuous, then f(Xo) < g(Xo) implies fr(xo) < g (xo).

Proof. (i) ws proved in [1] nd [2].
(ii) Using the property (.) nd the -eontiauity of (1)r(x) for ech

Xo e E, we cn see fr(x) (f(xo)l)r(x) (g(x0)l)r(x) gr(x) from
f(xo) g(o).

(i i) is evideat from (ii) and the fact that the homeomorphism induced
by T- is the inverse - of t.

LMX 2. A lattice automorphism T of C(E) is continuous if and only if
(1) r(x) is a continuous function of R for each fixed x e E.

Proof. The -continuity of (1) r(x) and the property (.) imply r/ (xo)
(f(Xo) 1 r(x) for ech Xo e E. Therefore if {f} converges pointwise to g,
then {f,r} lso converges pointwise to gr, because for eeh x0 e E,

lim.fr(x) lim.(f,(xo)l)r(x) (g(xo)l)r(x) gr(xo).
Moreover if {f} converges uniformly to g, it follows that

g e.l _f. -<_ g -5 .I (n 1,2, ...)

for some sequence .} of decreasing positive numbers. Since (g . 1) r}
and (g -5 . 1)r} are monotone and converge pointwise %o gr, they converge
uniformly to gr. Therefore the uniform convergence of {fr} follows from
(g_ e. 1)r =<fr __< (g-5 .1) r (n 1,2, ...).

3. Proof of Theorem
1. E e K) E Ufor any dense open F-subset U c E, U E.
If we assume the existence of a dense open F,-subset U0 E, U E,

such that #Uo E, then we can construct a lattice automorphism T of
C(E) such that T is discontinuous and T- is continuous. The method is
due to a slight generalization of Kaplansky’s example in [2].
For Uo we can find a nonnegative fo e C(E) such that the zero-set of fo

coincides with the complement U of Uo {x [fo(X) 0} U . Using
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f0 we may define the following mapping T from C(E) to C(E).
f e C(E) and x e U0 we put

f() f(x)

f(x)ffo(x)

f() fo() +

For all

if f(x)

_
O,

i o -< f(x) -< f0(x),

if ]o() =< f(x).

Then we have fr(x)] -< f(x)! -t- 1 (x e U0), and obviously fr is a bounded
continuous function on U0. Therefore, by the assumption fU0 E, fr can
be extended continuously to a function on E. That unique continuous
extension of fr may be denoted by the same notationft. The inverse mapping
T- is defined by the following" For all g e C(E) and x e E

T--1g (x) g(x) if g(x) <-0,

fo(x)g(x) if 0

_
g(x)

_
1,

g(x) +fo(X)- 1 if 1 _-<g(x).

It is almost obvious that T is a lattice automorphism such that Or 0. T is
discontinuous at 0, because inf>0(l)r(x) 1 for x e U. However
(l)r-l(x) is a continuous function of e R, and therefore T-1 is continuous
by Lemma 2.

2. Ee(K1) E Ufor any dense open F,-subset U c E, U E.
To prove this, we can, without loss of generality, assume the existence of a

lattice automorphism T satisfying (1) and (2) below, and show that this
assumption leads to a contradiction.

(1) T-1 is continuous,
(2) Or 0, and T is discontinuous at 0; furthermore,

Maxx 0(x) 1, where 0(x) inf>0(l)r(x) (x E).

LetZ0 {xl0(x) >- 1} andZl {x[0(x) -> -};thenZ D Z0 ,
and obviously Z and Z are dense open F-subsets.
For Z0 and Z we can find subsets F and F. such that
(i) ZF,F,
(ii) fxn/nZ 9,

To show this, we note that E fZ by hypothesis, so that we can find
P e C(Z) such that 0 _-< P(x) -< 1 (x e Z) and .x n l in E for two
sets X {x{P(x) 1} and X {x[g(x) 0} (see [3, Chapter 6]).
If we put

F {xlP(x) :> 1/2} nZ, F {xlC/(x) :< 1/2} nZ,

then (i) is obvious, (ii) follows from
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and the denseness of Z implies/ . (i 1, 2) therefore (iii) is obvious.
Next, if we put, for n 1, 2, ...,

G, {xl((1/(n + 1))l)r(x) <__ ((1/n)l)r(x)},
g. {x ]((1/(n + 1))l)r(x) ((1/n)l)r(x)},

the sequences of compact sets {G} and {H} have the following properties"
(iv) Z G.,H. (n 1,2, ...),
(v) G n (U+G) 9, H n (Oa+H) 0 (n 1, 2, ...),
(vi) Ua(Gnf) fn, U(U,n) nf.
(iv) is obvious. (v) follows from the continuity of T-, that is, since

(U+ G) {x] ((1/(n + 2))l)r(x)}, we have from Lemma l(iii)

G, n (Uz,+ G)
c {z l((1/(n + 1)))(x) } n {xl ((/(n+ )))(x)}

We show (vi)" Z F implies U(G, n F) x 1 r(x) n F, and
since Z0 n f, {xl lr(x)} is a neighbourhood of f n therefore
{1 (x)} n F n .
Without loss of generality, for a fixed point p0 e n we can assume

p0 U,(G, n ) n U,(H, n ).
If we put

C G n , D H n (n 1, 2, ...),

C U C, D UD,
then we have

(vii) p0

(viii) 1/2 _-< ((1/2n)l)r(x) (xe C), 1/2 >_- ((1/(2n-F 1))l)r(x)(xeD,),
(ix) Cn (U>. C) 9, Dn (U>D,) 9 (n 1, 2, ...),
(x) Cn/) 0, Dn 0 (n 1,2, ...).

(vii) and (viii) are evident from the construction of C and D. (ix) follows
from (v). (x) is shown from (ii)"

Cnb C n f Z n/n .
FinMly from properties (vii)-(x), we obtain contradiction s follows"

We cn define continuous function h on (C u D)- such s

h(x) 1/(2n- 1) if xteC.,
1/(2n+2) if xt,eD.,
0 if x eCD-CD.

Properties (ix) and (x) guarantee the definition of h and the continuity on

(C D) t-. If fo C(E) is one of the continuous extensions of h, then from
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(viii) and Lemma 1 we have

f(x) >= 1/2 (xeC) and f[(x) <- 1/2 (xeD).

Therefore from (vii) we have a contradiction: f[(po) >= 1/2 and f(po) <- 1/2.

4. Proof of Theorem 2
1. Ee(K0) E2pN.
The proof is done by the same idea as Theorem 1, bu it is more simple

than Theorem 1. It is sufficient to prove E e (K) under the assumption
E: N.

Let T be discontinuous lttice utomorphism of C(E), nd n induced
homeomorphism of E. Without loss of generality we cn assume T is dis-
continuous at 0 and MaxE 0(x) MaxE(inf>0(l)r(x)) 1.
By mathematical induction, we can find a sequence of x e E ( 1, 2,

and the sequence n ( 1, 2, of natural numbers such that
(i) nv < nv+l ( 1,2, ...),
(ii) ((1/n)l)r(x) _>- 1/2 ( 1,2, ...),
(iii) ((1/n+)l)r(x) =< 1/2 ( 1,2, ...).
Assuming the existence of xi e E (i 1, 2, ..., ) and ni (i= 1, 2, ...,
-t- 1), we can define x+l e E and n+2 as follows"

V+ {x I((1/n+)l)’(x) >= 1/2}

isaneighbourhoodof {x[0(x) 1} and V {xl0(x) < 1/4} isa dense
open set; therefore U+I a V 0. x+l is defined to be one of the points
of U+I V. Next, since x+ e V, that is inf>0(l) r(x+l) < 1/4, we can find

n+ > n+ such that (1/n+.) 1 r(x+) <= 1/2.
From (ii) and (iii) we see x t U ( < ) and x, e U, (u ->_ ); therefore

x, x ( ) and {x 1, 2, ...} A is a discrete subset of E" A is
homeomorphic to N. By the assumption E = A we shall find infinite
subsets B and C of A such that A BC, BnC tt, and/n20.
We shall define a continuous function h on (A:) t- as follows"

h(x) 2/nv if x xeB,

1/2n+ if x x, eC,

0 if xefi-A.

Let fo e C(E) be one of the continuous extensions of h; then from Lemma 1
and (ii) and (iii) we see that

f(x) _-> 1/2 (xeB) and f(x) <- 1/2 (x e C).

Therefore we have a contradiction" 1/2 <- f[(xo) <-_ 1/2 for a point x0 e /.

2. Ee(Ko) E:N.
If E F fl N, then we can construct a discontinuous lattice automorphism
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of C(F) in the same manner as in the first part of the proof of Theorem 1.
(It is Kaplansky’s example of discontinuous lattice automorphisms in [2].)
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