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Let (X, R) be a transformation group with phase space X and phase
group R, the additive group of real numbers. Suppose further that (X, R)
is minimal. Then what can be said about X? Various answers have been
given to this question, see for example [4], [5], [6], [11], [12]. In [12] Schwartz-
man shows that if in addition X is compact, locally pathwise connected, and
if (X, R) admits a global section, then X is the base of a covering space with
discrete fibers. This allows him to say something about the homotopy
groups of X. In particular he shows that rl(X) 0. Recently Chu and
Geraghty [5] showed that if X is compact, locally pathwise connected, and if
(X, R) is minimal but not totally minimal, then rl(X) 0.
The first part of this paper is devoted to generalizing the notion of global

section. The above results are considered in a more general setting, and the
relation between them is studied. They are generalized to the case where R
is replaced by any topological group whose underlying space is R.
The second part of the paper is concerned with the following problem.

Suppose X is a manifold which is minimal under R; need X be orientable?
This question is answered in the negative by exhibiting an action of R on the
cartesian product X of the torus with the Klein bottle such that (X, R) is
minimal. The flow is constructed by first producing a homeomorphism f of
S X K (the circle cross the Klein bottle) such that S X K is minimal under
the resulting discrete flow, and then R is allowed to act on (S K I)/f
in the standard way; here I is the unit interval and (S K X I)/f is ob-
tained from S K X I by identifying (z, 0) with (f(z), 1) (z e S X K).
Since f turns out to be isotopic to the identity, the resulting space is homeo-
morphic to the cartesian product of the torus with the Klein bottle. This
flow may be lifted to a flow on the four-torus, T4. From a result of Auslander
and Hahn [1] this flow does not come from a one-parameter subgroup of T4.
For the remainder of this paper R will denote the additive group of real

numbers, and Z the additive group of integers. Let (X, Z) be a transfor-
mation group with phase group Z. Then the action of Z on X is completely
determined by the homeomorphism f of X onto X, where f(x) xl (x X).
For this reason the transformation group (X, Z) will often be denoted (X, f).
For a general discussion of the notions used see [9].

DEFINITION 1. _A_ left [right] transformation group is a pair (G, X) [(X, G)]
where X is a topological space and G is a topological group together with a
continuous map (g, x) -- gx [(x, g) --> xg] (x X, g G) from G X X - X
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[X X G --. X] such that

ex x, gl(g, x) (gl g2)x

where e is the identity element of G.
DEFINITION 2. _A_ bitransformation group (G, X, T) is a triple where (G, X)

is a left transformation group, (X, T) a right transformation group, and
(gx)t g(xt) (g G, x e X, e T); i.e., the elements of G commute with
those of T. I shall not distinguish between the identity element of G and
the identity element of T. Both will be denoted e.

When (G, X, T) is a bitransformation group, [X/G, T) is a transformation
group in a natural manner.

Let X be a topological space, T a topological group. Then (X T, T)
will denote the transformation group defined by the action (x, t)r (x, tr)
(x X, t, r e T).
DEFINITION 3. Let (X, T) be a transformation group, K a subset of X,

and G a topological group. Then K is a global section of (X, T) with respect
to G if there exists an action of G on K X T such that (i) (G, K T, T) is
a bitransformation group, (ii) the map K T --, X, where (]c, t) kt
(]eK, e T) induces an isomorphism of ((K X T)/G, T)onto (X, T).
(The letter will retain the above meaning throughout the remainder of the
paper.)
The subset K of X is a global section of (X, T) if there exists a syndetic

subgroup S of T such that K is a global cross section of (X, T) with respect
to S.

THEOREM 1. Let (X, T) be a transformation group, K a subset of X, and
G a topological group. Then K is a global section of (X, T) with respect to G
if and only if

(1) KT X,
(2) there exist an action of G on K and a continuous function ffrom G X K

into T such that
(i) f(g g, ) f(gl, g. k)f(g,., ) (g, g. e G, k K),
(ii) (g)f(g, ) (g e G, keg),
(iii) If kt K for some k K and T, then f(g, k)t e for some g e G,
(iv) Given N a neighborhood of the identity of T and k e K there exists a

neighborhood V of tc such that Ite V for some e K and e T implies
f(g, l)t N for some g e G.

Proof. Assume that K is a global section of (X, T) with respect to G.
Then by Definition 3, must map K X T onto X. Thus KT X.

Setg(k,t) (A (g, , t), B(g, k, t) (g e G, e K, T). ThenAandB
are continuous functions from G X K T into K and T respectively. The
relation [g(k, t)]r g(k, tr) (g G, t K, t, r T) implies that

A(g,k,t) A(g, lc, tr) and B(g, lc, t)r= B(g, tc, tr) (geG, tceK, t, reT).
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Set gk A(g, k, e) and f(g, l) B(g, k, e). Then g(k,
(geG, keK, te T).
The relations

e(k, e) (k, e) and g[g.(k, e)] (g g.)(k, e) (g,, g,. e G, k e K)

imply that

ek k, g(g k.) (g g)k, f(g, g k)f(g,

(k e K, g g. e G).

Thus we have defined an action of G on K and a continuous function f from
G K into T satisfying (i).
Let k e K, g e G. Then (gk, f(g, k)) g(k, e) (k, e) (mod G). Hence

(gk)f(g, ]) ke k by Definition 3.
Let e K with ] e K and e T. Then ]t (]) .e implies by Definition 3

that (It, t) --- (kt, e) (mod G). Hence there exists g e G with f(k, g) e.
Let N be a neighborhood of the identity of T,/c e K, and suppose (iv) not

satisfied. Then there would be nets (l a e I), (t
l e K, t e T, and f(g, l)$ N (g e G, a e I). Let F be the canonical map of
K X T onto (K X T)/G. Then by assumption F(l, ) --, F(k, e). Since
F is an open mapping, there exist g e G and a e I with g(l, t)eK X N.
But this implies that f(g, l)t e N, a contradiction.
Now assume that conditions (1) and (2) are satisfied. Set g(k, t)

(glc, f(g, lc)t). Then one verifies directly that (G, K, T) is a bitransformation
group.
Let/ t / t for some/,/, e K and t, t e T. Then/ t t" k.. Hence

f(g, k)t t e for some g e G by 2(iii). Then gk
]c t /. t t- /c by 2(ii). Hence g(k, h) (glc, f(g, k)t) (k, t.),
i.e., (/, t) (k., t) (rood G).

Conversely, let g(/c, t) (/., t) for some g e G, /c, /c. e K, t, t,. e T.
Then g/ / and f(g, k)t t Hence tc. t. gk, f(g, ])t k t
Thus induces a continuous injective map F of (K X T)/G into X. Con-

dition 1 implies that this induced map is onto. It remains to be shown that
F- is continuous. Let (x, a e I) be a net of elements of X with x, -- x e X,
k, t. x,, t x, with lc,, k e K, t,, e T, (a e I). Then , t, - -* ] whence
by 2(iv) (choosing a subnet if necessary) there exist g, e G (a e I) with
f(g, k,)t. - --, e. This together with the fact that g k,f(g, k,)t -k. t, - --* shows that g/c, --* k. Let H be the canonical map of K T
onto (K X T)/G. Then

F-(z.) H(k., t.) H(g. k, f(g., k.)t) H(k., t) f-(x).
The proof is completed.
Remark 1. When T R and G Z, (1) shows that f(n, ) is determined

by the set [f(1, 1)l e K]. Thus condition (2) could be stated in terms of a
function with domain K rather than Z X K.
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Now let (X, R) be a transformation group with compact Hausdorff phase
space X, and let K be a closed subset of X such that is a local homeo-
morphism onto. Then Schwatzman [12] shows that K is a section of (X, T)
with respect to Z. In this case n/ n(/) (n e Z, / e K) where is the
homeomorphism of K into K which sends/c into the first point at which K
intersects the positive semiorbit of/, and f(n, ) is the negative of the time
of nth return of the point/ to K.
The most important application of Theorem 1 is to the case where G is a

closed syndetic subgroup of T.

THEOREM 2. Let (X, T) be a transformation group, K a closed subset of X,
S a closed syndetic subgroup of T such that (i) KT X, (ii) KS c K, (iii) if
kt K with ]c K and e T, then S. Then K is a global section of (X, T)
with respect to S.

Proof. Make (S, K) into a left transformation group by setting sk ks-(s e S, k e K), and set f(s,/c) s (s e S, ] e K). Then conditions 1 ), (2) (i),
and (2)(ii) of Theorem 1 are immediately verified.

Let kt e K for some e K, e T. Then condition (iii) implies that e S.
Hence condition 2(iii) of Theorem 1 is verified.

If condition 2(iv) of Theorem i did not hold, there would be nets (1. a e I)
and (t. a e I) of elements of K and T respectively with l. t. -- ]c e K and
st. N (s S), where N is a neighborhood of the identity. Since S is syndetic,
t. s. c. (a e I) where c. e C (a e I) and C is a compact subset of T. We may
assume that c. - c e C. Set/c. 1. s.. Then It. e K (a e I) and It. c. --. ].
Hence ]c. --* kc-, whence /cc- e K. Thus c-e S. Then c-st. --> e and
--1c s, S (a I), a contradiction.
Remark 2. If in addition to the assumptions of Theorem 2, the canonical

map of T onto T/S [St It T] admits a local cross section, X is a fiber
bundle over T/S with fiber K, and K X T is a fiber bundle over X with fiber S.

Proof. In this case T is a principal fiber bundle over T/S with structure
group S and X K s T is the associated fiber bundle with fiber K.

Moreover, K X T is the pullback of the bundle (T, T/S) by means of
map x -- St of X onto T/S, where x t for some ]ce K.

In the situation under consideration we have two exact sequences, namely-- -l(X) ----> -I(T/S) ----> zo(K) ---. zo(X),

-(K X T) ----> r,(X) ---. -o(S) -o(K X T).

The results of Schwartzman and Chu-Geraghty mentioned in the introduction
are obtained by putting enough conditions on the various spaces involved to
deduce that (X) 0.

Notice further that if Q is the image in T of an open neighborhood of {S}
under the local cross section, then q restricted to K Q is a homeomorphism
onto the open subset KQ KSQ of X. Thus all the local properties of X
are transmitted to K and T/S.
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The following corollaries to Theorem 2 illustrate the above remarks.

COROLLARY 1. In addition to the assumption of Theorem 2 let K and T be
connected, X locally arcwise connected, T ---, T/S admit a local cross section, and
let S possess an open proper subgroup So. Then r(X) O. (Note that the
conditions on S and T/S are satisfied if S is a discrete nontrivial subgroup of T.)

Proof. Let S act on S/So [So s s e S] on the right. Then (T/S0, T/S)
may be identified with the fiber bundle with fiber S/So associated with the
principal bundle (T, T/S). Thus we have an exact sequence

r( T/S) ’o(S/So) ---* ro( T/So).

By the preceding remarks T/S is locally pathwise connected, whence so is
T/So since S/So is discrete. Now T is connected. Hence T/So is connected.
This implies that 0(T/S0) O. Since S/So is discrete and does not reduce
to a single point, 0(S/S0) O. Hence (T/S) O.
Now consider the exact sequence (X) --* r(T/S) -- ro(K) associated

with the fiber bundle (X, T/S). Since K is connected and locally pathwise
connected, r0(K) 0. Hence r(X) 0.

DEFIITIO 4. Let T be a topological group. Then T is syndetically simple
if T is connected and every proper syndetic subgroup is disconnected.

COROLLR: 2. Let (X, T) be minimal with locally pathwise connected phase
space X and syndeticaly simple Lie group T. Suppose there exist K, a closed
connected proper subset of X, and H a syndetic invariant proper subgroup of T
such that K is invariant and minimal under H. Then r(X) O.

Proof. Let S [t Kt K]. Since H S, S is a closed syndetic subset
of T. Moreover S is a semigroup. By [9, 2.06] S is a subgroup of T. Let
T SC, where C is a compact subset of T. Then X K’fi ’KSC K’-=
KC KT. Now letkeK, teTwithkteK. ThenKt -t tt
kt’ K-- [ K. Thus e S. Hence the hypotheses of Theorem 2 are
satisfied.

Since T is a Lie group, T T/S admits a local cross section. The exact
sequence r(T/S) ro(S) -- ro(T) of the bundle (T, T/S) shows that
r(T/S) O. Again as in Corollary 1, 0(K) 0. Then the exact sequence
r(X) (T/S) ---. 0(K) of the bundle (X, T/S) shows that r(X) 0.
Remark 3. Let T be a connected Lie group whose only compact subgroup

is the identity. Then T is syndetically simple. Note that in this case T is
homeomorphic to R for some positive integer n.

Proof. Let S be a closed, connected syndetic subgroup of T. Then T/S
is a compact manifold on which T operates transitively. The stability group
at the point {S} of T/S is S itself. Hence by [10] there exists a compact
subgroup C of T which operates transitively on T/S. By hypothesis C e.
Hence S T.
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THEOREM 3. Let (X, T) be a minimal set with compact Hausdorff locally
pathwise connected phase space X and syndetically simple Lie phase group T;
let H be a syndetic invariant subgroup of T, x e X with K X. Then K
and all its components are global sections of (X, T), and I(X) O.

Proof. Let S [tlKt c K]. Then S is a closed, proper, syndetic sub-
group of T, and K is a global section of (X, T) with respect to S as in Corollary
2 because K is minimal under H [9]. Now K is locally pathwise connected.
Hence K has only finitely many components, because it is compact. Let L
beacomponentofKand G [s sS and Ls L]. ThenGisaclosed
syndetic subgroup of S. Thus G is a syndetic subgroup of T.

Let leL, teTwith lteL. ThenKt lilt lilt ltH LH K.
Hence teS. Since Lt L and L is acomponentof K, Lt L; i.e.,
e G. The proof is now completed as in Corollary 2.
Remark 4. Let (X, T) be a minimal set with compact Hausdorff locally

pathwise connected phase space X and syndetically simple Lie group T.
Then we may paraphrase the conclusion of Theorem 3 by saying that a suf-
ficient condition for the existence of a global section is that (X, T) not be
totally minimal [9].

Let T be abelian and E the equicontinuous structure relation [8]. Then
X/E is a topological group called the structure group of (X, T) [8]. Then
(X, T) is totally minimal if and only if X/E [el.
Suppose further that E P, the proximal relation [8]. Then E X X X

because (x, xt) P if e. Thus in this case X/E [e], and (X, T) admits
a section. For conditions under which E P see [3].

DEFINITION 5. Theorem 1 shows that if K is a global section of (X, T)
with respect to G, then G acts on K. Let (G, K) and (X, T) be transforma-
tion groups. Then (G, K) is a global section of (X, T) if there exists a subset
L of X such that L is a global section of (X, T) with respect to G and (G, K)
is isomorphic to (G, L) where (G, L) is the transformation group determined
in Theorem 1.

THEOREM 4. Let (G, K) be a transformation group with phase group G
and phase space K; let T be a topological group and f a continuous function from
G X K to T such that

(1) f(gl g., ]c) f(g, g ]c)f(g., ) (g, g. G, K),
(2) if g, k, --. ]c and f g, ft,) --> e, then ft, --> ]c (where g, and (]c) are

nets of elements in G and K respectively and ] K).
Then there exists a transformation group (X, T) of which G, K) is a global
section.

Proof. Set g(t, t) (gk, f(g, k)t) (g G, tc K, e T). Then condition
(1) ensures that (G, K X T, T) is a bitransformation group.
Let F be the canonical map of K T onto (K T)/S. Set

X (K X T)/SandL F(K X e). If F(]c, e) E(1, e) for some
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k, leK, theng landf(g, /) e for some geG. Condition (2) then
implies that ] l. Hence the map ] -- F(], e) is a biiective continuous
map of K onto L. Now let F(/c,, e) --* F(/, e) where (k,) is a net of ele-
ments of K and e K. Then condition (2) implies that /c,--* ]c. Hence
K is homeomorphic to L.
Now set gl F(gIc, e) and h(g, l) f(g, ]c) (g e G, eL), where F(k, e).

Then (G, K) is isomorphic to (G, L), and Theorem 1 shows that L is a global
section of (X, T) with respect to G.
We will identify K and L.
Remarlc 5. As with Theorem 1 we are mainly interested in the case where

G is a subgroup of T. In this case the function f(g, ) g (g G, ]ce K)
defines a transformation group called the canonical transformation group built
on G, K) and T.

THEOREM 5. Let (S, K) be a transformation group with Hausdorff phase
space K and phase group S, which is a closed syndetic subgroup of the topological
group T. Then the canonical transformation group X, T) built on S, K)
and T has a Hausdorff phase space, X. If K is compact, then so is X.

Proof. Let F be the canonical map of K X T onto X, (It,), (t) nets of
elements of K and T respectively such that

F(], t.) -- F(/, t) and F(k., t.) - F(l, r)

for some ], e K, t, r e T. Then we may assume (taking subnets if necessary)
that there exist nets (s.), (p.) of elements of S such that

s.(k., t.) -. (k, t) and p.(k., t.) - (1, r).

Then s. t. --> and p. t. --. r imply that p. s- --. rt-. Then rt-e S, and
rt-k lira p. s s. k. lim p ]c (since K is Hausdorff). Hence
rt-l(]c, t) (l, r), whence F(k, t) F(1, r) and X is Hausdorff.

Let K be compact. Let M be a compact subset of T such that T SM.
Let teT and keK. Then sm for some seS, meM, andf(/c, t)
F(s-k, m). Thus X F(K T) F(K M) is compact.
Remark 6. Under the conditions stated in Remark 1 or in [12, Theorem 1]

the global section therein obtained is related to the canonical section built on
K in the following manner.

Let g(], t) (n + 1 t)f(-n, ) - (t n)f(-n 1, k) where k eK,
teRwithn_-< t-<_ n- land

[f(-n 1, ) f(-n, ])]h(]c, r)
(r + f( -n, l) (n - 1) (r - f( -n 1, ]) )n

(keK, reR with -f(-n 1, ) <- r <- -f(-n, )). Then h is well
defined because in the case under consideration the maps n -- f(n, It) of Z
into R are strictly decreasing functions (]c e K) such that f(n, tc) --. +/-

asn -- :V (]eK).
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Then the map F of K X R into K R such that F(k, t) (l, -g(l, t))
(/c e K, e R) is a homeomorphism onto, its inverse being the map

(/c, t) -- (/, -h(/, t)) (/e K, e R).

Let (Z, K R) [(Z, K X R)] be the transformation group with phase
space K R and phase group Z where the action of Z is given by

n(k, t) (nl, n - t) [n(k, t) (ntc, f(n, ]) -t- t)] (n e Z,/e K, e R).

Let keK, teR, meZ. Letn -< _-< n -- lforsomeneZ. Then

f(mk, m + t) (mk, --g(mlc, m -t- t) ).
Now

g(mlc, m -t- t) (n -t- 1 t)f(--n m, ink) + (t n)f(--n --m 1, mlc)

becausen-t-m-_< m+ =< n-m+ 1. Furthermore

f(--n m, ink) f(-n, mk) + f(-m, mlc)
and

f(-n m 1, mk) j’(-n 1, mlc) -t- f(-m, mt)

by relation (1) of Theorem 1. Also f(-m, ml) - f(m, l) f(O, l) O.
Hence

F(mt, m -t- t) (mk, f(m, k) g(l, t) ).

Thus F is an isomorphism of the transformation group (Z, K R) onto
(Z, K R) and therefore induces a homeomorphism of the canonical
transformation group built on (Z, K) and R onto the original transformation
group (X, R). Hence, when only topological considerations are involved, we
may assumethat the transformation group (X, R) is the canonical one built
on (Z, K).

In what follows we adhere to the notation of [2]; the coefficient group for
cohomology is arbitrary. For additional information concerning the con-
cepts involved see [6].

In the remainder of this paper all the phase spaces involved are assumed to
be locally compact Hausdorff.

DFINITION 6. Let (G, Y, T) be a bitransformation group. Then
(G, Y, T) is locally n-coherent if given y e Y there exists an open neighborhood
V of y such that

H’2( V)

(,) H’ V a gVt g* t*

H:(gVt)

is commutative for all g e G and e T.
(V n gVT, V, gVT).

A diagram such as (.) will be denoted
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THEOREM 6. Let (G, Y, T) be a bitransformation group such that Y/G is
locally compact Hausdorff, dim Y <- n, and the canonical map F of Y onto
Y/G is a local homeomorphism. Then G, Y, T) is locally n-coherent if and only
if Y/G, T) is locally n-coherent.

Proof. Assume (Y/G, T) locally n-coherent. Let y e Y. Pick N an open
neighborhood of y such that F is a homeomorphism of N onto F(N) U
where U is an n-coherent open subset of Y/G. Let g e G, e T. Then F
maps N n gNt homeomorphically onto an open subset W of U Ut. Con-
sider the commutative diagram

H:(U) .---H:(W)H:(W) --> H:( Ut)

H:(N n gNt) H:(gNt)

and let u e H:(N gNt). Then there exists v e H’(W) with F*v u.
(v Ut)t* v U since U is n-coherent. Thus

g*(u gNt)t* g*(F*v gNt)t* g*(F*(v Ut) )t*
F*((vl Ut)t*) F*(v U) F’v IN

g*, t*
H:(N) ,-- H:(N r gNt),

Thus N gNt, N, gNt) is commutative.
Now assume that (G, Y, T) is locally n-coherent. Let N and U be as

above except that now N is n-coherent. I must show that this implies that
U is n-coherent.
Let teT. For geG set Wg F(N r gNt). Let veH:(Wg). Then

F*v ueH:(N gNt). By assumption g*(u gNt)t* u IN. Then
F*( ( Ut)t*] F*(v U), whence

( Ut)t*
Thus (Wg, U, Ut) is commutative for all g e G. Since dim Y -< n, a simple
inductive argument then shows that (LJ[Wlg A], U, Ut) is commutative
for all finite subsets A of G. Since

H:(U[Wg g e G]) ind lim H:(U[W g e A])

where ind lim is taken over the finite subsets of G, (U[W g e G], U, Ut) is
commutative. Now U[Wg lg e G] U n Ut. The proof is completed.

THEOREM 7. Let (Z, K) be a transformation group with locally compact
Hausdorff phase space K with dim K <- n 1; let (X, R) be the canonical

transformation group built on (Z, K) and R. Then X is locally compact
Hausdorff dim X <= n, and X, R) is locally n-coherent if and only if Z, K) is
locally (n 1)-coherent.

Proof. Let F be the canonical map of K X R onto X. If we identify
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K with F(K), then Z and K satisfy the assumptions of Theorem 2. Hence
F is a local homeomorphism, and X is locally compact Hausdorff by Theorem 5.
Let V be an open subset of K, J an open interval of R, n e Z, and r e R.

Then
(V X J) n n(V J)r (V n nV) X J (n - r - J)

and
H:(V X J) H:-I(V) (R) H(J),

with this latter isomorphism commuting with maps, show that (Z, K R, R)
is locally n-coherent if and only if (Z, K) is locally (n 1)-coherent.
Theorem 7 now follows from Theorem 6.

COROLLARY 1. Let (X, R) be minimal and locally n-coherent where X is
compact Hausdorff with dim X n; let K be a closed global section of (X, R)

He (Z) O.with respect to Z, such that is a local homeomorphism. Then ,,-1

Proof. By [6], X is locally connected; hence so is K. Since each com-
ponent of K yields a global section with the desired properties [12], we may
assume K connected.
Let (Z, K R, R) be the bitransformation group where n(k, r)

(nk, n r) (neZ, keK, reR), and let Y (K R)/Z. Then Y is
homeomorphic to X (Remark 5), and lr L with e L and r e R implies
r e Z, where L is the image of K 0 under the canonical map.

Let U be an open connected subset of X. Then the canonical map

H:(U) --* H:(Z)
is an isomorphism onto, and H:(X) 0 [6]. Let J (-1/4, ). Then
K J is homeomorphic to LJ, an open connected subset of Y. Hence
0 H:-I(K) H:-I(L). Then Y L L.(0, 1) is connected. The
exactness of the sequence

n--1 n--1He (Y)---,H (L)--H(Y L)
j
;He(Y)

He (L) 0 shows thattogether with the facts that j is an isomorphism and -1

H:-I(Y) 0. The proof is completed.

COROLLARY 2. Let (Z, K) be minimal, where K is a compact connected
(n 1)-dimensional manifold; let (X, R) be the canonical transformation
group built on (Z, K) and R. Then X is a compact n-dimensional manifold,
(X, R) is minimal, and X is orientable if and only if K is orientable and the
map lc -- lk ( e K) of K into K is orientation-preserving.

Proof. Theorem 5 implies that X is compact Hausdorff. Since is a
local homeomorphism, X is an n-dimensional manifold.

If we consider K as a subset of X, it is a global section of (X, R) with
respect to Z. Let xeX. Then xreK for some reR. Hence K c xR.
Thus X KR x’- and (X, R) is minimal.
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The manifold X is orientable if and only if X is locally n-coherent [6].
By Theorem 7, X is locally n-coherent if and only if K is locally (n 1)-
coherent. Finally K is locally (n 1)-coherent if and only if K is orientable
and Z acts trivially on H:-I(K) [6]. The proof is completed.
The remainder of this article is devoted to the construction of a compact

connected nonorientable manifold M and a homeomorphism f of M onto M
such that (f, M) is minimal. This result together with Corollary 2 above
allows one to construct a nonorientable manifold N together with an action
of R on N such that (N, R) is minimal.
The following notations will be used throughout the remainder of the paper"

(Z, K) is a minimal, distal [9] transformation group such that X is infinite
and compact Hausdorff. This implies in particular that if nx x for some
neZandxeX, thenn 0.
G will denote the topological group whose underlying space is R X C and

(r, a) (% t) (r + s, a + er) (r, s R, a, C) where C is the additive
group of complex numbers.

LEMMA 1. Let H [(m, n ir) m, n e Z, r eR]. Then H is a closed
subgroup of G and G/H [Hg g e G] is homeomorphic to the Klein bottle.

Proof. One verifies directly that H is a closed subgroup of G. Let F be
the canonical map of G onto G/H, and let

D= [(x, y + iO) x, y eR, 0_<x,y_< 1].

Then D is a closed subset of G, and F maps D onto G/H. An examination of
the equivalence relation induced by F and G/H on D shows that G/H is
indeed homeomorphic to the Klein bottle.

LEMMA 2. The transformation group (G/H, G) is distal.

Proof. Let Hag, -- Hc and Hbg, -- Hc where a, b, c, g e G. Then there
exist sequences (hn), (l)in H with h, ag, ----> c and 1, bg,, c. Then

ab e. Let

h, (p, q, + ir,)l- (j, k, + is,), ab-1 (t, u -5 iv)

where p, qn,j., keZ, s, r, t, u, veR. Then

ab

(p, + +, q, + ir, + (u + iv) exp (ip,) -5 (k, + is,) exp (v(p + t)).

Since p. + r + j, --+ 0 and pn, j, e Z, e Z. Hence exp (ri(p, + t)) 4-1,
and since

qn + u exp (rip,) -5 k, exp (vi(p, + 0 with

k exp (i(p, + t) Z, u e Z. Thus ab-1 e H and Ha Hb.
completed.

The proof is
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LEMMA 3. Let f be a continuous function from X into G, let ] be the map of
X X G/H into X X G/H such that ](x, Ha) (1 .x, Haf(x) (x e X, a e G).
Then ] is a homeomorphism onto, and

(x, Ha) (nx, Haf(x) .f( lx) f( (n 1)x) )f Ha)

-n)x, Ha(f( lx) )-1 (f( 2x) )-1 (f(-nx) )-1)
(xeX, aeG, neZ with n >- 1).

Proof. Let](x, Ha) ](y, Hb) withx, yeX, a, beG. Then lx ly,
whence x y. Also Hal(x) Hbf(y) whence Ha Hb. Thus ] is injec-
tive.

Let y eX, beG. Then set x (-1)y and a b(f(x))-1. Then
](x, Ha) (y, Hb ). Thus f is surjective. Since

]-l(x, Ha) (- 1)x, Hal(- lx)-1) (x e X, a e G),

f is a homeomorphism.
The remainder of Lemma 3 follows directly by induction.
Let C(X, G) denote the space of continuous functions from X to G provided

with the topology of uniform convergence. Let f eC(X, G). Then
(], X X G/H) will denote the transformation group determined by the
homeomorphism f.
LEMMA 4. Let f C(X, G). Then the transformation group (], X X G/H)

is distal.

Proof. Let ]n"(x, Ha) (z, Hc) and ]"(y, Hb) ---+ (z, Hc) for some
x, y, zeXanda, b, ceG. Thenn, x--z andn, y--z. Since (Z, X) is
distal, x y. Then HaEn" (x) -- Hc and HbE’" (x) --+ Hc where F (x)
is the appropriate element of G given by Lemma 3. Hence Ha Hb by
Lemma 2. The proof is completed.

For the remainder of the paper x0 will denote a fixed element of X. Let
f e C(X, G). Then 0(f) will denote the set [)(x0, H) n Z].

LEMMA 5. Let U be open in X, V open in G/H, and let

A ( U, V) [f f e C(X, G) with O(f) n U >< V 9].
Then A (U, V) is an open subset of C(X, G).

Proof. Let f e A U, V). Then there exists n e Z with ](x0, H) e U >< V;
i.e, nxo e U and HF’(Xo) V where F’(Xo) is givenby Lemma 3. If p e C(X, G)
is close to f, then P(x0), the corresponding product for p, is close to Fn(x0)
for fixed n. Hence p e A (U, V) if p is close to f.
The following lemmas are aimed at proving that A(U, V) is dense in

C(X, G).
Leta, b, eRwitha > 0 < b. Then

I(r,a) [t[teR, lr- < a],
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Sq(a, a) [3"]3" e C, 3" 5’1 -+- i3". and ]a.- 3"l < a,j 1, 2]

where a al + ia2,
S(a, a) [’ " eC, a 71 < a],

D(r, a; a, b) I(r, a) X Sq(a, b),

L(r, a; a, b) I(r, a) X S(a, b).

The proof of the following lemma is straightforward and is omitted.

LEMMA 6. 1. I(r, a) -4- I(s, b) I(r "4- s, a -4- b),
2. Sq(a, a) + Sq(, b) Sq(a -4- , a + b),
3. Sq(a, a) S(a, a),
4. S(a, a) Sq(a, a/%/),
5. D(r, a; a, b) L(r, a; a, b) D(r, a; a, b/%/-) where r, s, a, b e R,

a,eC, anda > 0 < b.

LEMMA 7. Let t, s, a, b e R, a e C, a, b > O. Then
1. (t, O)L(s, a; a, b) L(t "4- s, aet; a, b), and
2. L(s, a; a, b)(t, O) L(t -4- s, a; a, b).

Proof. 1. Let reR, eC, and let (r, f) eL(s, a; a,.b). Then
r-- s < aand[a- 1 < b. Also (t, 0)(r,) (tA- r,e’). Hence

it -4- s (t A- r)] < aandlae- e’ a 1 < b.
Now suppose (r, ) eL(t -4- s, ae’:; a, b). Then] (r t) s[ < a, and

]e-- al < b. Hence (r- t,/e-t) e L(s, a; a, b) and

(t, 0)(r t, fe-) (r, ).
Statement 2 is proved similarly.

LEMMA 8. Let t, s, a, b c e R with a, b, c > O, and let a, e C. Then
1. D(O, ; a, c).D(t, a; a, b) D(t, a "4- ; a, b + c).
2. L(s, ; a, b).L(t, a; a, b) D L(t -4- s, ae" "4- ; a, %/ b).

Proof. 1. LetteR, 3’eCwith (r, 3")eD(t, a + ; a, b + c). Then
r e I(t, a) and 3" e Sq(a -4- ; b -4- c). By Lemma 6,

3" 3"1 + 3"2 with 3"1 eSq(a, b), 3"eSq(f, c).
Then (0, 3"3)eD(0, f; a, c) and (r, 3"1)D(t, a; a, b), and

(0, 3".)(r, 3"1) (r, 3"1 + 3"2).
2. SetL1 L(s,;a,b),L (t,a;a,b). Then

L1 (s, 0).L(0, fe-a; a, b)

by Lemma 7. Thus L1 D (s, O).D(O, e-a; a, b/%/) by Lemma 6. Hence

L1.L (% 0)D(0,/e-’;a, b/%/)D(t, a; a, b/%/)
D (% O)D(t, a "4- e-’"; a, %/ b) D (% O)L(t, a "4- ge ;a, %/ b)

L(s -4- t, ae’" "4- ; a, %/ b)
by 1 above and Lemma 6.
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Statement 2 and induction on n yield the following.

COROLLAvl. Let L L(t, a; a, b),j 1, 2 L L1.L L
ThenL L(t, a;a, (%/)’b) where t, a, beRwitha > 0 < band

a e C, j 1,

LEMMA 9. Let b > 1, a > O, e R, e C. Then (n t, ") e HL(t, ; a, b)
for all n Z, , e C.

Proof. Letv+iu=-- e-aandv mWywithmeZandlyl < 1.
Set e-y + . Then (t, )eL(t, ; a, b), (n,m- iu) eH, and

(n, m + iu)(t, ) (n W t, m + iu -(n - t, ra + y - iu - e’a) (n - t, /).

LEMMA 10. Let L L(t, ai a, b), ti, a, b e R, a > 0 < b, a e C,
j= 1, let na > l and [%/)b > 1. Then G H.L L ifp > n - 2.

Proof. Let (r, /)eG. Set z.,’= t. Then

L L_,,_ L(t, a; a, c)

where a e C and c > 1 by the corollary to Lemma 8.
Since na > 1, there exists (s, ) eL_, L such that s + r - m

with meZ (use 1 of Lemma 6). Let # - e(-). Then

(t m, ) e HL(t, a; a, c)

byLemma9. Finally (r, .) (t m, #)(s, ) eHL L.
LEMMA 11. Let U be open in X, V open in G/H,

A(U, V) If[ 0(f)n U X Y 9].

Then A U, V) is dense in C(X, G).

Proof. Let feC(X, G] and > 0. We must find ueC(X, G) with
u e A (U, V) and d(u(x), f(x)) < (x X).

Since X is compact, so is f(X). Hence there exist finitely many
ae C, j 1, n and a > 0 < b such that (J.L(t, a a, b) f(X)
and such that the diameter of L(t., a. a, b) < /2.

Let ma > 1 and (/)b) 1. Since (Z, X) is minimal, there exists
peZwithp- 1) roW2andpx0eU.

Let L be that one of the above L’s which contains f(jxo), j O, p 1.
Then HLo L_I G by Lemma 10. Since G acts transitively on G/H,
there existsg e G with Hg e V. Let l. e L,j 0, p i with lo l_ eHg.
Then since the pohts jxo, j 0, ..., p 1 are all distinct, there exists
u C(X, G) with d(u(x),f(x)) < (x e X) and u(jx) l ,j O, p 1.
Then

(e(Xo, H) (pxo, Su(x)u( lx) u( (p 1)x) (pxo, Hg) e U X V;

i.e., u e A U, V).
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Now suppose further that X is second countable. Then there exists
f e gl [A U, V) where U runs over a base for X and V runs over a base for G].
This implies that the orbit of (x0, H) under the group generated by ] is
dense. Since (], X G/H) is distal, every orbit is dense [7], i.e., (], X G/H)
is minimal.

If we take X to be the circle group and 1 .x to be a rotation of x through
one radian (x e X), X satisfies all the conditions imposed. In this way we
have produced a compact connected nonorientable manifold X G/H and
a homeomorphism ] of X G/H onto itself such that (], X G/H) is
minimal and distal.
Remar 7. If X is taken to be the circle and 1 .x to be a rotation of x

through one radian (x e X), the resulting phase space of the canonical trans-
formation group built on (], X G/H) is homeomorphic to the cartesian
product of the torus with the Klein bottle.

Proof. It suffices to show that ] is isotopic to the identity. To this end
identify X with the set of complex numbers of modulus 1. Then the map
x --, 1 .x is just x --. e .x (x e X) (complex multiplication).

Let F(x, Ha, t) it(e x, Ha(tfx)) (x e X, a e G, e [0, 1]). Then F is the
desired isotopy.
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