INEQUALITIES FOR SUBPERMANENTS!

BY?
MARVIN Marcus AND WiLLiaM R. GorponN

l. Introduction and Statement of Results

If A is an r-square complex matrix then the permanent of A is defined by

per (4) = Zns, H2=1 Qg (3)

where the summation extends over the whole symmetric group S, of degree
r. This function has considerable significance in certain combinatorial prob-
lems [7, p. 24]. The problem of finding relationships between rather awkward
combinatorial matrix functions such as the permanent, and the more classical
algebraic invariants is one of considerable interest and importance.

In a paper in the Illinois Journal in 1957 [3] the first of the present authors
obtained an upper bound for the sum of the squares of all (}')* r-square sub-
determinants of an n-square matrix A. This work was very recently gen-
eralized and improved in an interesting paper by Ryff [6]. In the present
paper we turn our attention to the substantially more difficult problem of
obtaining a significant upper bound for the sum of the squares of the absolute
values of all (}')* r-square subpermanents of an n-square complex matrix A.
We then apply our main result to the case of an incidence matrix for a (v, k, \)
configuration (Theorem 3).

We shall use the following notation throughout the paper. If A has real
eigenvalues, then M(A4) = N(4) = -+ = M(A) will denote these. The
singular values of 4 (defined to be the numbers \J*(4*4) =2 0,7 = 1,2, --- ,n)
will be designated by a;(A) = a(4) = --+ = a.(4). If1 = r £ n, then
Q.. will denote the set of N = (') strictly increasing sequences w,
1S w <w < - < w £ n; G,pis the set of ("77") non-decreasing se-
quencesw, ] £ w; T wy £ -+ = w, £ n. If aand B are in G, then Al | 8]
is the r-square matrix whose ¢, j entry is Gawp;, ¢ J = 1, 2,---, 7.
Ifai =2 a2 --- = a, = 0is any set of n non-negative numbers then there
are ("*77') homogeneous products a, = | [i=i @w,, w e G,n. Now, although
ai = a} 'as are the two largest of these products, it is not true generally that
the ordering according to magnitude and the lexicographic ordering of the
0, w €@, , coincide (e.g. al “a3 is not necessarily smaller than ai 'a;). We
let L.(a;, as, -+, a,) designate the sum of the largest N = () of the
(™*7™*) homogeneous products a, .
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negative,’”’ read ‘“The matrix PPT = H is nonnegative.”’
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If 21,22, -+ , 2, are complex numbers of modulus 1, then a matrix
A = Pdiag (21,22, -, 2a),

where P is a permutation matrix, is called a generalized permutation matriz.
Our main result is

TueorEM 1. If1 < r < n and A is an n-square complex matrix, then
8:(A) = 2asearn | per Ala [ 8] [*
= LT(O‘%(A% ag(A), ) ai(A))

If r = 1 equality holds in (1). If r > 1 and A has no zero row (or no zero
column), then equality holds in (1) if and only if A = 6R where § > 0 and R s
a generalized permutation matriz.

(1)

CoROLLARY 1. Under the same hypotheses, if N = (7) then
si(A) £ ai’(4) + (N — 1)ai"V(4)as(4).
For r > 1 the equality statement is the same as itn Theorem 1.

We are interested in applying these results to doubly stochastic matrices
A = (aq): i.e. those satisfying

a; = 0, t,J=12 - ,m,
Doimayg =1, =12 -, n,
Dortaag =1, 1=1,2, -+, n.
TaroreM 2. If A is n-square doubly stochastic and N = (1), then
(2) s(A) £ 14 (N — Daz(4).

Equality holds in (2) for r > 1 ¢f and only if A is a permulation matriz.
We remark that for a stochastic matrix A, | per Ale|B]]| = 1, @ and 8

in Q,, . However, this estimate yields only the trivial inequality s,(4) < N
whereas (2) has the immediate

CoRroLLARY 2. If A is an n-square doubly stochastic matriz, then
(3) s:(A) £ N.

Equality holds in (3) for r = 1 ¢f and only if A is a permutalion matrix.

The incidence matrix of a (v, k, N) configuration [7, p. 102] is v-square normal
and satisfies AA™ = A*A = (k — \)I + N\ where I is the v-square identity
matrix and J is the v-square matrix all of whose entries are 1. The numbers v,
k and X are positive integers and satisfy 0 < X\ < k& < v,and (k — \) = k* — \;
k7'A is doubly stochastic and ai(A) = K, a3(4) =k — N\, j =2, -+, n.
Directly applying Corollary 1 we have
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TarorEM 3. If A 1s the incidence matriz of a (v, k, N) configuration, then
s;(A) £ 7 4 () — Dk — ).
Equality holds for r = 1.  The tnequality vs always strict for r > 1.

ll. Proofs

Let P,(A) denote the (**77")-square 7" induced matrix of A [4]: recall that
if @ and B are in @, ordered lexicographically, then the «, 8 entry of P.(A)
is (per Ala | 8])/(u(e)u(B))"?, where u(a) is the product of the factorials of
the multiplicities of the distinet integers in «, e.g. u(1, 1, 1, 3, 3, 4, 4, 4) =
312131 Let @.(A) be the N-square principal submatrix of P,(4) whose
a, B entry, fora, 8in @, , ordered lexicographically, is (P.(A4 ) )as = per Al | 8].
Observe that

si(A) = trace ((Q(4))*Q.(4)) = | Q.(4) |,

where || || indicates the Luclidean norm. The idea of the proof of the in-
equality part of Theorem 1 is to obtain an upper bound on the Euclidean norm
of Q.(A) as a principal submatrix of P,(A).

The discussion of the case of equality is, as usual, difficult and requires the
use of the symmetric product of vectors. We temporarily defer this un-
pleasant business.

We require the elementary

LemMA 1. Let Y be an m-square complex matriz and let X be a rank q, k-square
principal submatriz of Y. Then

(4) X" = 2iaai(Y) £ 2 haai(Y).

If

IX P = 2iaai(Y)

then there exisls an m-square permutation matric Q such that
(5) Y = QX + W)e
where W is (m — k)-square.

Proof. Let X = (x4), Y = (y;) and let (41, %, -+, %) € Qi be the
sequence for which x,, = v, , 8,0 = 1,2, --- , k. Set X; = PYP, where P

is the m-square projection matrix whose 4, , ¢, entryis 1, s = 1,2, --- | k, and
whose remaining entries are 0. Then clearly

IX P = I X0 | = trace (X3X5).
Now, by an inequality due to A. Horn [2]
[ ei(X0) = [TImei(PYP)
< 12 0i(P)oi(Y) = [I#10(Y), p=1,2,---,q.
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(The inequality [[?~i a;(AB) = []%1 @i(A)a;(B) is proved first for p = 1,
(the Cauchy-Schwarz inequality ), and then for p > 1 by applying the p = 1
case to the compound matrix of AB [8].)

Thus
Z;;l IOg aj(Xl) = Zg;l 10g ai(Y)) p=12---,4q,

and by applying a lemma of G. Pélya [5], using the convex non-decreasing
function ¢(t) = ¢, we have

> tae(log a;(X1)) £ Dt e(log ai(Y));

X=X’ = 2Dlai(Xy) £ 2imal(Y) £ 25 ad(Y),

the inequality (4).
Suppose || X ||” = 2 %=1 o3(Y) and choose a permutation matrix Q such that

X U
Y=QT< )Q.
vV w

X*X+ V'V XU+ VW
Y*Yy = Qr « N .
U*X + W'V U*U + W*'W,
A result of K. Fan [1] implies that
25 e(Y) = 25 n(Y'Y)
is at least as great as the sum of any & main diagonal elements of Y*Y. Thus
X 4+ | VI = trace (X*X + V*V) = 25aa5(Y) = [ X},

and hence V = 0. Similarly, by examining YY™* we conclude that U = 0
and Y has the form (5).

or

Then

LemMma 2. If A is an n-square complex matriz then
(6) s:(A) = Li(ai(4), 03(4), -+, an(4)).
If equality holds in (6), then
(Pr(A))as = per Ala | 81/ (n(e)n(8))" = 0
tf ceQrnand BeCGrn, BeQrnorif aeGrn, agQrnand BeQrn.

Proof. We remark that for r = 1 the condition of equality is vacuous and
(6) is always equality. The matrix P.(A) is a multiplicative function of A
and the characteristic roots of P,(4) are the ("*7™') homogeneous products
of degree r in the characteristic roots of A. Thus

(Pr(A))*P,(A) = P.(A")P.(A) = P,(A*A)

and the singular values of P,.(A) are the homogeneous products of degree r in
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the singular values of A. It follows that the sum of the squares of the largest
N singular values of P,(4) is just L,(a3(4), a3(A), -+, a%(4)). Thus, if
we take ¥ = P,(A4), X = Q,(A), and k = N in Lemma 1, then we have

s(A) = Xaspea,., | per Ala|p] [*
[ @A) |* £ Li(ai(A), as(4), -+, an(4)).

This proves (6). If equality holds in (6), then by Lemma 1 we know that
P,(A) is zero in the rows (columns) in which Q,(A) lies, outside the columns
(rows) in which @,(A4) lies. In other words, (P,(4))as = 0 if @ €@,
and B¢Q,,,orif a¢Q,,and BeQ,,. But

(Pr(A))ap = per Ala| B/ (u(a)n(8)™,

completing the proof of the lemma.
To complete our arguments we need the idea of the symmetric product of

vectors. A coordinate definition of this is sufficient for our purpose.
Let

X, = (.’131:1,113,'2, ,x;,,) and let X = (x,-j), 1= 1,2, v
Jj=12,-

Then 2;:x5: - -+ :z,, the symmetric product of 21, 22, « -« , x, , is defined to be
the (**77")-vector whose o™ component, « ¢ G, ordered lexicographically, is

per X[1,2, -+, r|al/(r! u(a))"™

We remark that z;:x.: - - 2, is symmetric in the z;, i.e. for each permuta-
tion o€ S, ,

Lo(t) s Za(@)s*** s Loy = L1:T20 1%y

If (u, v) = D7 ub; denotes the usual inner product of two vectors
u= (U, Uz, * "y Um), ¥ = (U1, V2, *++ ,Um), then it is known [4] that

1
(7 (@ii@ps oo e, paiget -o o tye) = per (25, 95)),
and moreover
P(A)(z1ime: - ix,) = (Azi)i(Axe): - (Ax,).

Letes,e, -+, e, betheunitn-vectors, e; = (8i1,0i2, +++,0m),¢ = 1,2, -
Then from (7), the vectors (€a,:€a,: - €a,)/(u(a)/r ')1/2 are the unit (”+"'1)
vectors. It is easy to see that

(Vu(@)u®B)/r1)(Pr(A))as

(Pr(A)es e, i€, 5 €ayi€agt® " t€a,)

It

(8) (Aeg,:Aeg,: -+t Aep, , €ayilagt "+ €a,)
= (AP AP AP oy gyt ies,)

where A is the ¢ column of A. According to Lemma 2, if equality holds
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in (6) then
(9) (ABV:AC AP gt ten,) = 0
for all Be @, , and all ® ¢ Q.
LEmma 3. Assumer > 1. Ifxi, 2, + -+, T, are non-zero n-vectors and
(g, Tpy ++ 1%, 5 €ayi€ay " €a,) = 0

for BeQ.n and o ¢Q, . then x, = 2z, e,y Where c €S, and 21,25, +++ , 2, are
complex numbers.

Proof. Weshow first that if y; = (ya, ¥, -+, Yin), ¢ = 1,2, -+, 7, are
non-zero vectors and (y1iyel: -« ¥Yr, €a;€ayi- " i€a,) = 0 for ag@,,, then
fors=1, -+ ,n yisyss=0fori #£4,275=12 ---,r. LetY = (yy),

i=12--,rj=12 - n IfY® # 0we canassume by the symmetry
of the symmetric produet that y;; % 0,7 = 1,2, -+ , p, s = 0,2 = p + 1,
p + 2, ---,r. Since the sequence (s, s, « -+, s) is notin @,,, it follows that

(Yri9a e+ Ur, €ois e+ 26) = [[if=1yis = 0

and hence p < r. It is shown in [4] that if yp41:ypset -+ -y, = O then some
y:=0,p+ 1 =t =r. Hence there is at least one non-decreasing sequence
Jt £J2 £ -++ = jrpsuch that

per Y[p+1,17+2, ""r|j17j27 "':jr—p] # 0.

Consider b = (y1:yet- " Yr, €65 - i6si€5€5,% - - iej,_,) Where there are p
occurrences of e;. If p > 1then (s, 8, -+, 8 J1,J2, *** , Jrp) i8S DOt in Q, ,
and hence b = 0. But

—yls Yis M Yi1s : ]
: . *
[
1 Yps Yps Yps {
b= = per | —--=————mmmmme |-
r 0 0 0 |
: : }Y[b+.1,~-,r|j1,---,jr-p]
[0 0 0 i

]

=1

1[4 . .
%(Hy“) per Y[p+ 1’ "'77".71’ "').71""111 = 0.

Thus p = 1 and the above assertion is proved.

To complete the proof of the lemma, let X be the n-square matrix (z,;)
where 2; = (%, %, -, Tm). Now by the above, X has at most one
non-zero entry init, s = 1,2, --- ,n. Thus X hasat most n non-zero entries
in it. On the other hand, if X were to have fewer than » non-zero entries
then some row of X would have to be 0, i.e. some z; = 0. Thus X has pre-
cisely n non-zero entries, one in each column and one in each row. This
proves the lemma.
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To prove Theorem 1 we argue as follows. Lemma 2 gives us the inequality.
To discuss equality we note from (9) and Lemma 3 that
A = M diag (21,22, -, 2s)

where M is a permutation matrix and 2z;, 22, + -, 2, are non-zero complex
numbers. The singular values of A are clearly |z |, [ 22|, -+ , | 2» |, and thus

L,-(OI%CA), a§<A), ) ai(A)) = LT(I 21 {27 I22 l27 ) lzﬂ |2)
On the other hand it is easy to compute that
ST(A) = Za-ﬂeQr.n l per Ala I 5]'2 = ET([ 2 |27 I 22 |2’ Tt | 2n |2)’

where E, is the 7 elementary symmetric function of the indicated numbers.
Thus, in the case of equality

(10) ST(A) = Lr(I21 12’ Izl [2> B} Izn lz) = Ef(lzg |2,|22 |27 ] Iz" |2)
LEMMa 4. Ifar Z a2 2 - = a, > 0andr > 1 then
Er(aI, az, "';an) = Lr(ala az,"',an) 'ifand‘)nlyif Gy = *+* = Q.

Proof. Suppose a; > a1 and equality holds. Then

E(ar, -+, 0n) = ok e Ersay, - ) Ghor, Gryz, -+ 0, @)
4+ (ar + a1)Era(@r, v 5 Ghor,y Grya, -0y Qo)
+ E(ar, *c, Qeo1y Grya, ** 0, Qn)
< aiEM(ax, e @1, Gpg2, ttty Gn)
+ (o + ) Era(ar, o+, G, Gryz, 0, Gn)
+ E(ar, -y Gre1, Gryay 00y Qn).

This last expression is a sum of N homogeneous products of degree r in
ay, -+, a, and hence is no greater than L,(a;, @2, -+, @,). This contra-
diction completes the proof.

From (10) and Lemma 4 we conclude in the case of equality in Theorem 1
that 8 = |2:1|° = -+ = | 2. |" and hence

A = M diag (&, €™, - -+, &™), O;real, v = 1,2, ---, n;

thus A = 8R where R is a generalized permutation matrix. Conversely if
A = R it follows immediately that the equality holds in (1). This proves
Theorem 1.

Corollary 1 is an immediate consequence of

Lr(al, ~.-,an) é a;+ (N_ l)arlaz’ alzaf(A),i= 1, oo ’n.

If A is doubly stochastic no row or column is 0 and moreover a;(4) = 1.
Thus the inequality (2) follows from Corollary 1. The only doubly sto-
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chastic generalized permutation matrices are the permutation matrices and
hence the case of equality in Theorem 2 follows. Corollary 2 follows similarly.
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