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1. Introduction

In series of recent ppers Browder [1], [2], [3], [5] and Minty [13], [14] (see
also Vainberg and Kachurovsky [22] and Kachurovsky [8]) hve developed
the theory of nonlinear functional equations Pu f in Hilbert and reflexive
Banch spaces involving monotone operators P satisfying certain very mild
continuity conditions which guarantees the existence and the uniqueness of
the solution for every f in a given space. In a number of papers Browder uses
then this theory in the investigation of nonlinear elliptic and parabolic boundary
wlue problems. In [23] Zarntonello derived similar results for continuous
bounded nonlinear operators P in Hilbert space H which satisfy in H the
weaker condition

(i) I(Pu- u- >= c u- > 0.

This result was in turn considerably extended and generalized by Browder
[4], [6] to operators P in reflexive Banach spaces with P satisfying much weaker
conditions.

In [16] the author developed a procedure for the construction of solvable
extensions L0 for the so called non-K-p.d. densely defined unbounded linear
operators L such that L0 D L and L0 has a bounded inverse defined on M1 of H.
The purpose of Section 3 of this paper is to extend the above construction to

densely defined nonlinear operators in tIilbert space. Our main result of this
section (Theorem 1 below) depends significantly on the recent theorem of
Browder [4]. In this section we also consider the problem, though from a
different point of view, discussed by Kato [9] and Browder [5].
While in Section 3 we consider the existence and the uniqueness of ordinary

or generalized solutions of nonlinear equations, in Sections 4 and 5 we con-
sider the problem of actually obtaining these solutions or their approximations.
Thus in Section 4 we prove the convergence of a simple iterative method for
the solution of strongly H0-monotonic operator equations. For potential
operator equations similar procedure was recently investigated by Vainberg
[21] and Simeonov [19]. The former author also studies iterative procedures
for the solution of equations in Banach spaces with everywhere defined mono-
tone operators. A similar iterative scheme with variable parameters was
proposed by Zarantonello [23].
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For the precise definitions of the concepts mentioned in the introduction and the

statements of the corresponding results see Sections 2 and 3.
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In Section 5 we discuss the applicability of the projective method, which is
practically realized by the method of moments, for the approximate solution
of nonlinear operator equations satisfying our general conditions. Similar
results or Ritz method in the solution of essentially potential operator equa-
tions were recently derived by Mikhlin [15], Langenbach [11], Hagen-Torn and
Mikhlin [7], and others [12], [10]. In our investigation of the projection
method we follow the argument of Browder [2].

In Section 6 we apply our results of Sections 3 and 4 to the investigation
and the approximate iterative solution of a nonlinear elliptic boundary value
problem of second order.

2. Preliminaries

Let H denote a complex Hilbert space with the inner produc and
norm II. A linear operator T defined on a dense domain Dr /will be
called K-positive definite (K-p.d.) if there is a closeable linear operator K with
D

_
Dr mapping Dr onto a dense subset KDr of H and two constants a > 0

and a > 0 such that for all u e Dr
(1) Tu, Ku) >_ a Ku < a( Tu, Ku).

It is known [16], [17] that T so defined has a bounded inverse T-, is K-sym-
metric, i.e.,

(2) (Tu, Kv) (Ku, Tv), u, v e Dr,

and is closeable; furthermore, if H0 denotes the completion of Dr in themetric

(3) [u, v] Tu, Kv), ul [u,

then Ho can be regarded as a subset of H, K can be extended to a bounded
operator K0 (as a mapping of all of H0 into H) so that K c K0 c K, where K
is the closure of K in H, and T has a closed K0-p.d. and Ko-symmetric exten-
sion To such that To T and To has a bounded inverse T-1 defined on the
range Rr0 H. Moreover, the inequality (1) remains valid for all u e H0 in
the form

(4)

In [17] the author has extended the above results to unbounded linear non-
K-p.d. operators by proving that if L is a linear operator defined on D D
and such that for all u and v in D

(5) I(Lu, Ku)] > v u ’ . > 0

(6) I(nu, gv)l <_ w. lull [, > o

For examples and theory of bounded and unbounded K-p. d. operators in H see
Petryshyn [16], [17]. The results obtained below are also valid for real H provided T is
also assumed to be K-symmetric.
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then L has a solvable extension L0 such that L0 is closed, L0 L, L0 has a
bounded inverse L-1 defined on RL0 H, and L0 has the representation
Lo To Wo, where W0 is a certain extension of T-IL in H0.

3. Extensions of nonlinear operators
In this section we extend the above construction of solvable.extensions of

linear non-K-p.d, operators to densely defined nonlinear operators. At the
same time, we extend to the operators considered here some of the results in-
volving the notions of monotone, demicontinous, locally bounded, and demi-
closed nonlinear operators introduced nd thoroughly studied by Browder,
Minty, Zarantonello, and Kato.

Let P be a nonlinear operator transforming a dense domain De c H into
H and let T be a linear K-p.d. operator defined on Dr De. In analogy to
the concepts introduced by the above authors we say that P is Ho-demicon-
tinuous if {u} c De, u e De, and u -- u strongly in Ho imply Pun --> Pu
weakly in H; P is Ho-locally bounded if PUniS bounded in H whenever u} c De
is a Cauchy sequence in Ho P is Ho-demiclosed if {u/ c De, u. --+ u strongly
in Ho, and Pu, --+ g weakly in H imply u e De and Pu g; P is strongly Ho-
monotonic on De if for all u and v in De
(7) Re (Pu Pv, K(u v) >- " u v [, "I > O.

Evidently, if K T I on De, then our definitions are identical withthose
considered in [1]-[6], [13], [9], [23].

THEOREM 1. Let T be K-p.d. and P be a nonlinear mapping of De Dr
If for some positive constant v 0

I(Pu Pv, K(u v))[ > v]u v ]2, u, v e De

into H.

(s)

and

(9) Pu, Pu, Ko h) 0 n, m ---+ h Ho
whenever u,} De is a Cauchy sequence in Ho then P has an extension Po such
that Po P, Po is a one-to-one mapping of Deo onto H, Po is given by

(10) P0 To W0,
where Wo is a certain extension of TIp in Ho, and Po is Ho-demiclosed. Fur-
thermore, Po is unique.

Proof. Let To be the K0-p.d. extension of T constructed by Theorem 1 in
[17] and let W be an operator in Ho with domain Dw De Ho and range
Rw Ho defined by W =- T-P. Note that, in view of (9), (3), and the
definition of W,

(90) [Wun Wu,, h] 0 (n, m -- ), h e Ho,

whenever u um -- 0 (n, m ) with u e De, i.e., W maps every
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strongly Cauchy sequence {u} (cDp) in H0 into a weakly Cauchy sequence
{Wu,} in H0.

Let us now extend W by weak closure to l?d mapping H0 into H0 as follows"
if u e Dw, then we put l?Vu Wu; if u e/)w Ho, then there is a sequence
{u} in D such that u --+ u strongly in H0 and, consequently, {Wu} is a
weakly convergent sequence in Ho. Since H0 is weakly complete, there is a
unique element u* in Ho such that u* weak lim Wu,. Note that any two
sequences {u} and {u} in De with the same limit u in H0 must have
weak lira. Wu’ weak lim Wu: since otherwise the sequence of Wu’s would
have no limit. Thus, u* depends only on u. We may therefore take
Wu u* weak lim Wu. (No contradiction with the previous definition
of W onD is possible for, if u e D, we may take u u for each n.)
Thus it follows from the construction of W that it is demicontinuous map-

ping of H0 into H0. Furthermore, W is such that for all u and v in Ho.

(11) [Wu Wv, u v] V Lu v [.
To see this, let u and v be any elements in Ho and {u} and v} be sequences in
Dsothat]u-u]0and]v- v0, asn . Then, bydemicon-
tinuity of W in Ho, {Wu Wv} Wu Wv weakly in Ho. Hence, the
passage to the limit in the inequality

[[u v, u v]] ,u v

(which, in view of (8), is valid for all elements in D) yields the validity of
(11) for all u and v in Ho.
Since W is a demicontinuous mapping of Ho into Ho satisfying the inequality

(11), Browder’s Theorem [4] implies that W maps Ho onto Ho and has a con-
tinuous inverse defined on Ho Ro
Thus, we may consider a mapping Wo in Ho such that W Wo W with

R Dro. If we now define Po on De DobyPo ToWo, thenit is
easy to see that Po P and that Po is a one-to-one mapping of De onto H.
Indeed, for u e De we have Wou Wu TPu and, hence, Po u To Wo u
Pu, i.e., Po P; furthermore, since Ro Dro and To maps Ro onto H, Po
mps De onto H; finally if Po u f and Po v f, then the definition of Po and
11 imply that

0 I(Po u Po v, Ko(u v))[ I[W0 u W0 v, u vii , [u v [2
from which we derive the equality u v.
To prove the other assertion of Theorem 1 note that if {u} De with

u Uo strongly in H0 and P0 u f weakly in H, then by demicontinuity of
W in Ho, the continuity of T in H, and the structure of Po we find that

weakly in Ho and
TTPo u Wo u
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weakly in H, i.e., [I?Vun, h] -- [ldu0, h] for every h in H0 and (P0 u, z) -- (f, z)
for every z in H and, in particular, for every z Kh with h e De. Since
I?V Wo W on D and Po To Wo we find that [l?VUo, h] [To-f, h] for
every h De. Since De is dense in Ho, l?VUo -To f. Hence l?Vuo e Dro i.e.

uoeD De and Pouo ToWouo =f;

hence, Po is Ho-demiclosed.
Finally, to prove the uniqueness of Po note first that (Po u, Ko v) is con-

tinuous in u on Ho for each fixed v in Ho. This follows from the demicon-
tinuity of I?V and the equation (Po u, Ko v) [I?Vu, v] which holds for each u in
De and v in H0. Since the latter equation would be valid for any P0 satisfying
the conditions of our Theorem 1, it is easy to verify that these conditions
determine P0 uniquely.

COROLLARY 1. If T is K-p.d. and P T S is such that Ds

_
Dr,

(8) I(Pu- Pv, K(u-- v))l >- wlu-- v], w> O, u, veDr
and

(91) (SUn Su,, Ko h) ----> 0 (n, m ---> ), h e Uo
whenever {un}, u e De, is a Cauchy sequence in Ho then

(101) Po To(I -- Ro),

where Ro is a certain extension of R T-IS in Ho.

Proof. The conditions (81) and (91) imply that P T -- S satisfies (8) and
(9) with v vl. Hence, by Theorem 1, P has a solvable extension
Po To Wo, where Wo W TIp is the restriction of W such that
Ro Dro. Since

W TI(T + S) TIT + T-1S I - R

on Dr and, by (91), the operator R TIS (defined on Dr c H0) has the
demicontinuous extension/ I?V I with R0 I W0. This implies the
validity of (101).

In applications, as for example in elastico-plasticity, it often happens that
instead of (9) it is easier to verify a stronger condition for which the assertions
of Theorem 1 remain valid. In fact, the following corollary is an immediate
consequence of Theorem 1.

COROLLARY 2. Let T be K-p.d. and P be a nonlinear mapping of De Dr
into H such that

(82) I(Pu Pv, g(u v))l >- n u- v [2, v > O, u, v eDe,

(92) I(Pu-- Pv, goh)] <- Olu-- v Ilhl, 0 > O,u, veDa,, heDro
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then P has an Ho-demiclosed extension Po such that Po P, Po is a one-to-one
mapping of Dvo onto H, and

(10) P0 TO W0,
where Wo is a certain extension of W TP in Ho
Remark 1. Let us remark that in view of our stronger condition (9:) the

operator W TP satisfies actually the Lipschitzian condition on the subset
Dr of H0. Indeed, if u and v are arbitrary elements of Dr and h Wu Wv,
then by (9)

h [ [Wu Wv, h] Pu By, gh) < O u v [I h

and, consequently, W satisfies the Lipschitz condition

IW - <  lu- 1.
ttence there exists a unique Lipschitzian extension lr of W to all of H0 such
that Wu Wu for u e Dr and

IIVu l/v <_ Olu- v and I[lru rv, u- v][ > lu- vl
for all t, v e H0. In this case we can apply the result of Zarantonello [23] to
show that W maps H0 onto H0 and thus use the mapping W in our con-
struction of P0. This we will do in the next two corollaries.

Let us also remark that in this case it is not necessary for the restrictive con-
dition (9.) to hold for all h e Dr Indeed, it follows from the proof of the
Lipschitzian property of W that it is sufficient for (9.) to hold only for all
h D0 of the form h T (Wu Wv) with u, v Dr0
The following two corollaries determine the useful conditions under which

Dvo Dro.
COlOAY 3. If T is K-p.d. and P T + S is such that

(8a) [(Pu Pv, g(u v) )! > v u v [, > O, u, v eDe
(9a) Su Sv <- O u v !, O > O, u, v eDe
then Dvo Dro and

(i0) P0 To + S0,

where So is an extension of S in Ho

Proof. It is easy to prove that, in view of (9a), P T + S satisfies also the
condition (9) with 0 1 + Ov/a.. Hence P0 T0(I + No), where No is
the restriction of (TS) T with being extension of S to H0
(which, in view of (9a), certainly exists). Now, lu e Dr0 if and only if
u D This follows from the fact that I I + TI and TuDofor
all u in Ho. Thus, Dwo Dro hence Dvo Do and Po To + So, where
we have put So To No.
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COROLLARY 4. Let T be K-p.d. and K be closed in DK Dr If P satisfies
the conditions of Corollary 2 (or even the weaker conditions of Theorem 1), then
Po P, i.e., P is a one-to-one mapping of De onto H.

Proof. In view of our additional hypothesis on K, Theorem 2 in [17]
implies that To T, Ko K, andH0 Dr. Hencel W0 W (or
I?V W0 W) and, by Corollary 2 (or by Theorem 1), P0 P.

Remark 2. If P L, where L is a linear mapping of DL (=Dr) into H,
then the conditions and the assertions of Corollaries 2, 3, and 4 reduce to the
corresponding conditions and assertions of Theorem 3, Corollary 4, and
Theorem 4 in [17], respectively. The assertion of Corollary 1 with the
stronger condition[(Su- Sv, Ko h)[ _< thlu vii h reduces to Corollary 3
in [17].
The following theorem and corollary establish a two-way connection between

the range and the H0-demicontinuity of an H0-1ocally bounded operator satis-
fying the condition (8).

THEOREM 2. Let T be K-p.d., K be closed with D: Dr, and P satisfy the
inequality (8). If there is a cons rant M 0 such that for every Cauchy sequence
u} in Ho and every h Ho
(12) [(Pu, Koh) <_ M Ih [,
then P maps De onto H if and only if P is Ho.demicontinuus.

Proof. (Necessity). Let us first note that, in view of our conditions onK,
Theorem 2 in [17] implies that To T, Ko K, and Ho Dr. Let W be the
operator in Ho defined by W T-1P.

If we assume that P maps De (=Ho) onto H, then W maps H0 onto Ho since
T-1 maps H onto H0. Let {u} be a Cauchy sequence in H0. Since Ho is
complete, there is Uo e H0 such that u. -- Uo strongly in Ho and, in view of (12),
[[Wu, h] <_ M Ih for every hell0. Hence {Wu} is itself abounded
sequence in H0. Since W maps every Cauchy sequence {u} in H0 into a
bounded sequence {Wu,} in Ho and the latter is weakly precompact in H0, it
suffices to show that there is a subsequence of {Wu,} converging weakly to
Wuo in Ho. Now, let {Wu,k} be a subsequence of {Wu,} which converges
weakly in Ho to some element, say p, in Ho. Hence, in view of (8) and the
fact that De Ho, for every v in Ho we have the inequality

(13) I[Wu,k Wv, u, v] > v lu, v .
Passing to the lumit in (13) as nk -+ we get the inequality

(13o) [[p Wv, Uo v][

_
n uo v 1

valid for each v in H0. Applying the Schwarz inequality to (130) we get
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This shows that for each v in H0 we have the inequality Uo v <_ P Wv].
Since R H0, there exists a yeD H0 such that p Wy and

Uo v <_ [Wy Wv for each v e S0. If we take v y, then the last in-
equality implies that u0 y and p Wuo. Thus Wu, - Wuo weakly in H0,
whenever u. -- u0 strongly in H0. This and the definition of W and (3)
imply that Pu -+ Puo weakly in H, i.e., P is H0-demicontinuous.

(Suciency]. Suppose P is H0-demicontinuous. Then for every z e H,
(Pu,,, z) ---> (Puo, z). Since K has a bounded inverse defined on all of H, for
every z e H there is a unique h eD H0 such that z Kh. Defining W by
W T-P we find that W maps H0 into H0 and that

[Wu h] (Pu z) - (Puo, z) [Wuo, h]

for every h in H0 whenever u --+ u0 strongly in H0. Hence W is a demicon-
tinuous mapping of H0 into H0 such that

[Wu u > u

for all u and v in H0. Thus, by Browder’s Theorem [4], W maps H0 onto
H0 Dr. Since T maps Dr onto H, this implies that TW P maps De onto
H and completes the proof of Theorem 2.

COROLLARY 5. If P is a locally bounded mapping of H into H such that

(14) I(Pu Pv, u v)l >_ c u vii , u, v eH,

then P is onto H if and only if P is demicontinuous.

Proof. Corollary 5 is a special case of Theorem 2 if in it we take T K I.

Strongly Ho-monotonic operators. Let us observe in passing that the con-
dition (8) of Theorem 1 or (14) of Corollary 5 is obviously satisfied when the
nonlinear operator P is strongly H0-monotonic, i.e., if there is a constant
> 0 such that

(15) Re(Pu- Pv, K(u v) >_ " u v , u, v eDe Dr.

Sometimes, in applications, this is the condition which is easier to verify.
Hence the theorems and corollaries proved above are valid for strongly H0-
monotonic operators with the corresponding additional conditions. Similarly,
instead of (9), it is sufficient to assume a slightly weaker condition

(16) IRe(Pu--Pv, Ko(u--v))[ _lu--vllhl,>O,u,vD,,hDro

valid for all h in Dr of the form h T(Pu Pv) with u, v e De.
Thus it appears to be useful to have some easily verifiable tests for the

H0-monotonicity of an operator. To this end the following lemma appears to
be convenient (see also Minty [13]).

LEMMA 1. If P has the property that for any x, z e De and real there is a
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constant ,), 0 so that

(17) Re (gh, P(z -!- th) >__

hee P i rlg Ho-moeooeic o De.

Proof. Leg and be any elemengs in D and ; leg f() be ghe

real-valued function defined for 0 N N 1 by f() e (K, P( + ) ).
In view of our eondigions, ig is hog hard go see ha f() is differengiable on
(0, 1) and hence by ghe mean-value gheorem here is

f(1) f(0) Re (K(x y), Px Py) f’()

Re (Ku, P(y

That is, letting z y @ u, As(1 ), and noting thut h (1 )u
(1- )(x-- y) weget

Re (Ku, P(z + Asu) Pz)f’() lira
A0

(18) lim (1 )- Re (Kh, P(z + th) Pz)

(1-- )- e(gh, P(z +h))

On he oher hand, since z and z belong o De and

h z- z (1- )(z- ),

(18) and our assumption (17) imply

Re(g(x-- y),Px-- Py)
(1 ) x- y

for any x and y in De. This shows that P is strongly H0-monotonic.. Itertive solution of strongly H0-monotonic operator
equations

Consider the problem of actually finding the solution of the equation

(19) pu f, f H,
where P is given strongly H0-monotonic operator for which the inequality
(16) is valid for all h in Dr0 of the form h TI(pu Pv) with u, v e D.
Evidently the operator P thus defined satisfies the conditions of Theorem 1.
Hence the solvable extension P0 exists and is given by (10).

In what follows we shall regard the solution u* e De0 of the equation

(20) pou f, f H,
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as the generalized solution of (19). Theorem 1 above guarantees the existence
and the uniqueness of generalized solutions of (19) but says nothing about
their effective computation. Below we consider a simple iterative method for
the approximate solution of equation (19) or (20) which for linear equations
with unbounded operators was investigated by the author [17] and for oper-
ators satisfying other conditions a similar procedure was studied in [19], [21],
[23].
In what follows in this section we shall assume for practical reasons that T

is a simple and well-investigated K-p.d. linear mapping of Dr( De) into H
so that the equation

(21) Tu g, g H,

is relatively easily solvable (at least for a certain set of elements g e H). We
additionally assume that De Dr0. It was shown above that this would
be the case, for example, when the conditions of Corollary 3 or 4 are satisfied.
In practical applications it is not absolutely necessary that this additional con-
dition be satisfied for all we need is that for a given P and f a certain sequence
of solutions of equation (21) belongs to De
The iterative method for the solution of (19) or (20) is based on the follow-

ing theorem.

THEOREM 3. Let P be a strongly Ho-monotonic mapping of De into H which

satisfies the condition (16) and let a be a real number such that

(22) 0 < a < 2/2.

a) If Uo De is an arbitrary initial approximation to the solution u* of (20),
then the sequence {u.+z} of iterants determined by the process

(23) T0u+z T0u-- a(P0u--f), n 0,1,2,...,

converges monotonically in the Ho-metric to the solution of (20). The error esti-
mate is given by the formula

p’+
24

where p p (a) is a function of a given by

(25) p()

(b) If additionally we assume that K is closed and D Dr, then

and the error estimate is given by the convenient formula

(26) u+
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Proof. Let u* be the solution of (20). Then

(27) To u* To u* a(Po u* f)

and, if {un+l} is a sequence of iterants determined by (23), the subtraction of
(27) from (23) yields the equality

(28) To(un+ u*) To(u, u*) a(Po u, Po u*).
Let e denote the error vector e u u*. Then, in view of the Ko-sym-
merry of To, (28) yields the equality

(To en+, Ko e+) (To e a(Po u Po u*),
Ko e, aKo T-I(Po u, Po u*)
(Toen,Koe) 2aRe(K0e,Poun- P0u*)

+ a(Po u Po u*, Ko T71(Po u, Po u*)
which for h Tl(Po u Po u*) gives the relation

e,+ e, 2a Re (go(u, u*), Po u, Po u*)
+ a(Po u, Pou*, Ko h)

Hence, in virtue of our conditions (15) and (16) we get

Since 0 < p < 1 for any fixed a satisfying the condition (22) and

(29) ]e+l

we see that e+ -- 0, as n - , i.e., Un+ converges to u* in Ho.
It is seen from (29) that to obtain the estimate (24) it is only necessary to

estimate ]eo] Uo u*l. Using (4) and (15) we derive the inequality

,]Uo u*

_
Re (Puo Pou*, K(uo u*))

from which (24) follows.
To prove Theorem 3(b) note that under the additional condition on K,

Theorem 2 in [17] and Corollary 4 imply that K0 K, To T, H0 Dr,
Rr H, and P0 P with Re H. Furthermore, there is a constant > 0
such that for all u

(30)

Hence, byTheorem 3 (a) and the relations (23) and (30),
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The error estimate (26) follows from (1) and (15) because

( u+l u*
_
Re (Pu+l Pu*, K(Un+I u*))

Thus the proof of Theorem 3 is complete.

Remark 3. Theorem 3 allows us to replace the problem of solving nonlinear
equation (19) by the problem of solving a sequence of simple linear equations
(21) in such a way that the generalized solution of (19) is given as the limit of
the H0-convergent sequence {u+l} determined by the process (23). Thus
each iteration with the nonlinear equation requires the solution of a simple
linear equation so that the solution of the linear equation lies in the domain of
definition of the nonlinear operator. Furthermore, the usefulness of the
scheme (23), when applied to the approximate solution of various types of
nonlinear differential equations, consists in the fact that there is a great
freedom in the choice of the linear operator T and that K need not be the same
as T.

Sometimes it may be convenient first to calculate T-1 and then compute
from the scheme

(230) Un-l-1 u,- aTi(po u,- f), n O, 1, 2,....

In case P is of the form P T -- S, where S satisfies the conditions of Corol-
lary 3 or Remark 2, the scheme (23) becomes

(231) Tun+l (1 a)Tu a(Su f), n O, 1, 2,....

Finally, let us remark that the best value of a, i.e., the value of a for which
p (a) assumes its least value, is

(31)

for which

(31)- p(5) 1 ,),/.

In this case the error estimate (24) is given by a convenient formula

* ((24) u+l- u I< /a____ 1- IIPuo- fll.

5. The projection method in the solution of nonlinear equations
It is known [18], [16], [17], that among the procedures in the solution of

linear equations the projection method plays an important role in the family
of direct methods such as the method of Ritz, Galerkin, least squares, moments,
Murray, etc., not only because of its geometrical basis and unifying property
but also because it extends their applicability to a larger class of linear equa-
tions.
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In this section we discuss the applicability of the projection method to the
solution of

(32) Pu f, f H,
where the nonlinear operator P satisfies the conditions of Theorem 1. It will
be shown that one of the practical realizations of the projection method is the
generalized method of moments or the Galerkin method which for some special
operators P is formally identical with the method of Galerkin and Ritz dis-
cussed by a number of authors [10], [7], [15], [11], [19]. Our investigation of the
projection method is based on our results in Section 3 and Browder’s Lemma 3
in [2] which we generalize to the class of operators satisfying the conditions of
Theorem 1.

Let us first note that, in view of Theorem 1, solving equation (32) is equiva-
lent to solving equation

(33) W0 u f0,

where f0 -1To f and W0 is the demicontinuous extension of W T-IP in H0 so
thatW c W0 c l?VwithDw0 De0andRw0 Dr0. If{Hn} Deisa
sequence of finite-dimensional subspaces of H0 which is projectionally com-
plete in H0 (i.e., {Hn} is such that g II g -- 0 (n ) for every g H0,
where II denotes the orthogonal projection of H0 onto H), then according to
to the projection method the approximate solution u (e H) of (32) or (33)
is determined by the condition

(34) IIn W0 u IIf0.

It seems at first that the practical realization of the method (34) is very
difficult if not impossible for, in its form (34), it requires the advance knowl-
edge of Wo and T-1. However, if we choose a sequence {q}, q e De, of linearly
independent elements which is complete in H0 and which for the sake of
simplicity we assume to be orthonormal in H0, then taking H as the span of
{1, "’", q} we see that {H} so determined is projectionally complete in
H0, every solution u e H of equation (34) is of the form

(35) un= i1 a,
and the equation (34) can be written in the form

(36) i [W0 u,] If0, q]

Since H is a subset of De and l} is linearly independent, Theorem 1 implies
that, in view of (36), equation (34) is equivalent to the algebraic system of
nonlinear equations

(37) (Pu, K,) (f, K,), 1

_
j

_
n.

We summarize the above discussion in the following lemma.
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LEMMA 2. An element u, (e H,) given by (35) is a solution of equation (34)
if and only if al a,} satisfies the algebraic system (37).

Using essentially the arguments of Browder [2] we now prove the following
lemma which we will utilize in the proof of Theorem 4 below.

LEMMA 3. Let P be a nonlinear operator satisfying the conditions of Theorem
1. If {H,} c De is a sequence of finite-dimensional subspaces which is pro-
jectionally complete in Ho and {u,} is a sequence in De such that u, e H, u uo
weatdy in Ho and II Wo u, ----> go strongly in Ho with go e Dvo then u* e Dwo and
Wo uo go.

Proof. Letj be a fixed integer and u be any element in H.. Since II u u,
II, II- II for n > j, II u u for u e H, u -- Uo weakly in Ho, and
II Wo u -- go strongly in Ho we have the equality

[u,- u, Wou- Wo(.u)] [u- .u, H Wou]- [u- rbu, W(H-u)]

from which, on passage to the limit as n -- , we obtain for all u e H the
relation

(40) [u Hs u, Wo u Wo(II. u)]-- [Uo II. u, go] [Uo II. u, W(II. u)] [Uo II. u, go Wo(II.u)].

Since, by (8) and (10), for each n we have

() I[u H. u, Wo u Wo( u)][ _>

and the sequence u II. u}, which converges weakly to uo II. u}, has the
property that Uo II.u -< lim inf u IIu we derive from this and
the relations (40) and (41) the inequality

(42) ,luo u _< l[uo u, o Wo u]l

valid for all u II. u e H.. Since j is arbitrary, (42) is true for all u in
dense set [J. Hi c Ho. This and the demicontinuity of Wo implies that (42)
also holds for all u e Dwo Thus, applying the Schwarz inequality to (42) we
get

(43) ,]uo- u[ _< [go- Wo

As go e Dro Rwo, there exists a unique v e Dwo such that go Wo v and, in
virtue of (43), v[Uo u[ _< [Wov Wou[ for allueDwo. If wetake
u v, the last inequality implies that Uo v and, consequently, Uo e Dw and
go Wuo.
Remart 4. Before we state and prove Theorem 4 which justifies the ap-

plicability of the projection method or the generalized moments method to the
solution of (32), let us first note that there is no loss in generality in assuming
that P(0) 0. Indeed, if P(0) 0, then instead of (32) it is only necessary
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to solve the equivalent equation Qu g, where Qu Pu P(O) and
g f P(0) with the operator Q satisfying all the conditions of Theorem 1
including the condition Q (0) 0; furthermore, in this case the equations (37)
and (Qun, Kj) (g, K.), 1

_
j

_
n, are essentially the same. Thus, indeed

we can and will assume in what follows that P(0) 0.

THEOREM 4. if T is K-p.d., P satisfies the conditions of Theorem 1, and
IH,} c De is a projectionally complete sequence of finite-dimensional subspaces
in Ho which is determined by {1, n} for n 1, 2, 3, then

(a) For each f H, equation (32) has a unique (possibly generalized) solution
u such that Po f.

(b) For each f e H, the approximate equation (34) (or the system (37)) has a
unique solution u, Hn given by (35).

c The sequence Un determined by equation (34) converges weakly in Ho to
the solution u* of (32).

(d If additionally we assume that Wo u} is bounded in Ho whenever
is bounded in Ho then the sequence {u} converges in Ho also strongly to u*.

e If instead of the additional condition in d we assume that P satisfies the
stronger conditions of Corollary 2 and that K is closed with D: Dr, then.u, -- u strongly in Ho Pu, ---> f strongly in H, and the following simple error
estimate is valid

(44) un u* --< x/a____ Pu f

Proof. () The validity of assertion (a) follows from Theorem 1 accord-
ing to which to each f e H there exists a unique generalized solution u* of
equation (32) such that Po u* f

(b) To prove (b) let W be the mapping of H into H given by
W x Hn W0 x for each x e H. Hence, for x and y in H, we have

l[w x x [[w0 w0 H (x

IT0 x W0 x >,
furthermore, W is demicontinuous mapping of H into H (in fact, since
H is finite-dimensional, W is continuous). Thus, by Corollary 4, W is
one-to-one mapping of H. onto H, i.e., there is a unique solution u e H, such
that equation (34) is satisfied or, in view of Lemma 2, the system (37) is
uniquely solvable for {al,

(c) Taking the absolute value of the H0-inner product of the equation (34)
with u and using the condition that P(0) 0 and the inequality (11) we get

n I, u, _< [[H, W0 u, u]l I[H, f0, un][ [If0, u,][ _< [f0[[ Un.

Hence for all n, u -< f0 [/v. Thus we may choose a weakly convergent
subsequence of {u} which we can assume to be the original sequence itself.
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Consequently, u converges weakly to some element u0 in H0 and II Wo u,
being equal to II fo, converges strongly in Ho to fo e Dro Hence, by Lemma
3, Uo e Do and Wo Uo fo. Finally, Theorem 1 implies that Po Uo f, i.e.,
Uo is a solution (possibly generalized) of (32). Since, for a given f e H, the
solution is unique, we must have u0 u*.

(d)

(45)

Since II u u and u satisfies the equation (34) we have

[Wo u Wo u* *] *],u-u [W0u-f0,u-u

[Wo u, u] [fo, u] [Wo u, u*]
d- [fo, u*]
[IIfo, u] [fo, un] [Wou, u*]

d- [fo, u*]
[fo, u*] [Wo u, u*].

Since, by additional condition, Wo maps bounded sets in Ho into bounded sets
in Ho, ]u -< ([fo I/n), {Hn} isprojectionally completein H0, and II W0 u
converges strongly to fo, we see that

(450) [Wo u, u*] [W0 u, II u*] d- [Wo u, (I II)u*] --+ [f0, u*]
as n -- . Consequently, the relations (45) and (450) and the inequality

u u* <_ I[Wo u wo u*,
imply that u, u*l ---* O, as n -- .(e) In view of our stronger conditions, Remark 1 implies that Wo is
Lipschitzian and, consequently, maps bounded sets into bounded sets of Ho.
Thus, by (d), u - u* strongly in Ho and Wo u --+ fo Wo u* strongly in Ho.
This, the structure (102) of Po, and the inequality (30) which is valid under
present conditions, imply that Po u -4 f strongly in H. The error estimate
(44) follows from (8) and (30). This completes the proof of Theorem 4.

Remar/c 5. Let us observe that if we choose K to be K I, then the pro-
jection method is practically realized by the Galerkin method while if K T,
then it is realized by the ordinary method of moments. Thus Theorem 4
establishes also the applicability of these methods to the approximate solution
of equation (32).

6. Applications to elliptic nonlinear equations

As an application of Corollary 2 and Theorem 3 we consider the Dirichlet
boundary value problem for an elliptic nonlinear prtial differential equation
of second order. Let us add that some of the problems in elastico-plasticity
[11], [12] are described by differential equations of the type considered below.
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Let Q be a bounded region the n-space R with a smooth boundary r. Let
L be the Hilbert space of real-valued square-integrable functions u(x),
x (Xl, x, x), defined on Q Q + 1 with the inner product and
norm

(46) (u, v) fe uv dx u (fQ u2 dx)1[2.
Let C(Q) denote the set of all u(x) e L: which are twice continuously differ-
entiable on Q and satisfy the boundary conditions

Let P be the nonlinear partial differential operator of second order defined for
all u e De C(Q) by the expression

(48) Pu Oa(xi, p,) + b(x,, u) pi= Ox

such that the following conditions are satisfied"
(i) P is elliptic, i.e.,

Oa,.= m = m> O,

(ii) there exists three constants l, C > 0, D > 0 such that Oa/Op C,
Ob/Oul D, and Ob/Ou is bounded below by so that n m + lid > 0 if
< 0 and v m if 0, where d > 0 is a constant determined by the Fried-

richs inequality

,= kOx/
dx d dx, h e C(Q).

Our problem is to solve the boundry-vMue problem

(50) Oa (x , + b(x , u) u O,
=1

where f(x) is given function in L, or equiwlently, the equation

(51) Pu f,

If we chose the operators K nd T to be such that K I nd T is defined
for 11 u eD De C(Q) by

(52) Tu Au ,= 0 u/Ox

then, as is known [20], T is symmetric and positive definite on Dr, i.e.,

Furthermore, the space H0 obtained as a completion of C0:(Q) Dr in the



7 W. . PETRYSHYN

metric

(54) [u, v]

is equivalent to the space Id(Q)
self-adjoint positive definite extension, which we shall also denote by T or by
--A, mapping its domain ]V W l ]V onto L .(3) Thus the problem

(55) Tu /u g

has a unique solution u e IV for every g e L..

Remar]c 6. It is important from the practical point of view to note that
if the region Q is a unit sphere in R (or if ( admits a transformation into a

Cunit sphere with a nonvanishing Jacobian) then whenever g e (Q), (55)
has in Q a twice continuously differentiable solution u e . Furthermore,
if g is a polynomial, then the solution u of (55) is ulso polynomiul.

Let us now verify that under conditions (i) and (ii) the operator P defined
by (48) satisfies the conditions of Corollary 2. Indeed, for every h e De,
we have

fQ ah(Pu, h) ai(x, p) dx + b(x, u)h dx, u De.

Consequently, for any u and v in De with g Ov/Ox

(56)
f a (u-v) dx(Pu- Pv, u- v) [ai(x, p) a(xi, gi)] -/ fo [b(xj, u) b(x,, v)](u v) dx.

In view of our conditions (i) and (ii), we derive from (56) the relations

(57) (Pu-- Pv, u-- v) >_v . (u- v) v(T(u- v),u-v)

wheren m-t-l/d> Oifl< 0andv mifl_-> 0, and

(58) (Pu- By, h) <= (T(u- v), u- v)l/(Th, h)/, he ]V

where fl(C, D, d) > 0. Thus, by Corollary 2, the operator P has a
solvable extension P0 so that the equation (50) has a unique (possibly
generalized) solution u* e De0 IV for every f e L.

Furthermore, we can construct the solution u* by the iterative method
(23) as follows" when u0 e De is an initial approximation to u*, then the

The class of W(Q) consists of all functions u which are square-integrable over Q
together with their first and second generalized derivatives while the class (O) con-
sists of functions u W which satisfy the boundary conditions u ]r 0.
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successive approximations u+l are determined by the formula

(59) un+l un- az (n 0, 1, 2,...),

where z, (Pun f), i.e., z is obtained as the solution of the equation

(60) /z f- PUn, Z lr O,

and a is any fixed real number satisfying the condition

(6) 0 < < 2/.
It should be noted that when Q is a unit sphere the iterative method (59)-

(61) is particularly effective when the functions a, b, and f are polynomials
since, as was observed in Remark 6, in that case all the iterants {un+l} are
also polynomials provided the initial approximation u0 is taken to be a poly-
nomial.

Remark 7. Similar results can be obtained for the differential equation
of the type (50) if a are also functions of u and b is also a function of p,
i.e., a, a(x u, pj), b b(x u, p).
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