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1. Introduction

In recen ppers of F. M. Cholewinski nd D. T. Himo, [1], nd of D. T.
Himo, [3], characterizations were derived for generalized temperature
functions, defined for positive time, which my be represented by Poisson-
Hnkel-Stielties integral transforms. I is our im here o explore the
problem for generalized emperture functions considered over negative time.
Although the representation theorems obtained cn be proved by techniques
nlogous to those of the previous results, we use he more elegn pprouch
of ppeling to the Appell rnsform to reduce these cses o those dealt with
erlier. In ddition, we investigate some other generalized temperature
functions which hve integral representations. Some of the results re ex-
tensions, in part, of the work of D. V. Widder in [7].

2. Definitions and preliminary results
We need the ollowing bsic definitions.

DEFINITION 2.1. The generalized het equation is

(2.) u(, t) u(x, t),

where A f(x) f" (x) -+- (2v/x)f’ (x), u a fixed positive number.

DEFINITION 2.2. A generalized temperature function is a function of class
C which satisfies the generalized heat equation. We denote the class of such
functions by H.

DEFINITION 2.3. The fundamental solution of the generalized heat equa-
tion is the function

(2.2) G(x, y; t) (1/2t)"+l/e-(+u)/tg(xy/2t),
where,(z) 2"-/r(, + 1/2)zl/-I_/(z), I=(z) being the Bessel function of
imaginary argument of order a. We write G(x; t) for G(x, 0; t).

DEFINITION 2.. If V(x, t) is an arbitrary function of two variables, its
Appell transform VA(X, t) iS given by

(2.3) V(x, t) V,t(x, t) G(x; t)V(x/t, -l/t).
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We next define a subclass H* of H which plays an important role in our
theory.

DEFINITION 2.5. A generalized temperature function u(x, t) is a member of
H* for a < < b, if and only if, for every t, t’, a < t’ < < b,

u(x, t) I_ G(x, y; t’)u(y, t’) d(y),
(2.4) 0

21/-
d(x) x dx,r( -t- 1/2)

the integral converging absolutely. Functions in H* are said to have the
Huygens property.

As proved in Theorem 6.4 of [3], functions in H* have a complex integral
representation as well. Indeed, we have the following result.

LEPTA2.6. If u(x, t) eH*, a < < b, then

(2.5) u(x, t) Jo G(ix, y; t’ t)u(iy, t’) dry(y), a < < t’ < b.

A fundamental result is the invariance of membership in H* under an Appell
transformation. This is made explicit in the following lemma.

H*LEMA 2.7. If U X e for a < < b, then u x e H* for
--1/a < < --1/b.

Proof. That u(x, t) H for --1/a --lib my be verified, muking
use of the fact that

A[f(x)g(x)] f(X)Axg(X) + g(x)Af(x) -t- 2f’(x)g’(x).

Now, consider

foG(x, t’)u’(y, t’) dry(y)y;t

Jo G(x, y;t- t’)G(y, t’)u(y/t’,-1/t’) dry(y)

G(x; t) Jo G(x/t, y; 1/t’ 1/t)u(y, -1/t’) dry(y).

H*Since u(x, t) for a < < b, the integral on the right reduces to
u(x/t,- l/t)for a < -lit’ < -lit < b. Hence

foG(x, y; t)u(x/t, -l/t),t,)u (, t’) dry(y) G(x;

a < --1/t’ < --1/t < 1/b,
Au (x,t), --1/a <t’ < < --1/b

and the lemma is proved.
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We shall be concerned with the following integral transforms.

DEFINITION 2.8.
(0, is given by

See [1], [2].

The Hankel transform ^(x) of a function q defined on

(2.6) q^(x) fo c(Xy),p(y) dry(y), 0 <_ x < ,
where

g(x) 2-/r(, + 1/2)x/-J_/(x),
J,(x) being the ordinary Bessel function of order a, whenever the integral
converges. We write

(2.7) ’ (x) Jo (xy)(y) dry(y), 0 <_ x <

whenever the integral (2.7) converges.

DEFINITION 2.9. The Hankel-Stieltjes transform ^’(x) of a function a of
bounded variation in every finite interval is given by

(2.8) ,p^(x) fo (xy) da(y), 0 <_ X

whenever the integral converges. We write, also,

(2.9) "(x) Jo (xy) da(y), 0 <_ x <

whenever the integral converges.

DEFINITION 2.10. The Poisson-Hankel transform of a function integrable
in every finite interval is the function qe(x, t) given by

t) Jo G(x, y; t),(y) d(y), 0 < x <(2.10) (x,

whenever the integral converges.

DEFINITION 2.11. The Poisson-Hankel-Stieltjes transform of a function a

of bounded variation in every finite interval is the function e’(x t) given by

e(x, t) fo G(x, y; t) da(y) 0 < x <(2.11)

whenever the integral converges.

We know, by Theorem 6.2 of [3], that within the interval of absolute con-
ergence of the integral (2.11), ,pe’(x, t) H*. Thus we may readily establish
the following result.

LEMM 2.12. If q(X) e L, 0 <__ x < then e(x, t) e H* ,for > O, and
P(2.12) q (x, t) [e-q^(x)]^.
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Proof. Since (x) L for 0 _< x

so that the integral defining e(x, t) converges absolutely. Hence by Theorem
H*(2.6) of [3], e(x, t) e for > 0 and the first part of the lemma is established.

Further, we have

e(x, t) G(x, y; t)(y) d(y)

e O(xu)(yu) d(u)

d,(u),

where the interchange in integration is wlid by Fubini’s theorem. But the
final integrM is the right hand side of (2.12) and the proof is complete.
We also have a companion result.

LEMM 2.13. If (x) e L, 0 x < then e(ix, t) e for < O, and

(2.13) e(ix,-t) [e(x)];.

Proof. Since the integral defining e(x, t) converges absolutely for > 0,
we know that e(x,t)eH* for > 0. Hence, by Lemmu 2.6, for
O<t<t’ < ,

’(x, t) fo G(ix, y; t’ t’q t)q’(iy, d(y)

the integral converging absolutely, and we have,

’(ix, t) G(x, y; t’o t)o’(iy, t’) d(y)

H*so that 9(ix, t) e for < 0. Also,

o’(ix, --t) fo G(ix, y; -t)(y) d(y)

9(y) du(y) (yu)a(xu)e’"’ d(u)

fo (xu)e’"’q^(u) d(u),

the interchange of integration being valid for < 0, and hence the result.
We complete this section with a formula giving the value of an integral

transform of un Appell transform of a function of H*.
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THEOREM 2.14.

(2.14)

Proof. We have

--txe

.H*If u(x t) e for It < (r, then for any > l/a,
u(2x, O)etx [u’(x, t)]/

fo (xy)uA(Y’ t) du(y) e-tx fo I(xy)G(y; t)u(y/t, -l/t) du(y)

--tx foe (xgt)G(y; 1/t)u(y,-l/t) dry(y)

Jo G(2x, y; 1/t)u(y,-l/t) dry(y).

H*But, since u(x, t) e for It < a, the last integral is simply u(2x, 0), for
> l/a, and the proof is complete.

3. Integral representation of Appell transforms
Before deriving the main representation theorems of this section, we need to

establish two preliminary lemmas. To this end, we make the following defi-
nition.

DEFINITION 3.1. An even entire function

(3.1) f(x) :--o a x2n

belongs to the class (1, z), or has growth (1, z), if and only if

(3.2) lim SUpn- n a TM < ez.

H*LEMMA 3.2. If u(x t) e for < , then u(--2ix, 0) e (1, 1/).

Proof. By Theorem 5.1 of [5], we have that

u(x, t) :=o a, Pn,(x, t), It[ < ,
where P,.,(x, t) is the generalized heat polynomial studied in [5]. Further, by
Theorem 3.8 of [5], it follows that u(x, 0) is an even function of growth
(1, 1/@). Since

u(x, O) _=o an x,
we find that, by (3.2),

2 al <e/.lim SUpn n 2 1/n

Hence it readily follows thus u(-2ix, 0) e (1, l/a) as required.

LEMMA 3.3. For s, > O,

(3.3) GxA, t(X, y; s -4- t) G,.(x, y; s -t- t).

Proof. The result is immediate from the definitions as each side is equal to

I 1 1’+/ ( x2s’4-yt ( xy )(3.4)
4(st- 1)

exp
4(st- )] 2(st- 1)
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We now are ready to establish a principal result.
THEOREM 3.4. A necessary and sufficient condition that

(3.5) u(x, t) [e-tXq(x)]^,
where,(x)
and such that u(x, t) v" (x, t).

H*Proof. To prove sufficiency, we note that since v(x, t)
then for any

(3.6) v(x t) ] G(x, y;t -- ’)v(y,-’) dry(y),
.o

the integral converging absolutely for -’ . Further,

u(x, t) v’(x, t) G(x, t)v(x/t 1/t),

so that by (3.6) and (3.3), we have

u(x, t) G(y; o")G x,- 1/(r’ v(y, -(r’) dry(y)

G(; o..’)v(y, -o’) d,,.,(y) -c’-1"’"9()
\o-’]

or, if the order of integration may be reversed,

g(xs)e-tS d(s) fo G(-2is, y; (r’)v(y, -o’) dry(y)

(xs)e-tv(-2is, O) d(s), > 1/’.

If we set e(s) v(--2is, 0), then by Lemma (3.2), e(x) e (1, l/a).
clearly an even function and we then have, for all > l/a,

u(x, t) v(x, t) [e-’%(x)]^.

It is

To justify the interchange in order of integration, we observe that

The inner integral converges by (3.6) with x 0. Further, the outer
integral converges for > 1/z’, and the proof of sufficiency of the condition is
complete.
To prove the necessity of the condition, assume (3.5) with (x) an even

function of growth (1, l/z). Then, by Theorem 6.1 of [5], we have

(3.7) u(x, t) :=o b, W,.(x, t), 0 <_ 1/(r < t,
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with
(2n)

(3.8) bn (--1) (0)
22n(2n)

where Wn.(x, t) is the Appell transform of the generalized heat polynomial
P,,(x, t). We thus have

(3.9) v(x, t) :=ob Pn.(X, t), --r < < O,

where u(x, t) v(x, t). Since the series (3.9) always converges in a strip
symmetric about the x-axis of the x-t plane, its convergence for -z < < 0
implies its convergence for tl < z. Now, an appeal to Theorem 5.1 of [5]
yields the fact that v(x, t) e H* for It < z. Further, by (3.8) and (3.9), we
have

(2n)v(x, o) n-=O (O)/(n) (x/)

(x/2),
or

(3.10) v(-2 is, o) (s),

which is the relation between v and established in the sufficiency proof.

H*COROLLARY3.5. If v(x, t) e for a < < b, and if a < to < b, then

(3.) Vx, t(x, + to) [e-’X’(x)] ^, > 1/,

where Min (to a, b to), and (x) v 2ix, to) is an even function
of growth (1, 1/

H*Proof. The hypothesis clearly implies that v(x - to) for tl < .
We may thus apply the theorem and the result is immediate.
An example illustrating the corollary is given by

(3.12) v(x, t) G(x; t)

which is inH* for0 . Hence we have

G,t (x, + a) [e-tG( 2ix, a)], > l/a,
(3.13) f0(1/2a) +1/2 (xy)e-u2(t-1/a) d#(y), > 1/a.

Note that (x) G(-2ix, a) is an even function of growth (1, l/a), and
that the integral (3.13) converges in no larger region than that predicted in
(3.11).

Actually, the region of convergence of the integral (3.11) as given by the
corollary is not the largest possible in every instance as the following example
illustrates. Consider, for , > 0,

(3.14) v(x, t) G(ix; + - t) + G(x; t),
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which is in H* for 0 < , 8. Hence, by the corollary,

" (x, - ) [G(ix; t) - G(x; - z)]aOx,

(3.15) f0 (xy)e-[G(2y; 8) - G(2iy; a)] dry(y)

with the integral (3.15) converging for > [1/Min (, 8)]. If a > t, the
corollary thus predicts the convergence of the integral (3.15) for > 1/ti,
whereas, actually, it is clear that the integral converges in the larger region
t> 1/.
To take cre of such cases, we introduce a theorem to indicate the conditions

under which Corollary 3.5 may be strengthened to give the larger region of
convergence.

THEOREM 3.6. If V(X, t) H* for --a < < 8, a, > O, then

(3.16) va(x, t) [e-q(x)]^, > l/z,

where (x) v(2ix, O) is an even entire function and

(3.17) lim sup+/-
log I(x) < 1

X

Proof. Note that if z > ti, then Corollary 3.5, with to 0, asserts that
(x) is an even function of growth (1, 1/i) and that (3.16) holds with the
integral converging for > 1/ti rather than the larger region > 1/z indicated
in the present theorem.

H*To prove the theorem, we note that since v(x, t)
we have, for any , 0 ,

v(x, t) jo G(x, y; - a’)v(y, --) d(y),

the integral converging absolutely for -a , }. Then, as in the proof of
Theorem 3.4

(x, t) fo e-t’(xs)q(s) d(s), > 1/’,y

or, since z’ may be taken arbitrarily close to
Av (x, t) [e-tq(x)]", > l/a,

where (x) v(--2ix, 0), but we no longer can conclude that (x) e (1, l/a).
H*Instead, we have, since v(x, t) for

q(x) G(2ix, y; a’)v(y, --’) d,(y),

so that

I (x) < e f0 G(y; a’) lv(y, -(’) d(y).
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It is thus immediate that

lim sup+/-(R)
log (x) < _1.

X

or, since ’ may be taken arbitrarily close to a, (3.17) is established and the
proof is complete.

It is of interest to note that the condition ti > 0 cannot be improved, as
indicated by the example

v(x, t) G(ix; -t),

which is inH*for- < < 0. Here

vA(x, t) 1/22+1

which cannot have a Hankel representation since such functions must vanish
at .

Consider

(3.18) u(x, t) fo e-t(xy)e- d(y), <

X4Here u(x, t) [e-tZ(x)]^ where (x) e is n even function which is
not of growth (1, a) for ny . However, there exists a function

v(x, t) G(ix, y; -t)e-/1 d(y)(3.19)

in H* for < 0 and such that u(x, t) v(x, t). A modification of the
necessity part of Theorem 3.4, to include such an example, is given by the
following result.

THEOREM 3.7. If

(3.20) U(X, t) fo e-t(xY)(Y) d(y), > 1/a >_ O,

where (x) is an even function for which

(3.21) lira sup+/-
log q(x) < 1

X

then there exists a function v(x, t) H* for - < < 0 and such that u(x, t)
vA(x, t).

Proof. Hypothesis (3.21) implies that for any z’, 0 <2 ’ <: ,
(3.22) q(x) 0(e/’), x =i= .
Now, if we set

u(x, t) G(x, t)v(x/t, -l/t)



632 DEBORAH TEPPER HAIMO AND FRANK M. CHOLEWINSKI

then, formally,

e-t(xy)e(y) d(y),

(3.23) v(x, t) Jo G(ix, y; -t)(y/2) d(y).

But by (3.22), the integral defining v(x, t) is dominated by

(--1/2t)+l/e-X/4t fo e/4tO(e/’) d(y)

and consequently converges absolutely for -a’ 0, or since a may be
taken arbitrarily close to a, for-a 0. Now

(3.24) w(x, t) Jo G(x, y; t)(y/2) d(y)

may be shown, in similar way, to converge absolutely for 0 a. It
follows, by Theorem 6.2 of [3], that w(x, t) H* for 0 < < a. Hence, by
Lemm 2.6

w(x, t) Jo G(ix, y; t’ t)w(iy, t’) d(y), 0 < < t’ <

or, by Theorem 5.3 of [1]

w(ix, -t) Jo G(x,y; t’ + t)w(iy, t’) d(y), -a’ < --t’ < <0.

It thus follows that w(ix,
-a 0. Sincew(ix,

-t) H* for -a < < 0 and consequently for
-t) v(x, t), the theorem is established.

4. Temperatures in positive time

As noted in the introduction, in [1] and in [3], criteria were established for
class of generalized temperature functions, defined for positive time, to be
represented by a Poisson-Hankel-Stieltjes transform. In this section, we
find that, in addition, different representation formulas hold as well, if the
class of generalized temperature functions considered is further restricted, in
each case, by an additional condition.

THEOREM 4.1. A necessary and sujcient condition that

(4.1) u(x, t) [e-t(x)]^, 0

where (x) a^’(s) for a bounded, non-decreasing function a, is hat, for 0 <
< , u(x, t) H, u(x, t) >_ O, and for some to > O,

(4.2) u(x, to) d(x) <
,o
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Proof. If we assume that, for0 < <
then by Theorem 9.1 of [1], we have

(4.3)

for some a(y)
we find that

u(x, t) H and u(x, t) >_ O,

u(x, t) fo G(x, y; t) da(y), 0 < < ,
Further, if (4.2) is also assumed to hold, then, using (4.3),

(4.4) f0 da(y)

(xu) g(u),

e-’Yq(xy) dry(y) fo

By virtue of (4.4), we may define

(.5) (x) f0
We then have

(4.6) f0 G(x, u; t) da(u)

u(x, t),

G(x, y; to) da(y)

0<x<.

q(yu) da(u)

where the change in order of integration is valid by (4.4). Hence the con-
dition is sufficient.

Conversely, assume that (4.1) holds, with (x) given by (4.5) for some
bounded, non-decreasing function a. Then, as in (4.6), we find that

u(x, t) fo e-t’2(xY)’(Y) dry(y)

Jo G(x, y; t)da(u), 0 < < ,
so that an appeal to Theorem 9.1 of [1] confirms the fact that u(x; t) H
andu(x,t) >_ OforO < < . Further, since

and c(y) is a non-decreasing, bounded function, (4.2) holds for every t0 > 0,
and the proof is complete.
Note that the functions considered in this theorem form a proper subclass



634 DEBORAH TEPPER HAIMO AND FRANK M. CHOLEWINSKI

of the positive generalized temperature functions studied in [1].
tion is given by

An illustra-

(4.7) u(x, t) x + 2(1 + 2")t.

This is a positive generalized temperature function for which (4.2) fails to
hold for any to. As predicted by Theorem 9.1 of [1], it has a Poisson-Hankel-
Stieltjes representation

(4.8) x - 2(1 - 2)t f0
with

G(x, y; t) dR(y)

2,-l-3

(4.9) a(y)
2,_,/:(2u -t- 3)r( + 1/2)’

so that clearly a(y) . It does not have a representation of the form (4.1
On the other hand, for a > O,

(4.10) u(x, t) G(x; + a)

satisfies (4.2) for every to > 0. Indeed, we have

(4.11) G(x;t

with

(xu)e-tU,(u) dtt (u),

(X) e-ax2 fo (xy) dR(y)(4.12)

where dR(y) G(y; a)d(y), so that a is bounded and nondecreasing.

5. Temperatures in negative time

In this section, we investigate the question of integral representation for
generalized temperature functions considered over negative time. In the
event that the functions themselves are positive, we have the following result.

THEOREM 5.1. A necessary and sufficient condition that

u(x, t) fo et2(xY) dR(y), - < < O,(5.1)

,with a y is that, for < < O, u x t) e H and u x t) >_ O.

Proof. If (5.1) holds, with a(y) , then clearly u(x, t) >_ O, and since
the kernel of the integral (5.1) e H for each y, so is the integral by the validity
of differentiation under the integral sign. Hence the condition is necessary.

Conversely, assuming that u(x, t) H and u(x, t) >_ O, for - < < 0,
we have that

(5.2) uA(x, t) G(x; y)u(x/t, -1It)
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is non-negative and in H for 0 < < .
of [1] to get

u (x, t)

with(y) T. Hence

We may thus apply Theorem 9.

G(x, y; t) d(y), 0 < < ,,

u(x, t) fo et"g(xY) da(y), - < < O,

where a (y) (2y) and the theorem is proved.
By applying the theorem to the function u(x, + c) we readily derive the

following extension.

COROLLARY 5.2. A necessary and suigicient condition that

(5.3) u(x, t) fo etg(xY) da(y), -- < C

with a(y) is that, for - < < c, u(x, t) be a non-negative generalized
temperature function.
Theorem 5.1 is illustrated by the example

(5.4) u(x, t) G(ix; t) fo et9(xY) d(y), -- < < C,

The function (5.4) does not satisfy the condition

(5.5) fo u(x, to)e214t dry(x) <

for any to < 0. By adding such a restriction to the functions considered in
Theorem 5.1, we obtain a subclass of temperature function which in addition
to (5.1) have an alternative integral representation as given in the following
result.

THEOREM 5.3. A necessary and suicient condition that

(5.6) u(x, t) Jo G(ix, y;- t),(y) dry(y), -- < < O,

where (x) a^(x), for some non-decreasing, bounded function a, is that, for-- < < O, u(x, t) eH, u(x, t) >_ O, and for some to < O,

(5.7) fo u(x, to)e/ dtt(x) < (:

Proof. To establish the necessity of the condition, assume (5.6) with

(5.8) (x) Jo (xy) da(y),

where a(y) is non-decreasing bounded function. Then, substituting (5 S)
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in (5.6), we find that

t) Jo  (ix, Jo
fo et(xz) da(z), --oo < < O,

where the inversion of order of integration is valid, for 0, since

(5.10) fo da(z) fo e’/’t dry(y) < , < O.

Since (5.9) holds, an appeal to Theorem 5.1 yields the fact that u(x, t) e H
andu(x,t) >_ Ofor- < < 0. Further

u(x, t)e’’ d#(x) et da(z) e"/t(xz) dry(x)

5.11 fo eta"G(iz; 1/4t da(z)

(--2t)+m f da(z) <

so that (5.7) holds and the condition is necessary.
Conversely, suppose that, for -- < < 0, u(x, t) is non-negative

generalized temperature function for which (5.7) holds for some to < 0.
By Theorem 5.1, we then have

(5.12) u(x, t) fo et(xY) da(y), --o < < O,

for some a(y) . Since (5.7) holds for to < 0, the left hand side of (5.11)
is finite for to. Hence from the right hund side of (5.11), it follows that a(y)
is bounded. Hence since a(y) is bounded, monotonic increasing function,
the integral f(xy) da(y) exists and defines function of x. Let

(x) fo og(xY) da(y).

Then we derive the representation (5.6) by a computation as in the first part
of the proof, and the theorem is established.
As an application of Theorem 5.1, we have the following result.

THEOREM 5.4. If U(X, t)e H and u(x, t) >_. 0 for --o < <_ c, and if
Maxll_< u(x, t) i(r),

then

lim infr
log M(r) <_ 0

r
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implies that u(x, t) is constant for < <_ c.

Proof. Without loss of generality, we may assume that c 0. Now,
suppose that y y0 > 0 is a point of increase of a(y) given in Theorem 5.1.
Then, we have

u(x,O) fo
where

fyo+e(xy) da(y) >
yo-

9(xy) da(y) > kg(x(yo 5)),

tc a(yo+ ) a(yo-- ) > 0

and i is such that y0 > 0. Hence

so that
M(r) >_ kg(r(yo )

lim inL_, M(r)/r

contradicting the hypothesis. Hence a(y) has at most one point of increase
at y 0 and u(x, t) is constant.
Note that any generalized temperature function which is uniformly bounded

for <

_
c is necessarily constant.

Somewhat different criteria for functions in H will also yield a representation
of the form (5.1) as indicated in the following theorem.

THEOREM 5.5. A necessary and sucient condition that

(5.13)

with

(5.14)

u(x, t) fo et2(xY) da(y), < c < O,

eCV" da(y)l < *,

is that u(x, t) H for < c < O, and that, for < c < O,

(5.15) fo u(x’ t) G(x; c t) d(x) < M.

Proof. Ifu(x,)eHfor < c < 0, thenu(x,t) eHfor0 < < -1/c.
Further, if (5.15) holds for < c < 0, then

(5.16)

UA(X, t) G(x; --1/c t) dt(x)

(--C/2)+1/2 fo U(X’ --1/t)]G(x; c + l/t) dtt(x)

< , 0 <t<--l/c.
Hence, by Theorem 8.1 of [3], we have

(5.17) u’(x, t) fo G(x, y; t) d(y),

with

0 < < --1/c,
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(5.18)

But (5.17) gives

u(x, t) f et(xy) d(2y),

or, taking a(y) (2y), we obtain

(5.19) u(x, t) e’t(xy) dR(y),

with

t<c<O,

t<c<O,

G(2y; -l/c)Id(2y) (-c/2)+1/ ec Ida(y) <

so that the sufficiency is established.
To prove the necessity of the condition, note that if (5.13), (5.14) hold,

then u(x, t) H for < c < 0, since differentiation under the integral sign
is valid. Further, for < c < 0,

lu(x, t) lG(x; c c et(xy) lda(y)

and (5.15) holds so that the proof is complete.
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