ON EIGENFUNCTION EXPANSIONS FOR ELLIPTIC OPERATORS

BY RICHARD BEALS

Introduction

The eigenfunction expansion theorem for singular self-adjoint elliptic operators is well known. In this paper we present a proof which is more elementary in some respects than those given previously, and which has the advantage of applying to operators with merely measurable (and locally bounded) coefficients.

A general eigenfunction expansion theorem for operators in Lebesgue spaces was proved by Mautner [10] and extended by Bade and Schwartz [1]; a somewhat different result is due to Gelfand and Kostyucenko [9]. Gårding [8] and Browder [4], [5], obtained the expansion theorem for elliptic operators under various assumptions; see also Nelson [11]. In each case the technical problem is to show that some function h(A) of the given operator A has a kernel. In the papers cited this problem is solved by using some variant of the Dunford-Pettis theorem or another Banach space differentiation theorem, together with the fact, or assumption, that the range of h(A) consists of locally bounded functions. When A is an elliptic operator, h(A) is taken to be $(A - \lambda)^{-q}$ for λ in the resolvent of A and A sufficiently large. Then the regularity theory for elliptic operators and the Sobolev imbedding theorem give the desired conclusion. When A has to be taken greater than 1, the regularity theory needed requires a certain amount of differentiability of the coefficients of A.

The point of the present proof is that for A elliptic and q large enough, $(A - \lambda)^{-q}$ is "locally" an operator of Hilbert-Schmidt type. The existence of a (square-integrable) kernel for operators of this type is well-known and more elementary than the Dunford-Pettis theorem and the Sobolev imbedding theorem.

The proof of the assertion about $(A - \lambda)^{-q}$ depends on some of the simple observations about compact operators and Sobolev spaces which were applied in a much more delicate way in [2], [3] to obtain the asymptotic distribution of eigenvalues for elliptic operators without smooth coefficients.

1. Some compact operators

If H and K are Hilbert spaces and $S: H \to K$ a linear operator, we denote the domain and range of S by D(S) and R(S) respectively. For bounded S, the characteristic numbers $\mu_i(S)$, $j = 1, 2, \dots$, are defined by

(1)
$$\mu_{j}(S) = \inf_{\operatorname{codim}(H_{1}) < j} \sup_{u \in H_{1}, \|u\| = 1} \|Su\|.$$

If S is compact, $\{\mu_i^2(S)\}\$ is the sequence of eigenvalues of S^*S [7, Theorem

Received October 26, 1966.

X.4.3]. We need the properties [7, Corollary X.9.3 and Lemma X.9.6]:

$$\mu_j(S^*) = \mu_j(S),$$

(4)
$$\mu_{j+k-1}(S+T) \leq \mu_j(S) + \mu_k(T),$$

$$\mu_{j+k-1}(ST) \leq \mu_j(S)\mu_k(T).$$

It follows readily from (3) that if S is a bounded operator in H and W a partial isometry, then $\mu_j(SW) = \mu_j(S)$, all j.

LEMMA 1.1. Let H, H₁, H₂ be separable Hilbert spaces and let

$$S: H_1 \to H$$
 and $T: H_2 \to H$

be bounded operators. If S is compact and $R(T) \subseteq R(S)$, then there is a constant c such that $\mu_j(T) \leq c\mu_j(S)$, all j.

Proof. We consider explicitly only the case when H, H_1 , H_2 and R(S) are infinite-dimensional. Let H_0 be the orthogonal complement of the null space of S, and W a partial isometry of H_1 onto H_0 . Replacing S by SW and H_1 by H_0 , we may assume that S is 1–1. Similarly, by using isometries to transfer the operators, we may assume that $H_1 = H_2 = H$. Replacing S by $(SS^*)^{1/2}$, which has the same range [3, Lemma 1.1], we may assume S is positive. Then there is a complete orthonormal sequence $\{u_j\} \subseteq H$ with $Su_j = \mu_j u_j$, where $\mu_j = \mu_j(S)$. With respect to the inner product $\langle u, v \rangle = (S^{-1}u, S^{-1}v), R(S)$ is a Hilbert space K with norm $|u| = \langle u, u \rangle^{1/2}$. Then $T = JT_1$, where $T_1: H \to K$ is closed, hence continuous and $J: K \to H$ is the injection mapping. Let H_j be the closed subspace of H generated by $\{u_k \mid k \geq j\}$. Then $T^* = T_1^*J^*$ and

$$\mu_{j}(T) = \mu_{j}(T^{*}) \leq \sup_{u \in H_{j}, \|u\| = 1} \|T^{*}u\|$$

$$\leq \|T_{1}^{*}\| \sup_{u \in H_{j}, \|u\| = 1} \|J^{*}u\|.$$

Now $\{v_k = \mu_k u_k\}$ is a complete orthonormal sequence in K. It follows easily that $J^*u_k = \mu_k v_k$, and hence that for $u \in H_j$, $|J^*u| \leq \mu_j ||u||$. Therefore the desired inequality holds with $c = ||T_1^*|| = ||T_1||$.

We shall say that S is of class $a \ge 0$ if there is a constant c such that $\mu_j(S) \le cj^{-a}$, all j. In particular any bounded operator is of class 0. An easy consequence of (4) and (5) is

Lemma 1.2. If S and T are operators in H of classes a and b respectively, then S + T is of class min (a, b) and ST is of class a + b.

Since, as noted above, $\{\mu_j^2(S)\}$ is the sequence of eigenvalues of S^*S for S compact; since $\mu_j(S) \to 0$ implies S compact, we have

Lemma 1.3. If S is of class $a > \frac{1}{2}$, then it is of Hilbert-Schmidt type.

2. Sobolev spaces and elliptic operators

Let Ω be an open subset of E^n . Denote by $\mathfrak{D}(\Omega)$ the space of infinitely differentiable complex-valued functions on Ω with compact support, and by $L^2(\Omega)$ the usual L^2 -space with inner product (u, v). For m a non-negative integer, $H^m(\Omega)$ is the space of functions u whose distribution derivatives $D^\alpha u$ of order $|\alpha| \leq m$ are all in $L^2(\Omega)$. This is a Hilbert space with inner product $(u, v)_m = \sum_{n} (D^\alpha u, D^\alpha v), |\alpha| \leq m$. If K is a compact subset of Ω , we denote by H_m^m the subspace of $H^m(\Omega)$ consisting of those u with support supp $(u) \subseteq K$.

Lemma 2.1. Suppose S is a bounded operator in $H^m(\Omega)$ with $R(S) \subseteq H_K^p$ where K is a compact subset of Ω and $p \geq m$. Then S is of class (p - m)/n.

Proof. Cover a neighborhood of K by a finite number of closed cubes $K_j \subseteq \Omega$, and take functions $\varphi_j \in \mathfrak{D}(\Omega)$ with supp $(\varphi_j) \subseteq K_j$, $\sum \varphi_j(x) = 1$, $x \in K$. Then $S = \sum S_j$ where $S_j u = \varphi_j Su$. By Lemma 1.2 we can therefore reduce to the case K a cube. Let $H^k_{\pi}(K)$ be the space of periodic distributions on K with derivatives of order $\leq k$ in $L^2(K)$. Then $R(S) \subseteq H^p_{\pi}(K)$. For an n-tuple $\alpha = (\alpha_1, \dots, \alpha_n)$ of integers, let $\alpha \cdot x = \alpha_1 x_1 + \dots + \alpha_n x_n$, $x \in E^n$. If d is the length of a side of K, the functions $u_{\alpha}(x) = \exp(2\pi i \alpha \cdot x)$ are a complete orthogonal system for $H^k_{\pi}(K)$, all k. Let $\{v_{\alpha}\}$ and $\{w_{\alpha}\}$ be the corresponding normalized sequences for $H^m_{\pi}(K)$ and $H^p_{\pi}(K)$ respectively. Then the unitary map K of K onto K and K taking K and onto K is easily seen to be of class K conclusion follows from Lemma 1.1.

Let $A = \sum a_{\alpha} D^{\alpha}$, $|\alpha| \leq m$, be a partial differential operator with coefficients a_{α} measurable and bounded on each compact subset of Ω . Let A_1 be the restriction of A to a subspace $D(A_1)$ with

$$\mathfrak{D}(\Omega) \subseteq D(A_1) \subseteq H^m_{\mathrm{loc}}(\Omega),$$

where $H^m_{loc}(\Omega) = \{u \mid \varphi u \in H^m(\Omega), \text{ all } \varphi \in \mathfrak{D}(\Omega)\}$. Assume that A_1 is closed and that the resolvent set $r(A_1)$ is not empty. Take $\lambda \in r(A_1)$ and set $S = (A_1 - \lambda)^{-1}$.

Given operators B, C let [B, C] = BC - CB. Given $\varphi \in \mathfrak{D}(\Omega)$, let φ also denote the operation of multiplication of a function by φ .

LEMMA 2.2. For $\varphi \in \mathfrak{D}(\Omega)$, φS is of class m/n and $[A_1, \varphi]S$ is of class 1/n as operators in $L^2(\Omega)$.

Proof. $R(\varphi S) \subseteq \varphi H_{loc}^m(\Omega) \subseteq H_K^m$, where $K = \text{supp } (\varphi)$. Therefore by Lemma 2.1, φS is of class m/n.

Since A_1 is closed and of order m, it is clear that $D(A_1) \supseteq H_K^m$. Thus $\varphi: D(A_1) \to D(A_1)$. Take $\psi \in \mathfrak{D}(\Omega)$ such $\psi(x) = 1$ for $x \in K = \text{supp}(\varphi)$. Then

$$[A_1, \varphi]S = [A_1, \varphi]\psi S.$$

Let $K^* = \text{supp }(\psi)$. Then ψS is continuous to $H_{K^*}^m$. By Lemmas 1.1 and 2.1 the injection mapping of $H_{K^*}^m$ to $H_{K^*}^{m-1}$ is of class 1/n in the latter space. But $[A_1, \varphi]$ is of order $\leq m-1$, hence continuous from $H_{K^*}^{m-1}$ to $L^2(\Omega)$. It follows that $[A_1, \varphi]S$ is of class 0 + 1/n + 0 = 1/n.

LEMMA 2.3. For $\varphi \in \mathfrak{D}(\Omega)$ and q a positive integer, φS^q is of class mq/n as an operator in $L^2(\Omega)$.

Proof. We shall show by induction that $[A_1, \varphi]S^q$ is of class [m(q-1)+1]/n, and φS^q is of class mq/n. The case q=1 is Lemma 2.2. Suppose this has been proved for q, and suppose that $[A_1, \varphi]S^{q+1}$ has been shown to be of class j/n for some j < mq + 1. Take $\psi \in \mathfrak{D}(\Omega)$ with $\psi(x) = 1$, $x \in \text{supp}(\varphi)$. Note that $[\psi, S] = S[A, \psi]S$. Then

$$\begin{split} [A,\,\varphi]S^{q+1} &= [A,\,\varphi]\psi S^{q+1} \\ &= [A,\,\varphi][\psi,\,S]S^q \,+\, [A,\,\varphi]S\psi S^q \\ &= ([A,\,\varphi]S)([A,\,\psi]S^{q+1}) \,+\, ([A,\,\varphi]S)(\psi S^q). \end{split}$$

By the induction assumptions the first term on the right is of class 1/n + j/n and the second is of class $1/n + mq/n \ge (j+1)/n$. So the sum is of class (j+1)/n. Thus $[A, \varphi]S^{q+1}$ is of class (mq+1)/n. As for φS^{q+1} ,

$$\varphi S^{q+l} = \psi \varphi S^{q+1} = \psi [\varphi, S] S^q + \psi S \varphi S^q
= (\psi S)([A, \varphi] S^{q+1}) + (\psi S)(\varphi S^q).$$

By what was just proved, the first term on the right is of class m/n + (mq+1)/n > m(q+1)/n. By the induction assumption the second term is of class m/n + mq/n = m(q+1)/n. This completes the proof.

As an immediate consequence of Lemmas 1.1, 1.3, and 2.3 we have the key result.

COROLLARY 2.4. Let S be as above, q > n/2m and $\varphi \in \mathfrak{D}(\Omega)$. If H is a Hilbert space and $T: H \to L^2(\Omega)$ is bounded and has $R(T) \subseteq R(S^q)$, then φT is of Hilbert-Schmidt type.

Remarks. At least when the coefficients a_{α} for $|\alpha| = m$ are continuous, the assumptions that A_1 has a non-empty resolvent set while $D(A_1) \subseteq H^m_{loc}(\Omega)$ imply that A is elliptic. Conversely if a_{α} is continuous for $|\alpha| = m$ and A is elliptic and formally self-adjoint, then under fairly general conditions A has a self-adjoint realization corresponding to the Dirichlet problem [6].

3. The eigenfunction expansion theorem

As in the previous section, Ω is an open subset of E^n and $A = \sum a_{\alpha} D^{\alpha}$ is an operator of order m with measurable, locally bounded coefficients. We assume that for some choice of $D(A_1)$ with

$$\mathfrak{D}(\Omega) \subseteq D(A_1) \subseteq H^m_{\mathrm{loc}}(\Omega),$$

the restriction A_1 of A to $D(A_1)$ is self-adjoint in $L^2(\Omega)$. Denote the complex conjugate of a by a^* .

THEOREM. There are a vector-valued measure ν on the real line R and a unitary mapping V of $L^2(\Omega)$ onto $L^2(R^1, d\nu)$ such that for $u \in D(A_1)$,

(a) $VA_1 u(\lambda) = \lambda V u(\lambda)$ for ν -almost all $\lambda \in \mathbb{R}^1$.

Moreover there is a function $\theta(x, \lambda)$ which is $dx \times d\nu$ -square integrable on each compact subset of $\Omega \times R^1$ and such that

- (b) $Vu(\lambda) = \int \theta(x, \lambda)^* u(x) dx \text{ for } u \in L^2(\Omega) \text{ and a.a. } \lambda,$
- (c) $V^*g(x) = \int \theta(x,\lambda)g(\lambda) d\nu(\lambda)$ for $g \in L^2(\mathbb{R}^1, d\nu)$ and a.a. x,
- (d) $A\theta_{\lambda} = \lambda \theta_{\lambda}$ for a.a. λ , where $\theta_{\lambda}(x) = \theta(x, \lambda)$.

(The integrals in (b) and (c) are taken in the mean square sense, while (d) is taken in the sense of distributions.)

Proof. The first part of the statement is just the standard spectral representation for a self-adjoint operator: there is a finite or countable set $\nu = \{\nu_j\}$ of finite measures on R^1 and a unitary mapping V of $L^2(\Omega)$ onto $L^2(R^1, d\nu) = \sum \oplus L^2(R^1, d\nu_\alpha)$ diagonalizing A_1 in the sense of (a) [7, Theorem XII.3.5]. Let $S = (A_1 + i)^{-1}$. Then $VS^q u(\lambda) = (\lambda + i)^{-q} V u(\lambda)$. Therefore $V^*g \in R(S^q)$ if and only if $(\lambda + i)^q g(\lambda) \in L^2(R^1, d\nu)$. In particular, if g has compact support then $V^*g \in R(S^q)$, all g.

Now let $I_j \subseteq R^1$ be the interval (-j,j) and let $\{\Omega_j\}$ be an increasing sequence of relatively compact open subsets of Ω with union Ω . Take functions $\varphi_j \in \mathfrak{D}(\Omega)$ with $\varphi_j(x) = 1$, all $x \in \Omega_j$. Let W_j be the restriction to $L^2(I_j, d\nu)$ of $\varphi_j V^*$. Then $R(W_j) \subseteq R(\varphi_j S^q)$, all q. It follows from Corollary 2.4 that W_j is an operator of Hilbert-Schmidt type. Therefore there is a kernel $\theta_j(x, \lambda) \in L^2(\Omega \times I_j, dx \times d\nu)$ such that for $g \in L^2(I_j, d\nu)$,

$$V^*g(x) = \int_{-j}^{j} \theta_j(x,\lambda)g(\lambda) \ d\nu(\lambda), \text{ a.e. in } \Omega_j.$$

Clearly for $k \geq j$, $\theta_k = \theta_j$ a.e. on $\Omega_j \times I_j$. Therefore there is a function θ , measurable and $dx \times d\nu$ square integrable on each compact subset of $\Omega \times R^1$, such that for $g \in L^2(R^1, d\nu)$,

$$V^*g(x) = \lim_{j} \int_{-j}^{j} \theta(x, \lambda) g(\lambda) \ d\nu(\lambda), \text{ a.e. in } \Omega.$$

This proves (c); (b) and (d) follow by standard arguments. For $u \in L^2(\Omega)$, $g \in L^2(\mathbb{R}^1, d\nu)$ with compact support,

$$\int g(\lambda) V u(\lambda)^* d\nu(\lambda) = (g, V u) = (V^* g, u)$$
$$= \iint g(\lambda) \theta(x, \lambda) u(\lambda)^* dx d\nu(\lambda).$$

Then (b) follows from Fubini's theorem. Finally, for $u \in \mathfrak{D}(\Omega) \subseteq D(A_1)$,

letting \langle , \rangle denote the distribution pairing we have

$$\langle A\theta_{\lambda}, u \rangle = \langle \theta_{\lambda}, Au \rangle = VAu(\lambda) = \lambda Vu(\lambda)$$

= $\langle \lambda\theta_{\lambda}, u \rangle$, a.a. λ .

Since $\mathfrak{D}(\Omega)$ is separable, this implies that as a distribution $A\theta_{\lambda} = \lambda \theta_{\lambda}$ for almost all λ .

REFERENCES

- W. G. Bade and J. Schwartz, On abstract eigenfunction expansions, Proc. Nat. Acad. Sci. U.S.A., vol. 42 (1956), pp. 519-525.
- 2. R. Beals, On eigenvalue distributions for elliptic operators without smooth coefficients, Bull. Amer. Math. Soc., vol. 72 (1966), pp. 701-705.
- 3. ———, Classes of compact operators and eigenvalue distributions for elliptic operators, Amer. J. Math., to appear.
- F. E. Browder, Eigenfunction expansions for singular elliptic operators. I, II, Proc. Nat. Acad. Sci. U.S.A., vol. 40 (1954), pp. 454-463.
- Eigenfunction expansions for formally self-adjoint partial differential operators. I, II, Proc. Nat. Acad. Sci. U.S.A., vol. 42 (1956), pp. 769-771, 870-872.
- 6. —, On the spectral theory of elliptic differential operators. I, Math. Ann., vol. 145 (1962), pp. 22-130.
- N. Dunford and J. T. Schwartz, Linear operators, part II, New York, Interscience, 1963.
- 8. L. Gårding, Eigenfunction expansions connected with elliptic differential operators, Twelfth Congress of Scand. Math., Lund, 1953, pp. 44-55.
- 9. I. M. GELFAND AND A. G. KOSTYUCENKO, Expansions in eigenfunctions of differential and other operators, Dokl. Akad. Nauk S.S.S.R. (N.S.), vol. 103 (1955), pp. 349-352.
- F. I. MAUTNER, On eigenfunction expansions, Proc. Nat. Acad. Sci. U.S.A., vol. 39 (1953), pp. 49-53.
- 11. E. Nelson, Kernel functions and eigenfunction expansions, Duke Math. J., vol. 25 (1958), pp. 15-27.

THE UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS