ON EIGENFUNCTION EXPANSIONS FOR ELLIPTIC OPERATORS

BY
RicHARD BEALS

Introduction

The eigenfunction expansion theorem for singular self-adjoint elliptic
operators is well known. In this paper we present a proof which is more
elementary in some respects than those given previously, and which has the
advantage of applying to operators with merely measurable (and locally
bounded) coefficients.

A general eigenfunction expansion theorem for operators in Lebesgue spaces
was proved by Mautner [10] and extended by Bade and Schwartz [1]; a some-
what different result is due to Gelfand and Kostyucenko [9]. Garding [8] and
Browder [4], [5], obtained the expansion theorem for elliptic operators under
various assumptions; see also Nelson [11]. In each case the technical problem
is to show that some function h(A) of the given operator A has a kernel. In
the papers cited this problem is solved by using some variant of the Dunford-
Pettis theorem or another Banach space differentiation theorem, together with
the fact, or assumption, that the range of h(A) consists of locally bounded
functions. When A is an elliptic operator, h(A4) is taken to be (4 — N\)™? for
\ in the resolvent of A and ¢ sufficiently large. Then the regularity theory
for elliptic operators and the Sobolev imbedding theorem give the desired
conclusion. When ¢ has to be taken greater than 1, the regularity theory
needed requires a certain amount of differentiability of the coefficients of 4.

The point of the present proof is that for 4 elliptic and ¢ large enough,
(A — N)7%is “locally” an operator of Hilbert-Schmidt type. The existence
of a (square-integrable) kernel for operators of this type is well-known and
more elementary than the Dunford-Pettis theorem and the Sobolev im-
bedding theorem.

The proof of the assertion about (A — N\)™? depends on some of the simple
observations about compact operators and Sobolev spaces which were applied
in a much more delicate way in [2], [3] to obtain the asymptotic distribution of
eigenvalues for elliptic operators without smooth coefficients.

1. Some compact operators
If H and K are Hilbert spaces and S : H — K a linear operator, we denote
the domain and range of S by D(S) and R(S) respectively. For bounded S,
the characteristic numbers u;(S),j = 1, 2, - - - , are defined by
(1) ui(S) = infoodimear)<j SUDuer, 1wt =1 || Su ||.
If S is compact, {u3(S)} is the sequence of eigenvalues of S*S [7, Theorem
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X.4.3]. We need the properties [7, Corollary X.9.3 and Lemma X.9.6]:

(2) wi(8%) = ui(8),

(3) pi(ST) < || T wi(S),
(4) piti-1(S + T) £ wi(S) + m(T),
(5) pivi1(ST) < ui(S)m(T).

It follows readily from (3) that if 8 is a bounded operator in H and W a
partial isometry, then u;(SW) = u,;(S), all j.

LEmma 1.1. Let H, Hy, H, be separable Hilbert spaces and let
S:Hi—H and T:H,— H

be bounded operators. If S is compact and R(T) C R(8), then there is a constant
¢ such that u;(T) < cui(8S), all 7.

Proof. We consider explicitly only the case when H, H, , H, and R(S) are
infinite-dimensional. Let H, be the orthogonal complement of the null space
of S, and W a partial isometry of H; onto Hy. Replacing S by SW and H; by
H, , we may assume that S is 1-1. Similarly, by using isometries to transfer
the operators, we may assume that H; = H, = H. Replacing S by (88*)"?,
which has the same range [3, Lemma 1.1], we may assume S is positive. Then
there is a complete orthonormal sequence {u;} © H with Su; = p;u;, where
u; = p;i(8). With respect to the inner product (u, ») = (S ', S™'), R(S) is
a Hilbert space K with norm |u| = (u, w)’. Then T = JT:, where
Ti: H — K is closed, hence continuous and J : K — H is the injection mapping.
Let H, be the closed subspace of H generated by {ui|k = j}. Then
T* = TYJ* and

wi(T) = ui(T*) < sUPuerr; yur= || T u ||
< Tt I SUDuer;, fu =1 I J*u Il

Now {vx = uxui} is a complete orthonormal sequence in K. It follows easily
that J*wx = o, and hence that for u ¢ H;, | J*u| < p;||u|l. Therefore
the desired inequality holds with ¢ = || T7 || = || T1 |

We shall say that S is of class a > 0 if there is a constant ¢ such that
wi(S) < ¢ all 5. In particular any bounded operator is of class 0. An
easy consequence of (4) and (5) is

Lemma 1.2, If S and T are operators in H of classes a and b respectively, then
S + T is of class min (a, b) and ST is of class a + b.

Since, as noted above, {42(8)} is the sequence of eigenvalues of §*S for S
compact; since u;(S) — 0 implies S compact, we have

Lemma 1.3. If S s of class a > 3, then it is of Hilbert-Schmidt type.
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2. Sobolev spaces and elliptic operators

Let @ be an open subset of E*. Denote by D(Q) the space of infinitely
differentiable complex-valued functions on @ with compaect support, and by
L’(2) the usual L’-space with inner product (u, v). For m a non-negative
integer, H™(Q) is the space of functions u whose distribution derivatives D“u
of order | | < m are allin L*(2). This is a Hilbert space with inner product
(U, 0)m = 2 (D%, D), | a| < m. If K is a compact subset of 2, we denote
by HE the subspace of H™(Q) consisting of those u with support supp (u) C K.

Lemma 2.1.  Suppose S is a bounded operator in H™(Q) with R(S) C Hg
where K is a compact subset of @ and p > m. Then S is of class (p — m)/n.

Proof. Cover a neighborhood of K by a finite number of closed cubes
K, C 9, and take functions ¢; e D(Q) with supp (¢;) € K;, 2 oi(z) = 1,
zeK. ThenS = Y, S;whereS;u = ¢; Su. By Lemma 1.2 we can therefore
reduce to the case K a cube. Let H%(K) be the space of periodic distributions
on K with derivatives of order <k in L*(K). Then R(S) € H?(K). For an
n-tuple @ = (a1, -+, a,) of integers, let @2 = ayay + -+ + an 2o, xeE".
If d is the length of a side of K, the functions u.(z) = exp (2mia-x) are a com-
plete orthogonal system for H%(K), all k. Let {v.} and {w,} be the correspond-
ing normalized sequences for H7(K) and H7(K) respectively. Then the
unitary map W of H7(K) onto HZ(K) taking v, onto w, is easily seen to be of
class (p — m)/n as an operator in H7(K). The desired conclusion follows
from Lemma 1.1.

Let A = D a.D®% |a| < m, be a partial differential operator with coeffi-
cients a, measurable and bounded on each compact subset of 2. Let 4; be
the restriction of A to a subspace D(4,) with

D(Q) € D(A41) © Hio(D),

where H"106(2) = {u|ou e H"(Q), allp e D(Q)}. Assume that 4, is closed and
that the resolvent set r(A;) is not empty. Take Aer(A4;) and set
S = (Al - )\)_1.

Given operators B, C let [B, C] = BC — CB. Given ¢ ¢ D(2), let ¢ also
denote the operation of multiplication of a function by ¢.

LemMma 2.2. For ¢ e D(Q), ¢S is of class m/n and [A; , ¢)8 is of class 1/n as
operators in Q).

Proof. R(eS) C oHTo(Q) € Hx , where K = supp (¢). Therefore by
Lemma 2.1, 8 is of class m/n.

Since 4, is closed and of order m, it is clear that D(4;) 2 Hx. Thus
¢ : D(A;) — D(A,). Take ¢ e D(Q) such y(x) = 1 for x e K = supp ().
Then .

[Al ] ¢]S = [41 ) ¢]¢S'
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Let K* = supp (¥). Then ¢S is continuous to Hys . By Lemmas 1.1 and
2.1 the injection mapping of Hg+ to Hzx" is of class 1/n in the latter space.
But [4;, ¢] is of order < m — 1, hence continuous from Hg+" to L}(Q). It
follows that [4;, ¢]Sisof class0 + 1/n + 0 = 1/n.

LemMMA 2.3. For ¢ € D(Q) and q a positive integer, 8? is of class mq/n as an
operator in L*(Q).

Proof. We shall show by induction that [A;,¢]S? is of class
[m(q — 1) + 1]/n, and ©S? is of class mg/n. The case ¢ = 1 is Lemma 2.2.
Suppose this has been proved for ¢, and suppose that [4;, ¢}S*" has been
shown to be of class j/n for some j < mq + 1. Takey ¢ D(Q) with ¢(z) = 1,
z esupp (¢). Note that [¢, S] = S[4, ¢¥]S. Then

[4, ¢]8™ = [4, opS™™
= [4, oll¥, SI8* + [A4, £]SyS*
= ([4, ¢IS)([4, ¥IS™) + ([4, ¢]1S)(¥S?).

By the induction assumptions the first term on the right is of class 1/n + j/n
and the second is of class 1/n + mg/n > (7 + 1)/n. So the sum is of class
(j + 1)/n. Thus [4, ¢]S*™ is of class (mq + 1)/n. As for oS,

ST = YpS™ = ylp, SIS + YSpS*
= (¥S)([4, ¢IS™™) + (¥8)(£S?).

By what was just proved, the first term on the right is of class
m/n + (mq + 1)/n > m(q + 1)/n. By the induction assumption the second
term is of class m/n + mq/n = m(q + 1)/n. This completes the proof.

As an immediate consequence of Lemmas 1.1, 1.3, and 2.3 we have the key
result.

CoROLLARY 2.4. Let S be as above, ¢ > n/2m and ¢ e D(Q). If H is a
Hilbert space and T : H — L*(Q) is bounded and has R(T) € R(S?), then oT
s of Hilbert-Schmidt type.

Remarks. At least when the coefficients a, for | @ | = m are continuous, the
assumptions that A4; has a non-empty resolvent set while D(A4;) © Hioe(Q)
imply that A is elliptic. Conversely if a, is continuous for || = m and 4 is
elliptic and formally self-adjoint, then under fairly general conditions 4 has a
self-adjoint realization corresponding to the Dirichlet problem [6].

3. The eigenfunction expansion theorem

As in the previous section,  is an open subset of E” and A = D a,D"is an
operator of order m with measurable, locally bounded coefficients. We assume
that for some choice of D(A4,) with

D(Q) € D(A1) C Hioo(Q),
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the restriction 4, of A to D(A,) is self-adjoint in L*(2). Denote the complex
conjugate of a by a™.

TuEoOREM. There are a vector-valued measure v on the real line R and a
unstary mapping V of L}(Q) onto L*(R", dv) such that for uw e D(A,),

(a) VAru(\) = NVu(N) for v-almost all X ¢ R'.
M oreover there is a function 8(x, N) which is dx X dv-square integrable on each
compact subset of @ X R' and such that

(b) Vu(\) = [ 8(z, \)*u(z) dz for ue L}(2) and a.a. \,

(¢) V*g(z) = [6(x, N)g(\) dv(\) forge L*(R', dv) and a.a. z,

(d) A6\ = N, for a.a. N, where 6(z) = 6(x, N).
(The integrals in (b) and (c¢) are taken in the mean square sense, while (d) s
taken in the sense of distributions.)

Proof. The first part of the statement is just the standard spectral repre-
sentation for a self-adjoint operator: there is a finite or countable set v = {»;}
of finite measures on R' and a unitary mapping V of L}(Q) onto L*(R", dv) =
> @ LXR'dv,) diagonalizing A, in the sense of (a) [7, Theorem XII.3.5].
Let S = (A; +¢)™. Then V8%(\) = (A + )" Vu(X\). Therefore Vg eR
(8%) if and only if (N + 2)%(N\) e L*(R', dv). In particular, if g has compact
support then Vg e R(8%), all ¢.

Now let I;  R' be the interval ( —7,7) and let {Q;} be an increasing sequence
of relatively compact open subsets of @ with union Q. Take functions
;i e D(Q) with () = 1, allzeQ;. Let W; be the restriction to L*(1;, dv)
of o; V*. Then R(W,) € R(¢; 89), all . It follows from Corollary 2.4 that
W; is an operator of Hilbert-Schmidt type. Therefore there is a kernel
0;(z, \) e L’(Q X I, dx X dv) such that for g e L’(I;, dv),

V¥(z) = f_jj 0;(z, \)g(\) dv(\), ae. in Q.

Clearly for k > j, 0, = 6; a.e. on Q; X I;. Therefore there is a function 6,
measurable and dz X dv square integrable on each compact subset of @ X R',
such that for g e L*(R', dv),

V¥(z) = lim fj 6(x, \)g(\) dv(\), a.e. in .

This proves (¢); (b) and (d) follow by standard arguments. For ue LAQ),
g € L*(R', dv) with compact support,

[s0vum* o) = (g, Vu) = (7, w)

_ f[ g8z, Nu(h)* dz dv().

Then (b) follows from Fubini’s theorem. Finally, for u e D(2) & D(4,),
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letting ( , ) denote the distribution pairing we have
(A6, , uw) = (Or, Auy = VAu(N) = NVu(N)
= (N0, u), a.a.A\.

Since D(2) is separable, this implies that as a distribution A8, = N\, for almost
all \.
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