
ON THE UNIQUENESS THEOREM

BY
HELMUT BENDER

It is the purpose of this note to give an alternate proof of the following
theorem which originally is an intermediate result of [1].

THEORElYl (Felt and Thompson). Let G be a simple group of odd order all of
whose proper subgroups are solvable. ’Let E be an elementary abelian p-subgroup
of order p8 in G. Then there is only one maximal subgroup of G which contains E.
The largest part of the proof deals with the Fitting subgroup F of a maximal

subgroup H of G. In 2 we consider the case that F is a p-group; necessary
results about F are derived in a well known way mainly from the Transitivity
Theorem (see (1.1) below) and the ZJ-Theorem (1.2). The case that F is
not a p-group is treated in 3; here a very simple observation is crucial, namely
that arguments in the proof of the Transitivity Theorem can be applied to
certain subgroups of F.
In 4, knowledge about F is used to obtain information about subgroups of

H not necessarily contained in F. Finally transfer arguments finish the proof
of the theorem.
In the remainder of this section we introduce some notation and collect

some necessary lemmas.
Notation.

S-subgroup Sylow p-subgroup
X set of non-identity elements of X
F (X) Fitting subgroup of X maximal nilpotent normal subgroup of X
J (P) subgroup generated by all the abelian subgroups of maximal possible
order of P
r(A, ) set of A-invariant v-subgroups of Y

r*(A, r) set of maximal elements of r(A, v)
group of type (p, p, ..., p) elementary abelian p-group of order p
r (X) _> n means that X has an elementary abelian p-subgroup of order p
SCN, (P) set of abelian normal subgroups of P satisfying Cp (A) A and
r(A) >_ n
{...} the set
(..-} the subgroup generated by

In the following sections G is assumed to be a group of odd order all of whose
proper subgroups are solvable.
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ON THE UNIQUENESS THEOREM 3

SCN, (p) set of all A SCN, (P) where P ranges over the S-subgroups of G
set of maximal subgroups of G

(X) set of maximal subgroups of G which contain X
set of subgroups of G which are contained in only one H

We divide 9 into three classes. Take H e .
H e 92 if (F (H)) _> 2 and (i) or (ii) holds where

(i) r (F (H > 3
(ii) F (H) has a subgroup U of type (p, p such that U is contained in some
element of SCN8 (p

H 91 if F (H) is a p-group for some prime p, and G has a subgroup of
type (p, p, p);
H 90 if H 91 and H

The meaning of any symbol not explained here can be deduced from pages
519-520 of [2]. In the following, "group" means "finite group".

Necessary results.

1.1 TRANSITIVIT THEOREm (Feit and Thompson). Let G be as above and p
a prime. IrA SCNs(p), then Ca(A is transitive ona(A, q),for any q

*(A ).Furthermore, any S-subgroup ofNa (A ) normalizes some element of q

Proof. See [2, page 292, Theorems 8.5.4 and 8.5.6].

1.2 ZJ-THEOREM (Glauberman). Let X be a solvable group of odd order, p a
prime, and P a S-subgroup of X. Then Z (J (P )0, (X < X.

Proof. See [2, page 279, Theorem 8.2.11].

1.3 (P. Hall and G. Higman). Let X be a solvable group of odd order, p a
prime, and P a S-subgroup of 0,. (X ). If x X satisfies [x, [x, P]] 1, then

0,, (X).

Proof. See [2, page 235, Theorem 6.5.3].

1.4 (Feit and Thompson). Let p be an odd prime and P a p-group. If
r (P) >_ 3, then SCNa (P) is not empty.

Proof. See [2, page 202, Theorem 5.4.15].

1.5 (Burnside). Let H be a subgroup of G, p a prime, and P a p-subgroup of
H. Assume the following

(i) If ug
e H for some u e P and g e G, then UgU-1 H’ (the latter holds when

u and u are already conjugate in H);
(ii) P H’;
(iii) (p,[G:H]) 1.

Then G is not simple.

Proof. See the proof of [3, page 203, Theorem 14.3.1].
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1.6. Let X be a solvable group. Then
(i) Cx (F (X )

_
F(X);

(ii) Cx(P)

_
O,.(X), for any S-subgroup of O,.,(X).

Proof. This is easily verified.

1.7. Let the group K act on the nilpotent group Y, and assume ([ K I, Y ]) 1.
Set Y Cr(K). If Cr(Y)

_
Y, then Y Y.

Proof. By Frattini argument applied to KY < Nr(Y). (We may as-
sume that K is a p-group.

1.8. Let X be a solvable group, p a prime, and P a p-subgroup of X. Then
O, (C: (P ) ) O, (Z ).

Proof. Without loss, 0, (X) 1. Set Y PO (X), K 0, (C: (P)),
and Y Cr(K). Obviously, PCr(P)

_
Y. This implies Cr(Y)

_
Y.

Now (1.7) yields Y Cr(K); by (1.6), K 1.

1.9. Let P be a p-group, p odd. Then we have the following.
(i) If cl (P)

_
2, then g P g 1} is a subgroup ofP (i.e. 12 (P) 1 ).

(ii) If P is non-cyclic, then (Z (P ) is non-cyclic.
(iii) IfN is a non-cyclic normal subgroup of P, then N has a subgroup of type

(p, p) which is normal in P.
(iv) If r (P >_ 3, then any normal subgroup of type (p, p) of P is contained

in. some element of SCNa (P ),
(v) Let X be a p’-group acting on P; if X centralizes (P), then X

centralizes P.
(vi) Let K be a solvable group of automorphisms of P; if r (P

_
2 and K

has odd order, then K’ is a p-group (in particular, K has a normal S-
subgroup ).

Proof. For (i), (ii), and (v) see [2, page 183, Lemma 5.3.9.i, page 199,
Theorem 5.4.10.i, and page 184, Theorem 5.3.10 respectively].
As for (iii), observe that fh (Z (N)) is a non-cyclic normal subgroup of ex-

ponent p of P.
Now assume r (P) _> 3, and let U be a normal subgroup of type (p, p) of P.

By (1.4), there exists some A SCNa (P). Set B UCa (U). Then B < P,
r (B) _> 3, and B’ 1. Enlarge B to a maximal abelian normal subgroup of
P, which then is an element of SCNa (P). This proves (iv).
In order to prove (vi), we may assume that P is not cyclic. Set

V h(Z.(P)) and V/V’. By (i) and (ii), V land IV! >_ p.
On the other hand, r (P)

_
2 implies VI

_
p and fh (C,(V)) V. Then

?1 P; and since a p’-subgroup of C() also centralizes V, it follows from
(v) and (1.7) that C(?) is a p-group. Now the assertion follows from the
structure of GL (2, p), the automorphism group of ?, see [4, Kapitel II, 8].



1.10. Let X be a solvable group of odd order, p a prime, and P a S-subgroup
of X. If P’ is cyclic, then P 0,., (X).

Proof. We may assume that Q O,.,(X) is an elementary abelian p-
group. Then Q

___
P and [P’ n Q <- p. This implies [P, [P, Q]] 1. Now

(1.3) yields P __. Q.

2. Maximal subgroups in 0

In this section we prove a uniqueness theorem for certain subgroups of type
(p, p and discuss maximal subgroups of G whose Fitting subgroup is a p-group.

2.1. Let p be a prime, H e, and U a subgroup of type (p, p) ofH satisfying

Ca (x)

_
H, for all x U.

Then U e q, i.e. E (U H.

Proof. Let P be a S-subgroup of H containing U. We first show that
No (P) H; then P is also a S-subgroup of G.

Since U is non-cyclic and abelian, every U-invariant p’-subgroup of G is
contained in H (otherwise U would act fixed-point-free on some non-trivial
section of G). Thus, O,(H) ((P, p’)). Hence, N(P) normalizes
O, (H). This implies No (P)

_
H, provided 0,, (H) 1.

If 0, (H) 1, then the ZJ-Theorem (1.2) yields Z (J (P)) <l H, and again
we get N(P) H.
Now assume H # M 9E (U). Choose M in such a way that M n H ] is

maximal, and let R be a S-subgroup of M n H containing U. Without loss,
R

_
P. Choice ofM and No (P)

_
H yield No (R) H. As a consequence,

R is a S-subgroup of M. We have 0, (M) H. Set Z Z (J (R)). By
the ZJ-Theorem, M 0,, (M)NM(Z). Thus, No(Z) H; now choice of
M and Np (Z) R imply R P. If 0, (H) 1, then No (Z) H. Hence,
O,,(H) # 1.

Set S P n 0,. (M). Then M 0, (M)NM (S). This implies S # P.
Then it follows from (1.9.vi) and (1.6) that SCNa (P) is non-empty. Take
A SCN8 (P). By (1.3), A

__
S.

Take any prime q e pr. By the Transitivity Theorem (1.1), P normalizes
some maximal A-invariant q-subgroup Q of G. Being U-invariant, Q is con-
tained in H; then P

_
NH(Q) implies Q

_
0, (H), and Q must be a Sq-

subgroup of 0, (H).
From the Transitivity Theorem we know that Co(A) is transitive on

t4*o (A, q). However, Co(A) AO, (Co(A)) implies Co(A)

_
H (because

Co (A) is U-invariant). Consequently, every A-invariant q-subgroup of G is
contained in 0, (H). Since this holds for any prime q pr, we get 0, (H)
(ta a (A, p’)). This together with A

_
S H yields 0, (H) (o (S, p’)).

Then No(S) normalizes 0, (H) # 1. Thus, No(S) __. H, a contradiction.
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2.2. Suppose H e 91. Let U be a subgroup of type (p, p) of H, where p is
the only prime divisor of IF (H) I.

If CH(U) has a subgroup of type (p, p, p), then U .
Proof. Let P be a Sp-subgroup of H and E a subgroup of type (p, p, p)

such that U E P. By (1.4), we find some A SCN8 (P).
Assume 9r (A) H. Then Ca (x)

_
H for all x e A. Take a subgroup

U1 of type (p, p) of A which is normalized by E, and set U CE (U). Then
]UI >_ p. By (2.1), 9r (U) H. Hence, Ca(x) H for all x e Us. By
(2.1), 9r(U) H. Then a third application of (2.1) yields 9r(U) H.
Thus, if suffices to prove (A) H.

By (1.3), A O(H) F(H). Then Z(F(H))

_
A and therefore

Co(A)

_
H. As A is an S-subgroup of CH (A), it follows from (1.6) and

(1.7) that Cn (A) A. Thus, Co (A) A.
By the ZJ-Theorem, Z (J (P)) < H; in particular, No (P) H, and P is a

S-subgroup of G. Then A SCN8 (p ).
Take any q p’. It follows from the Transitivity Theorem and Co (A) A

that id o (A, q) has only one maximal element, say Q. Then No (A) normalizes
Q, and Q is also the unique element of ida* (F (H), q), because of A

_
F (H)

_
No (A). Now H has to normalize Q, and this implies Q 1.

Thus, ido(A, p’) 1.
Now assume H M e 9r (A). Choose M in such a way that M n H I is

maximal, and let R be a S-subgroup ofM n H. Choice ofM implies that R is
a S-subgroup of M. We already know that 0, (M) 1. From the ZJ-
Theorem we get Z (J (R)) <:1M. Hence, No (R) M, and R is a S-subgroup
of G. But then Z (J (R)) is also normal in H, a contradiction.

3. Maximal subgroups in

Throughout his section le H 9r, and set F F (H) and (F). For
any nilpotent group X and any prime set z we write X, for O, (X).

3.1. Let E be a subgroup of F satisfying Z (F ) E. Take p r and assume
E M G. Then E,, 0,, (M).

Proof. For P E we have 1 Z (F) P and therefore Co (P)

_
H.

Hence, E,,

_
0, (CM (P)). By (1.8), this implies E,

___
0, (M).

3.2. Let E be a subgroup of F satisfying Z (F)

_
E. If id (E, r’) 1, then

Eel.

Proof. Take M 9r (E). We have to show that M H.
Set D F (M) and v (D). By assumption, v.
For p e r we have E,

___
0, (M), by (3.1). Thus, E,,

_
0, (M) 1, i.e.

r. As a second consequence, D
_

Co(E,)

_
H.

From [ri _> 2 we can now conclude D

_
H. Obviously, D,

_
Co (E).
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As an easy consequence, 0,(M)

_
Ca(E)

_
H. Then 0,(M)

O,(C,(D)). By (1.8), this implies O,(M)

_
O,(H).

Now every assumption actually used so far remains valid if H is replaced
by M, M by H, and E by D F(M). For this reason, we also have
0, (H)

_
0, (M). Thus, 0, (M) 0, (H) 1. This implies M H.

3.3. Let E be a subgroup of F satisfying C(E)

_
E. Assume q e r and

E M c G. Then (M (E, q)) is a q-group.

Proof. For K e d.(E, v’) we have [K, E] K n F 1. This implies
K C(F)

_
F, see (1.7)and (1.6), and therefore K 1. Thus,

(/, ’) 1.
Now let Q e ld (E, q). Take two different primes p, r , and set P F

and R Ft. By (3.1), R 0,,(M); hence, [R, Q]

_
O,,(M). Now

C(R) eid.(E, ’) 1 implies [R, Q] Q. Thus, Q

_
O,,(M).

Since p e was arbitrary, we get Q 0r, (M). Set N 0r, (M). We
have C(P)e .(E, ’) 1. It follows easily from Sylow’s theorem that
every P-invariant q-subgroup of N is contained in a P-invariant Sq-subgroup
of N, and that all P-invariant Sq-subgroups of N are conjugate under CN (P).
Thus, CN(P) 1 forces ((P, q)) to be a q-group. Now the assertion is
clear.

3.4. Let V be an elementary abelian p-subgroup ofF, for some p e r. Assume
either V pS, or V p and V A for some A SCNs (p ). Set
E C(V). Thena(E, r’) 1.

Proof. Take any q e r’. Suppose R, Q e ld a* (E, q), R Q.
If R, Q 1, then (N (R n Q), N (R n Q)) is a q-group, by (3.3). How-

ever, this is impossible when R and Q are chosen in such a way that R a Q!
is maximal. Thus, R n Q 1 (for any two different elements of ld a* (E, q)).
Then it follows from (3.3) that, for every z e Z (E), C (z) 1 or C (z) 1.

This implies that Z (E) is metacyclic; in particular, Vi p". Clearly,
(Z(F))

_
V; consequently, A Ca(V)

_
H and therefore A

_
N,(E).

As V is not cyclic, we find an element z e V satisfying C (z) 1. Set
(* (E,ca() q by (3.3), S is a q-group. A normalizes S. Since any two

maximal elements of tda (E, q) have trivial intersection and A normalizes E,
it follows that S

_
Q and A Na (Q).

In the same way we see that R is A-invariant.
Now the Transitivity Theorem (1.1) yields an element c . Ca (A) such that

(Q, R) is a q-group. However, c e Ca(A)

_
Ca(V)

_
N,(E) implies

Q e *a (E, q). Thus, Q R and therefore C, (z) C (z) 1, a contradic-
tion.

This proves that Id*a (E, q) has only one element, say Q. ThenE N(E)
normalizes Q, and consequently Q is also the unique element of *a (E, q).
As F is a nilpotent normal subgroup of H, it follows easily that H normalizes
Q; but then Q

_
Fq 1. The proof of (3.4) is finished.
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3.5. Le V be as in (3.4). Then Ve.

Proof. By (3.4) nd (3.2), C(V) . Hence, C(x) H forllxe V.
Then (2.1) yields V e .

4. The Uniqueness Theorem
Throughout this last section let p be a prime and A e SCN (p).

4.1. Suppose Ue, V C(U),andr(V) >_ 2. Then V

Proof. If U

_
HeM, then Ue implies C(x) H for all x eV.

Then (2.1) yields V e .
4.2. If A , $hen E for every p-subgroup E of G with r (E) >_ 3.

Proof. Without loss, E normalizes A. Then E normalizes a subgroup B
of type (p, p) of A. Fromr(E) >_ 3weconcluder(C(B)) >_ 2. Now
repeated application of (4.1) yields C (B) e . In particular, E e t.

4.3. Suppose H 9 u 9T.. Then there is a prime q such that F (H)q
and E e ctt for every subgroup E of type (q, q, q) of G.

Proof. If H e OlZ, then r (F (H))

_
3 because otherwise F (H) would be

Sq-subgroup of H (for the unique prime divisor q of IF (H) I), see (1.9.vi).
Then the assertion follows immediately from (2.2).

If H e 9, then the definition of 9. yields a prime q and a subgroup V of
F(H) such that V is of type (q, q, q) or (q, q) and in the second case is con-
tained in some element of SCNa (q).
By (3.5), V e for any such V. In particular, F (H)q e t. Then H con-

tains a Sq-subgroup of G, and therefore some A e SCNa (q) contains such a
subgroup V (see 1.9.iii and iv). Now (4.1) yields ft. e t, and application of
(4.2) completes the proof.

4.4. Assume Ca(A)

_
H e u 01. Then Na(X) H for any p-sub-

group X of G containing A.

Proof. Let q be as in (4.3). If p q, then r (A)

_
3 implies A e U. In

case p q, enlarge F (H)q to an element Q of 14a* (A, q). From F (H)q e U
we get Q

_
H. By the Transitivity Theorem (1.1), Q

_
H and Ca (A)

_
H

implies that every A-invariant q-subgroup of G is contained in H. In par-
titular, K (4a(X, q)) H. Without loss, X

_
H. Then F (H)q

_
K

and therefore Na (K)

_
H. Obviously, Na (X) normali.es K, and the asser-

tion follows.

In the following, let P be a S,-subgroup of G satisfying A < P. Choose some
H e O such that Nq(Z (P))

_
H (then Ca(A)

Ce (A ) A ). In the next lemma we show that H e u O Thenfix a prime
q having the properties described in (4.3), and set Q
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4.5. We have P

_
H and H o.

Proof. We firs show tha H n P is cyclic, provided H, l0. In that case
we have r (F (H))

_
2. Furthermore, F (H) mus be cyclic, because oher-

wise P has a normal subgroup of Cype (p, p) contained in F (H), and this
normal subgroup would be contained in some elemen of SCNa(P), see
(1.9.iii/iv). Then (1.9.vi) yields S’ n P

_
C. (F (H))

_
F(H). This

proves wha is claimed above.

Nex we prove that Z (P) H implies g H, for any g G. Assume this
o be false. Let X be maximal among p-subgroups of H satisfying

Ca(X) H and X_H for somegG-H.

It follows easily from Sylow’s theorem and Na(P)

_
H that X is not a

S-subgroup of H. If X H H, then X must be a S-subgroup of H n H.
These two facts yield No(X) H. Set N No(X). Let S be a S-sub-
group ofN(X). Then X S, and maximality of X forces S to be a S-sub-
group of N. Without loss, S P. For So O,.(N)we have
N N(So)O,(N). Clearly, O,,(N)

_
Ca(X) H. Thus, Na(So) H,

and maximality of X yields S0 X.
As X is non4rivial, N No(X) is solvable. By (1.3), Na (X)

_
0,.(N).

Hence, N, (X)

_
X and therefore A

_
X. By (4.4), this is possible only if

H eM0. Then P’ is cyclic, as we have seen above. By (1.10),S_ O,,.,(N).
Thus, S X, a contradiction. This proves our assertion about Z (P).
Now assume u H for someu P and g G. Then there exists some h, H

such tha u u:
We have Z (P)

_
Ca (u) and Z (P)"

_
Ca (u) for some a H. Sylow’s

theorem yields an element c Ca(u) such that (Z (P), Z (P)) is a p-group.
As H contains a -subgroup of G, (Z (P)’, Z (P)) // for some y G. Then
Z (P)"

_
H n H yields y H, and Z (P)’

_
H n H H n H’ yields gc H.

For h c we now have h H and u ua.
Thus, conditions (i) and (iii) of (1.5) are saisfied, and therefore we get

P tt’ from (1.5).
Then P n H is not cyclic; as we have seen above, this implies H

4.6. Let K 5e a q-suSgroup of H. If C (K) is not cyclic, then C (K)

Proof. By definition of q and Q, Q F (//)q U and E U for every sub-
group E of type (q, q, q) of G. Then (4.1) yields D U for any non-cyclic
subgroup D of such a subgroup E of ype (q, q, q). Thus, it suces to show
/ Q or r(/C(/))

_
3 for/ C(K). If r(/C(/))

_
2, then

(/C (/))

_
/ C (K), and (1.9.v) yields/C (/) Ca (K). Thus,

C (/) _/, and (1.7) yields/ Q.

4.7. If C(A ) 1, then A .
Proof. Otherwise, p q and I C (A) Q, by (4.1) and definition of q
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and Q. Set R Co (A). We find a non-identity subgroup T/R of No (R)/R
on which A acts irreducibly. Set B C (T/R). Then A/B is cyclic whence
r (B) _> 2. Furthermore, B centralizes T (since p q and B centralizes R
as well as T/R). If T is cyclic, then 21(T)

_
Co(A) and therefore

T

_
Co(A) R, see (1.9.v), contradicting T/R 1. Thus, r(T) >_ 2.

In particular, r (Co (B)) _> 2. By (4.6), Co (B) e . Since r (B) >_ 2, this
implies B e , see (4.1). In particular, A

4.8. Let E be a subgroup of type (p, p, p) of G. Then

Proof. Suppose by way of contradiction that (4.8) is false. Then A
by (4.2). Let Z 1 be a minimal A-invariant subgroup of Z (Q). By (4.7)
and A , Z is not centralized by A. Thus, Z [Z, A]. Since A/C, (Z)
is cyclic, C, (Z) is not cyclic. Then (2.1) yields an element a e C, (Z) such
that Ca(a) H. Let M be a maximal subgroup of G containing Ca(a).
Then M H.

Casel. Me rl (J 9r.. Set R P nO,,(H). By(1.3), A R.
This implies Na(R), M, see (4.4). Thus, IVH(R) normalizes Z(Q) M.
It follows from Q e t and (4.1) that Z(Q) M is cyclic. However,
Z(Q) M contains Z and is therefore not centralized by A. Then it is
clear that P is not contained in N,(R)’. This together with H
NH(R)O,(H) yields P H’, which contradicts (4.5).

Case 2. M, i)0. Then r (F (M)) _< 2. Since Z [Z, A], it follows from
(1.9.vi) that Z centralizes F (M)q,. By definition of q, any maximal sub-
group of G containing a subgroup of type (q, q, q) is conjugate to H. Thus, M
has no subgroup of type (q, q, q). Then it is an easy consequence of (1.9.vi)
and C(F(M))

_
F(M) that, with K F(M)q,, C(K) has a normal

Sq-subgroup. Thus, Z F(M). Set Y CF(M)(Z)q. Then Ca(Y)

_
M n H, because of Z (F (M))q Y, Z

_
Z (Q), and Q t. Now we have

K 0, (C,(Y)) and therefore K

_
0q, (H), see (1.8). Then Q C(K),

and this together with Q e and K M yields K 1. Now M C(K)
has a normal Sq-subgroup, whence M contains a Sq-subgroup of G. However,
this is not in accordance with (Q) H 0 and M e 9r0. The proof is
complete.

Now the assertion of the theorem follows immediately from (1.4) and (4.8).
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