ON THE UNIQUENESS THEOREM

BY
Heimur BENDER!

1

It is the purpose of this note to give an alternate proof of the following
theorem which originally is an intermediate result of [1].

TaeorEM (Feit and Thompson). Let G be a simple group of odd order all of
whose proper subgroups are solvable. Let E be an elementary abelian p-subgroup
of order p* in G. Then there is only one maximal subgroup of G which contains E.

The largest part of the proof deals with the Fitting subgroup F of a maximal
subgroup H of G. In §2 we consider the case that F is a p-group; necessary
results about F are derived in a well known way mainly from the Transitivity
Theorem (see (1.1) below) and the ZJ-Theorem (1.2). The case that F is
not a p-group is treated in §3; here a very simple observation is crucial, namely
that arguments in the proof of the Transitivity Theorem can be applied to
certain subgroups of F.

In §4, knowledge about F is used to obtain information about subgroups of
H not necessarily contained in F. Finally transfer arguments finish the proof
of the theorem.

In the remainder of this section we introduce some notation and collect
some necessary lemmas.

Notation.

S,-subgroup = Sylow p-subgroup

X* = set of non-identity elements of X

F (X) = Fitting subgroup of X = maximal nilpotent normal subgroup of X
J (P) = subgroup generated by all the abelian subgroups of maximal possible
order of P

Ny(4, v) = set of A-invariant w-subgroups of Y

Ny (A, ) = set of maximal elements of Uy (4, =)

group of type (p, p, -++, p) = elementary abelian p-group of order p"
r(X) 2> n means that X has an elementary abelian p-subgroup of order p”
SCN., (P) = set of abelian normal subgroups of P satisfying C»(4) = 4 and
r(A) 2 n

{.-.} = theset - -

{-+-) = the subgroup generated by - - -

In the following sections G is assumed to be a group of odd order all of whose
proper subgroups are solvable.
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SCN.(p) = set of all A ¢ SCN, (P) where P ranges over the S,-subgroups of G
I = set of maximal subgroups of G

M (X) = set of maximal subgroups of @ which contain X

U = set of subgroups of G which are contained in only one H ¢ 9N

We divide 9 into three classes. Take H e 9.

HeMWif w(F(H)) 2 2and (i) or (ii) holds where
i) rFH)) =3
@ii) F (H)hasasubgroup U of type (p, p) such that U is contained in some
element of SCN;(p);
H ey if F(H) is a p-group for some prime p, and G has a subgroup of

type (p, p, p);
Heﬂnoithmland.Hﬁmz.

The meaning of any symbol not explained here can be deduced from pages
519-520 of [2]. In the following, “group” means ‘“‘finite group”.

Necessary results.

1.1 TransrtrviTy TarorEM (Feit and Thompson). Let G be as above and p
a prime. If A e SCN3(p), then Cq(A) is transitive on g (4, q), for any g e p’.
Furthermore, any S,-subgroup of N ¢ (A ) normalizes some element of g (A, q),

Proof. See [2, page 292, Theorems 8.5.4 and 8.5.6].

1.2 ZJ-TueorEM (Glauberman). Let X be a solvable group of odd order, p a
prime, and P a S,-subgroup of X. Then Z (J (P))0, (X) < X.

Proof. See [2, page 279, Theorem 8.2.11].

1.3 (P. Hall and G. Higman). Let X be a solvable group of odd order, p a
prime, and P o Sy-subgroup of Oy »(X). If x € X satisfies [z, [z, P]] = 1, then
Z €0y (X).

Proof. See [2, page 235, Theorem 6.5.3].

1.4 (Feit and Thompson). Let p be an odd prime and P a p-group. If
r(P) = 3, then SCN;(P) is not empty.

Proof. See [2, page 202, Theorem 5.4.15].

1.5 (Burnside). Let H be a subgroup of G, p a prime, and P a p-subgroup of
H. Assume the following:
() If u’ e H for some u ¢ P and g € G, then u’u"" ¢ H' (the latter holds when
w’ and u are already conjugate in H);
) PEH;
(i) @ |G:H|) =1
Then @ 1s not simple.

Proof. See the proof of [3, page 203, Theorem 14.3.1].
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1.6. Let X be a solvable group. Then
i) Cx(F (X)) S FX);
i) Cx(P) © Op »(X), for any Sy-subgroup of Op »(X).

Proof. This is easily verified.

1.7.  Letthe group K act on the nilpotent group Y, and assume (| K |,| Y |) = 1.
Set Yy = Cy(K). IfCy (Y1) C Y1,then Yy =7,

Proof. By Frattini argument applied to KY; <] Nxy(¥1). (We may as-
sume that K is a p-group.)

1.8. Let X be a solvable group, p a prime, and P a p-subgroup of X. Then
Op’ (Cx (P)) c 01»’ (X)

Proof. Without loss, 0,/ (X) = 1. Set Y = P0,(X), K = 0, (Cx(P)),
and Y; = Cy(K). Obviously, PCy(P) € Y;. This implies Cy (Y1) C Y;.
Now (1.7) yields ¥ = Cy(K); by (1.6), K = 1.

1.9. Let P be a p-group, p odd. Then we have the following.
(i) Ifel (P) < 2,then{geP|g” = 1} isa subgroup of P (i.e. (P)* = 1).
(ii) If P is non-cyclic, then Q1 (Z:(P)) 1s non-cyclic.
(iii) If N is a non-cyclic normal subgroup of P, then N has a subgroup of type
(p, p) which is normal in P.
Gv) Ifr(P) = 3, then any normal subgroup of type (p, p) of P is contained
in some element of SCN3(P).
(v) Let X be a p’-group acting on P; if X ceniralizes 0 (P), then X
ceniralizes P.
(vi) Let K be a solvable group of automorphisms of P; if r(P) < 2 and K
has odd order, then K’ is a p-group (in particular, K has a normal S,-
subgroup).

Proof. For (i), (ii), and (v) see [2, page 183, Lemma 5.3.9.i, page 199,
Theorem 5.4.10.i, and page 184, Theorem 5.3.10 respectively].

As for (iii), observe that @ (Z,(N)) is a non-cyelic normal subgroup of ex-
ponent p of P.

Now assume 7 (P) 2 3, and let U be a normal subgroup of type (p, p) of P.
By (1.4), there exists some 4 ¢ SCN;(P). Set B = UC,(U). Then B P,
r(B) = 3,and B’ = 1. Enlarge B to a maximal abelian normal subgroup of
P, which then is an element of SCN3(P). This proves (iv).

In order to prove (vi), we may assume that P is not cyclic. Set
V = 2(Z@P))and V = V/V". By (i) and (i), V? = 1 and | V| > p".
On the other hand, »(P) < 2 implies | V| < p* and & (C»(V)) S V. Then
| 7| = p*; and since a p’-subgroup of Cx (V) also centralizes V, it follows from
(v) and (1.7) that Cx(V) is a p-group. Now the assertion follows from the
structure of GL (2, p), the automorphism group of ¥, see [4, Kapitel II, §8].
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1.10. Let X be a solvable group of odd order, p a prime, and P a S,-subgroup
of X. If P’ 1s cyclic, then P © Oy ,(X).

Proof. We may assume that @ = 0, ,(X) is an elementary abelian p-
group. Then @ C Pand |P'n Q| < p. This implies [P, [P, Q]] =1. Now
(1.3) yields P C Q.

2. Maximal subgroups in 91,

In this section we prove a uniqueness theorem for certain subgroups of type
(p, p) and discuss maximal subgroups of G whose Fitting subgroup is a p-group.

2.1. Let p be a prime, H ¢ M, and U a subgroup of type (p, p) of H satisfying
Co(x) € H, forallxeU*,
Then U e, 1.e. M(U) = H.

Proof. Let P be a Sp-subgroup of H containing U. We first show that
Ng(P) € H; then P is also a S,-subgroup of G.

Since U is non-cyclic and abelian, every U-invariant p’-subgroup of G is
contained in H (otherwise U would act fixed-point-free on some non-trivial
section of G). Thus, Oy (H) = (Ne(P, p')). Hence, Ne(P) normalizes
O, (H). This implies N¢(P) € H, provided O, (H) = 1.

If 0, (H) = 1, then the ZJ-Theorem (1.2) yields Z (/ (P)) < H, and again
we get No(P) C H.

Now assume H = M ¢ M (U). Choose M in such a way that | M n H |, is
maximal, and let B be a S,-subgroup of M n H containing U. Without loss,
R C P. Choiceof M and Ne(P) € Hyield N¢(R) € H. Asa consequence,
R is a S,-subgroup of M. Wehave O, (M) C H. SetZ =Z(J(R)). By
the ZJ-Theorem, M = O, (M)Nx(Z). Thus, N¢(Z) & H; now choice of
Mand Np(Z) D Rimply R = P. IfO, (H) = 1,then Ng(Z) = H. Hence,
O, (H) # 1.

Set S = PnOyp(M). Then M = O, (M )Ny (S). This implies 8 = P.
Then it follows from (1.9.vi) and (1.6) that SCN;(P) is non-empty. Take
A ¢ SCN3;(P). By (1.3),4 € 8.

Take any prime ¢q ¢ p’. By the Transitivity Theorem (1.1), P normalizes
some maximal A-invariant g-subgroup @ of G. Being U-invariant, @ is con-
tained in H; then P € Nz(Q) implies @ € O, (H), and @ must be a S,-
subgroup of O, (H).

From the Transitivity Theorem we know that C¢(A) is transitive on
Ne(4, ¢). However, Co(4) = A0, (Ce(A)) implies Co(4) S H (because
Cq¢(A4) is U-invariant). Consequently, every A-invariant g-subgroup of @ is
contained in O, (H). Since this holds for any prime g ¢ p’, we get O, (H) =
(Ne(4, p’)). This together with A © S © H yields Oy (H) = e (S, p')).
Then N¢(S) normalizes O, (H) # 1. Thus, Ne(S) & H, a contradiction.
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2.2. Suppose H ¢ My. Let U be a subgroup of type (p, p) of H, where p is
the only prime divisor of | F (H) |.
If Ca(U) has a subgroup of type (p, p, p), then U € U.

Proof. Let P be a S,-subgroup of H and E a subgroup of type (p, p, p)
such that U € E € P. By (1.4), we find some A ¢ SCN;(P).

Assume 9 (A) = H. Then Cs(z) € H for all z ¢ A¥. Take a subgroup
U, of type (p, p) of A which is normalized by E, and set Uy = Cz(U1). Then
|Us| > p°. By (2.1), M(U1) = H. Hence, Ce(x) S Hforall z e Us. By
2.1), M (U;) = H. Then a third application of (2.1) yields on(U) = H.
Thus, if suffices to prove M (4) = H.

By (13), A € 0,(H) = F(H). Then Z(F(H)) € A and therefore
Ce(4) € H. As A is an S,subgroup of Cx(4), it follows from (1.6) and
(1.7) that Cx(4) = A. Thus, Ce(4) = A.

By the ZJ-Theorem, Z (J (P)) < H; in particular, N¢(P) € H, and P is a
S,-subgroup of G. Then A ¢ SCN;(p).

Take any g e p’. It follows from the Transitivity Theorem and Co(4) = 4
that e (4, ¢) has only one maximal element, say @. Then Ng¢(A ) normalizes
Q, and Q is also the unique element of Ug (F (H ), ¢), because of A C F (H) C
Ns(4). Now H has to normalize @, and this implies @ = 1.

Thus, Ue(4, p’) = 1.

Now assume H 5= M ¢ M (A). Choose M in such a way that | M n H |, is
maximal, and let R be a S,-subgroup of M n H. Choice of M implies that R is
a Sp-subgroup of M. We already know that O, (M) = 1. From the ZJ-
Theorem we get Z (J (R)) <\ M. Hence, N¢(R) & M, and R is a S,-subgroup
of G. But then Z (J (R)) is also normal in H, a contradiction.

3. Maximal subgroups in 91t

Throughout this section let H ¢ M, , and set F = F(H) and v = = (F). For
any nilpotent group X and any prime set ¢ we write X, for O, (X).

3.1. Let E be a subgroup of F satisfying Z(F) © E. Take p e  and assume
ECMcCG. ThnEy CO0y,M).

Proof. For P = E, wehavel ¢ Z(F), C P and therefore C¢(P) C H.
Hence, E,y € 0, (Cyx(P)). By (1.8), this implies E,» & 0, (M).

3.2. Let E be a subgroup of F satisfying Z(F) C E. IfVU(E,n') = 1, then
E ea.

Proof. Take M ¢ W (E). We have to show that M = H.

Set D = F(M)and ¢ = w(D). By assumption, ¢ & .

For p e w we have E,» © O, (M), by (3.1). Thus, E'; € O (M) = 1, 1.
o = w. As a second consequence, D, & Cq(E,) € H.

From | w| > 2 we can now conclude D € H. Obviously, D, € Cq(E,).
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As an easy consequence, O, (M) & Cq (E;.) € H. Then 0,M) C
0, (Ca(Dp)). By (1.8), this implies O, (M) € O, (H).

Now every assumption actually used so far remains valid if H is replaced
by M, M by H, and E by D = F(M). For this reason, we also have
0, (H) € Oy (M). Thus,Op (M) = Op (H) # 1. This implies M = H.

3.3. Let E be a subgroup of F satisfying Cr(E) & E. Assume qex’ and
EC McCG Then Nu(E, q)) s a g-group.

Proof. For K eVg(E, ©') we have [K, E] € K n F = 1. This implies
K C Cg(F) C F, see (1.7) and (1.6), and therefore K = 1. Thus,
V]H(E, ™ ’) = 1,

Now let @ en (E, q). Take two different primes p, 7 ¢ 7, and set P = F,
and R = F,. By (8.1), R € 0, (M); hence, [R, Q] & O, (M). Now
Co(R) eVg (B, 7') = 1 implies [R, @] = Q. Thus, Q@ & O, (M).

Since p e v was arbitrary, we get Q C O (M). Set N = O, (M). We
have Cx(P) eV (E, o) = 1. It follows easily from Sylow’s theorem that
every P-invariant g-subgroup of N is contained in a P-invariant S,-subgroup
of N, and that all P-invariant S -subgroups of N are conjugate under Cy (P).
Thus, Cy(P) = 1 forces (Nx (P, q)) to be a g-group. Now the assertion is
clear.

3.4. LetV be an elementary abelian p-subgroup of F, for somep e w. Assume
esther |V| = p% or |V| = p* and V & A for some AeSCNs(p). Set
E = Cp(V). ThenWe(E, ') = 1.

Proof. Take any qen’. Suppose R, QeVy(E, q), R = Q.

IfRnQ 5 1, then Nz (R n Q), No(R n Q)) is a g-group, by (3.3). How-
ever, this is impossible when R and @ are chosen in such a way that |R n Q|
is maximal. Thus, R n Q = 1 (for any two different elements of Ug (E,q)).

Then it follows from (3.3) that, for everyz ¢ Z(E), Cr(2) = lor Co(z) = 1.
This implies that Z (E) is metacyclic; in particular, | V| = p®. Clearly,
U (Z(F),) S V; consequently, A © Cq(V) € H and therefore A & Nz (E).

As V is not eyclic, we find an element z ¢ V¥ satisfying Co(2) # 1. Set
S = Negw (B, q)); by (3.3), Sisag-group. A normalizes S. Since any two
maximal elements of ¢ (E, ¢) have trivial intersection and A normalizes E,
it follows that S € Q and A C N¢(Q).

In the same way we see that R is A-invariant.

Now the Transitivity Theorem (1.1) yields an element ¢ ¢ C¢ (4 ) such that
(@, R) is a g-group. However, ceCe(4) & C¢(V) S Ng(E) implies
Q Vg (E,q). Thus, @ = R and therefore Cz(2) = Co(2)° # 1, a contradic-
tion.

This proves that Ng (B, ¢) has only one element, say Q. Then E; = Nz(E)
normalizes Q, and consequently @ is also the unique element of Ug (E:, ¢).
As F is a nilpotent normal subgroup of H, it follows easily that H normalizes
Q;but then Q € F, = 1. The proof of (3.4) is finished.
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3.5. Let V be as in (3.4). Then Ve,

Proof. By (3.4) and (3.2), C#(V) eu. Hence, Co(z) C H forall z e V¥
Then (2.1) yields V e,

4. The Uniqueness Theorem
Throughout this last section let p be a prime and A ¢ SCN;3(p).

4.1. Suppose Uel, V € Ce(U), and r(V) > 2. Then VeU.

Proof. If U C HeM, then U el implies Co(z) S H for all z¢ V¥,
Then (2.1) yields V e .

4.2. If A e, then E ¢ U for every p-subgroup E of G withr (E) = 3.

Proof. Without loss, E normalizes A. Then E normalizes a subgroup B
of type (p, p) of A. From r(E) > 3 we conclude r(Cg(B)) > 2. Now
repeated application of (4.1) yields Cz(B) e U. In particular, E ¢ U.

4.3. Suppose H e My u My, Then there is a prime q such that F (H), e U
and E e U for every subgroup E of type (g, ¢, ¢) of G.

Proof. If H ¢ My, then r(F(H)) > 3 because otherwise F (H) would be a
S,-subgroup of H (for the unique prime divisor q of | F (H) |), see (1.9.vi).
Then the assertion follows immediately from (2.2).

If H ¢ M., then the definition of 9N, yields a prime ¢ and a subgroup V of
F(H) such that V is of type (g, g, q) or (g, ¢) and in the second case is con-
tained in some element of SCN;(q).

By (38.5), VeuU for any such V. In particular, F (H),¢U. Then H con-
tains a S,-subgroup of G, and therefore some A ¢ SCN3(g) contains such a
subgroup V (see 1.9.ii and iv). Now (4.1) yields 4 ¢ U, and application of
(4.2) completes the proof.

44. Assume Ce(A) S HeMyu M. Then Ne¢(X) & H for any p-sub-
group X of G containing A.

Proof. Let gbeasin (4.3). Ifp = ¢q,thenr(4) = 3implies A ¢ U. In
case p % ¢, enlarge F (H), to an element Q of Ng(4, q). From F(H),e U
we get @ & H. By the Transitivity Theorem (1.1),Q € Hand C4(4) S H
implies that every A-invariant g-subgroup of @ is contained in H. In par-
ticular, K = (Ue¢(X, ¢q)) € H. Without loss, X € H. Then F(H), € K
and therefore N¢(K) © H. Obviously, N¢(X) normalizes K, and the asser-
tion follows.

In the following, let P be a S,-subgroup of G satisfying A | P. Choose some
H e 9 such that Ne(Z(P)) © H (then Ce(4) & H, because of Z(P) ©
Ce(A) = A). Inthenextlemma we show that H € My u M. Then fix a prime
g having the properties described in (4.3), and set Q = F(H),.
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4.5. We have P C H' and H ¢ 91,

Proof. We first show that H’ n P is cyclic, provided H ¢ ,. In that case
we have r(F(H)) < 2. Furthermore, F (H ), must be cyclic, because other-
wise P has a normal subgroup of type (p, p) contained in F (H), and this
normal subgroup would be contained in some element of SCN;(P), see
(1.94ii/iv). Then (1.9.vi) yields H' n P & Cx(F(H)) € F(H). This
proves what is claimed above.

Next we prove that Z (P) C H’ implies g ¢ H, for any g ¢ G. Assume this
to be false. Let X be maximal among p-subgroups of H satisfying

Ce(X)STH and XC H for some ge G — H.

It follows easily from Sylow’s theorem and N¢(P) & H that X is not a
S,-subgroup of H. If X C H° ¢ H, then X must be a S,-subgroup of H n H’.
These two facts yield No(X) & H. Set N = Ng(X). Let S be a S,-sub-
group of Nz (X). Then X c 8, and maximality of X forces S to be a S,-sub-
group of N. Without loss, 8 € P. For Sy = S n Oy ,(N) we have
N = Nx(8)0, (N). Clearly, 0,,(N) C Co(X) S H. Thus, Ne(So) & H,
and maximality of X yields Sy = X.

As X isnon-trivial, N = N¢(X)issolvable. By (1.3),N4(X) C Oy »(N).
Hence, N4 (X) € X and therefore A & X. By (4.4), this is possible only if
HeM,. Then P iscyclic, as we have seen above. By (1.10),8 € Oy »(N).
Thus, 8 = X, a contradiction. This proves our assertion about Z (P).

Now assume 4’ ¢ H for some % ¢ P and g ¢ G. Then there exists some & ¢ H
such that u’ = u":

We have Z(P)° € Ce(w’) and Z(P)* © Co(u’) for some a ¢ H. Sylow’s
theorem yields an element ¢ e Co(u’) such that (Z (P)*, Z (P)°) is a p-group.
As H contains a S,-subgroup of G, (Z (P)*,Z (P)") € H forsomey ¢ G. Then
Z(P)Y CHnHyieldsyeH,and Z(P)” C H nH* = Hn H” yields gce H.
For b = gc we now have ke H and v° = ",

Thus, conditions (i) and (iii) of (1.5) are satisfied, and therefore we get
P C H’ from (1.5).

Then P n H' is not cyclic; as we have seen above, this implies H ¢ 91,.

4.6. Let K be a q'-subgroup of H. If Cq(K) 78 not cyclic, then Cq(K) € U.

Proof. By definition of ¢ and @, @ = F(H),¢ U and E ¢ U for every sub-
group E of type (g, ¢, ¢) of G. Then (4.1) yields D ¢ U for any non-cyclic
subgroup D of such a subgroup E of type (g, ¢, ¢). Thus, it suffices to show
R = Qorr(RCe(R)) = 8 for B = Co(K). If r(RCe(R)) < 2, then
U(RCe(R)) € B = Co(K), and (1.9.v) yields RCq(R) S Ce¢(K). Thus,
Cq(R) & R, and (1.7) yields R = Q.

4.7. If Co(A) # 1, then A e,
Proof. Otherwise, p #~ gand 1 ## Cq(4) # @, by (4.1) and definition of ¢
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and Q. Set R = Cq(4). We find a non-identity subgroup T/R of No(R)/R
on which A acts irreducibly. Set B = C4(T/R). Then A/Bis cyclic whence
r(B) > 2. Furthermore, B centralizes T (since p ¥ ¢ and B centralizes R
as well as T/R). If T is eyclic, then Q(T) € Cqo(4) and therefore
T € Co(A) = R, see (1.9.v), contradicting T/R % 1. Thus, r(T) = 2.
In particular, r (Co(B)) = 2. By (4.6), Co(B) e U. Since r(B) = 2, this
implies B ¢ U, see (4.1). In particular, A e.

4.8. Let E be a subgroup of type (p, p, p) of G. Then E € U.

Proof. Suppose by way of contradiction that (4.8) is false. Then 4 ¢ U,
by (4.2). LetZ 5 1 be a minimal A-invariant subgroup of Z (Q). By (4.7)
and A ¢U, Z is not centralized by A. Thus, Z = [Z, A]. Since A/C4(Z)
is eyclie, C4 (Z) is not cyclic. Then (2.1) yields an element a ¢ C, (Z)¥ such
that Cq(a) $ H. Let M be a maximal subgroup of @ containing C¢(a).
Then M = H.

Casel. Me9 UMy Set R = P nO0,,(H). By (13), 4 € R.
This implies N¢(R), & M, see (44). Thus, Nz(R) normalizes Z(Q) n M.
It follows from Q e U and (4.1) that Z(Q) n M is cyclic. However,
Z(Q) n M contains Z and is therefore not centralized by A. Then it is
clear that P is not contained in Nz(R). This together with H =
Nz(R)O,(H) yields P & H', which contradicts (4.5).

Case2. MeM,. Thenr(F(M)) < 2. Since Z = [Z, A], it follows from
(1.9.vi) that Z centralizes F (M ),. By definition of ¢, any maximal sub-
group of G containing a subgroup of type (g, ¢, ¢) is conjugate to H. Thus, M
has no subgroup of type (g, ¢, ¢). Then it is an easy consequence of (1.9.vi)
and Cx(F(M)) € F(M) that, with K = F(M),, Cx(K) has a normal
S,subgroup. Thus, Z € F(M). Set Y = Cran(Z),. Then Ce(Y) &
M n H,because of Z(F(M)), S Y, Z C Z(Q), and Q ¢U. Now we have
K € 0, (Cx(Y)) and therefore K € O, (H ), see (1.8). Then @ & Cx(K),
and this together with Qe U and K { M yields K = 1. Now M = Cx(K)
has a normal S,-subgroup, whence M contains a S,-subgroup of G. However,
this is not in accordance with 9 (Q) = H ¢ and M e 9My. The proof is
complete.

Now the assertion of the theorem follows immediately from (1.4) and (4.8).
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