IMPLICATIONS IN THE COHOMOLOGY OF H-SPACES

BY
ALEXANDER ZABRODSKY

0. Introduction

0.1, Summary of results. In his investigations of the cohomology of H-
spaces, W. Browder introduced the notion of implications in Hopf algebras
(see e.g. [3, p. 357]). In this study we show that in some important cases an
implication in the cohomology of H-spaces (if it is not a p™ power) takes the
form of a (nonstable) secondary cohomology operation. Some properties of
this operation were investigated in [10]. The main calculations are carried
out in Section 2 where we study the operation ¢, defined on (ker £)*" (¢z = z°)
and associated with the inequality e (8p™) > 2m (e is the excess).

The most significant results of this study could be summarized as follows:

TreoreMm A (Corollary 1.7). Let (X, u) be an H-space and B < H* (X, Z,)
a sub-Hopf algebra closed under the action of the Steenrod algebra @ (p); then there
exists an H-space (G, w) and an H-mapping f : (X, p) — (G, wo) so that
imf* = B. If B s associative G may be assumed homotopy associative.

Moreover, G can be taken to be a product of Eilenberg-McLane spaces with an
exotic multiplication.

Next, consider the fiber X,j : X — X, of themap f : X — @. Since Gisa
product of Eilenberg-MacLane spaces

im (*)= H*(X, Z,)/B in H*(X, Z,).
In particular, if #* () ¢ B ® B then j* (2) is primitive and we have

Traeorem B (Corollary 2.2). Let p be an odd prime, By C ker £ (¢ being the
p'® power operation) and x e ker £ satisfies p*z ¢ B ® B and suppose that (X, )
is homotopy associative and H* (X, Z,) /B s cocommulative. There exists a
secondary operation ¢ defined on ker  so that for every z ¢ (H* (X, Z, /. B)* we

have
(2, 2) = (¢ (), 2").

Remark. This is an implication theorem in the sense of W. Browder (see
[3, p. 357]) and it considerably strengthens his results.
As a typical application of Theorem B we have

TreoreM C (Theorem 3.1 (d)-(e)). If X s a homotopy associative H-
space, p an odd prime, and H* (X, Z,) is primitively generated, then H* (X, Z,)
18 @ free algebra (i.e., a tensor product of an exterior algebra on odd-dimensional
generators and a polynomial algebra on even dimensional generators).
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If Hy (X, Z,) 7s commutative and primitively generated then it is a free algebra.
Remark. Some versions of this theorem were proved in [8] and [9].

Tueorem D. If X is a homotopy associative H-space, p an odd prime and
H*(X, Z,) is a finite commutative algebra, then it is an exterior algebra on odd-
dimensional generators. In particular, H* (X, Z) has no p-torsion.

Remark. This provides an alternative proof of Browder’s theorem [5, p. 319,
corollary to Theorem 1] stating that H« (G, Z,) is not commutative where
p =3,G =F,, Es, E;, Es (the exceptional Lie groups) orp = 5 and G = Ejs.

0.2. Conventions and notations. All spaces in this study are assumed to be
arcwise connected and of the homotopy type of a CW complex of finite type
(i.e., having finitely many cells in each dimension). We assume all spaces
have a designated base point and, unless otherwise stated, mappings between
them are assumed to be base point preserving.

All Hopf algebras are assumed to be graded, connected and of finite type.
If A is a Hopf algebra, PA and QA denote the module of primitives and the
module of indecomposable respectively. For all details concerning properties
of Hopf algebras the reader is referred to [6].

If X is a topological space, PX denotes the space of (end points free) paths.
£X is the subspace of PX of paths initiating at *. QX is, as usual, the loop
space.

We define secondary operation by universal examples as in [1, p. 55].

1. On twisted H-structures

1.1 DeriNtTION. Let X, p be an H-space and let G be a topological group.
Then QG admits a group structure uo given by

po(hp) (@) = NO)v (@), NT@) = DI
(Note that this multiplication is homotopie to the loop-addition. )

Letw: X X X, X V X — QG, * be a given map. The w-twisted H-struc-
ture on X X QG is the multiplication.

A: (X X)X X XQY)->X X QY
given by the composition
X X Q@ X X X QG

AXTXI v x %06 X 9@

Ao XIX1 vy X% X XXX X G

X o X po 1 X po
If y e PH*(QG, Z,) then
BFley = (1T ®1)y®1e 1.

X X QG X QG X X QG.
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Let G and G’ be abelian groups. Suppose G and G’ are given H-structures
po: G X G—G,u: @ X & — G which do not necessarily coincide with the
group multiplication. Let g : @ — & be a (0, po) H-mapping. There is no
loss of generality in assuming that ¢ is a multiplicative fibration:
gom = moo (g X g). Let (X, ) bean H-space and f : (X, u) — (G, w) &
multiplicative fibration.

If g o f ~ * then there exists

1: X — &G, 1@)0] =% 1@)[1] =gof(x).
LIt EC @ X £, 7:E—-G um:EXE—Eandf: X — E be given by
E={$,<p|g($)=¢(1)}, T=p1|E7 M1=(MX£M3)°(1XTX1HE

and f(x) = f(x),l(x). Thenrof = fand ;s = por X . We have the fol-
lowing commutative diagram:

E

x—7f ¢ L@

The obstruction for f to be an H-mapping can be obtained from the following
diagram:

QG *

X > G

Since ru1 f X f = 7fu there exists w : X X X, X VV X — QG’, * with the prop-

erty
m(@),7@) = n(Ffoul y)) e y))

where 7 : E X QG — E is given by 9[ (2, ¢), \] = @, ¢*\ (- is the group multi-
plication).

1.1.1. Lemma. w0 : X X X, X V X — QF, * can be given by
w(z,y) = [u@ )™ Lu @), Ly)).
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Proof.
1(fu(, y), 0@, 9)) = fou@ y), bz y) - ©@y)
m(f @), f®)), Suo (@), L(y))
m (@), F@)).
Let fi : X X QG — E be given by
fil@, N) = (@), \).

Then we have

1.1.3. Lemma. If X X QG s given the w-twisted multiplication ji tnduced by
wthen fi ¢ (X X QF, ) — (E, m) s an H-mapping.

Proof.
Sl (z, N), (&, X)] = filu(z, :E)) w(z, f)’)\'X]

= fu(z, &), lu(z, ) -w(x, £)-N-X
w(f @), F&)), Suo(L(z), L@ )-\-K,
m(fi(x, N), 1@ X)) = m[(f (@), L(z)-N), (f(E), L(Z)-N)]
w(f @), f&)), no @) ), 1(E)-X),
and the lemma follows from the fact that

w((@), 1@)) MK ~ u ()N, 1(2)-X)
via a homotopy leaving the end points fixed.

1.2. Suppose in addition that (X, u) and (G, uo) are homotopy associative;
i.e., there exist

! XXXXX->PX) and a:G@XGXG—P(@),
a:ppX1)~p@ Xu) and ao: po(ue X 1) ~ u(l X p).
Let B, € X X £G be the fiber of f; i.e.,
Ey = {z,0 | f(x) = o)},

10 ¢ Eo — X is the projection, us : Ey X Ey — Ejis the induced multiplication.
We investigate the obstruction for E, to be homotopy associative. More pre-
cisely, we are looking for the obstructions to the existence of a mapping

a,:EoXEoXEo—)PEo,

go that
@) o't pa(ue X 1) ~ pa(1 X pg),
(i) P‘T\; a = go (ry X 70 X 7).

1.3. LEmMA. The obstruction for the existence of o’ satisfying (i) and (ii) 7s
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represented by the function oy : X X X X X — QG given by
ar @, 9,2) = (P(Nalw, y,2)} "alf (@), f @), F@)).
(Denote the homotopy class of a; by a(f).)
Proof.
p(pe X [, 1), @) ), (2, 03)]
= pu(p X 1)@ ¥, 2), Lo (Lo X 1) (o1, o2, ¢5)
A p(l X p)@ Y, 2), Ll X Lw)ler, o2, ¢3) — a(f @), FW), f(&))
+ P(fa(z, y, 2)
as can be seen from Figure 1. It follows that

e X 1) R @l X w), o @,y 2)7).
If (@, uo) is homotopy associative with homotopy
@@ X XGF—>P@)
then a,, a(g), oy and a:(g o f) are defined analogously and we have
ager = [2(g) 0 af]-[ag o (f X f XS]

plx)(xy,2)

alxy,2)t]

Figure 1
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Equivalently a(g o f) = 2(g)% a(f) + (f X f X )*a(g) where ( )y and
( )¥ are the mappings induced on homotopy classes.

1.4. ProprosiTION. W(ith the notations of 1.1.1 we have
Qgof (x, Y, 2) R [w (117, y)] *[eo (u (xa y)’ Z)] [w (x’ "(y: z) )]—1° [w (y7 z)]—l’
Proof. Consider Figure 2. It follows that
Qgor o In (u X 1) — Euo(Cpo X 1) X I X 1)

+ S0l X o) @ X I X 1) = (1 X p).
Now

l”'(”' X 1)(“’3 Y, z) = *3"1;“/"(“3’ y)) Z(Z))'w(}l((v, y): z)
= L (po (@), L)) 0@, ¥), 12)) 0z, y), 2)
A (Lo (Bro X 1) oI X I X U(x,7,2)]0 (@, ) 0 (1 @, y), 2).

ay(gef(x),gefly),gef(2)

-P(g-f)ealxy2)

F1gURE 2
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Similarly
(1 X p) (@, y,2)
~ Sl X Suo) @ X I X 1) (@, y,2) 0y, 2) 0, uy,z)).

Hence, agoy X 0 (2, y) 0@z, ¥),2) — 0, 2) v, u(y, 2)) and 1.4 follows.

1.5. ProposiTiON. Let (G, mo) be a homotopy associative H-space, H- a group.
A twisting function w : G X G, G \/ G — H, x induces a homotopy associative H-
structure on G X H if and only if

w(, &) o, £),2) ~w@ &)o@ uE 3)).
If (G, mo), (G, no) are H-spaces, H, H' are groups,
g:G—>G and h:H—H
are an H-mapping and a homomorphism respectively,
w: (@XGEVGE)—> H,+), o: (@ XGF,FTVF)> (H,=*)

are twistings, then g X h is an H-mapping (with respect to the twisted multiplica-
tions) if and only if how ~ o' oh X h. If (G X H, fio, Go) and (G’ X H', g , Go)
are homotopy associative (twisted) H-spaces, g X h- an H-mapping, then the
homotopy class ofg X h] of
agan ¢ (G X HY = Q@ X H)
isin
im (Py X Py X P)* 1[G, @@ X H)] —[(G X H), 2(@ X H')].
The proof is straightforward.

1.6. ProrosiTioN. Let (X, u), (G, wo) and k : X — G be H-spaces and H-
mapping. Letx e H" (X, Z,), and suppose
p*r e im k* ® im k* @t =p*r—-1®@®zc—2®1).
Letk : X - K(Z,,m) be given by k*., = x. Then G X K can be given a twisted
multiplication i so that (k X k) o A is an H-mapping (with respect to u and f).
Proof. If p*z = k* ® k*x, z0 e H*(G, Z,) ® H*(G, Z,), choose
w: (GXGGVG)> (K(Zy,m), *)
to be such that w*i, = 2.

1.7. CoroLLARY. Let (X, u) be an H-space, let B € H*(X, Z,) be a sub-
Hopf algebra closed under the action of G (p) and generated by a finite coalgebra
B,

There exists G = [[;esK (Z,,n;), J-finite, with an H-structure uo and an H-

mapping, f : (X, n) — (G, w) so that f*H* (G, Z,) = B. Moreover, if B is co-
assoctative G may be assumed homotopy associative.
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Proof. Let {xy, -+« , s} = B'. dim 2; < dim 241, Suppose G;, uo (),
fi are constructed so that

Gi = [Liwi KZp,m3),  fi: (X, ) = (G, (@)

are H-spaces and H-mappings respectively and im f7 is the algebra B’(z)
generated by z; - -+ #;. Iffipa: X = K(Z,, dim z441) is given by fin ¢ = i
then by 1.6,
Gi1 = Gi X K(Zp, dim %441)

can be given an H-structure uo(¢ + 1) so that fi,r = (fi X fip1) o Ais an H-
mapping. As G; can be constructed so that H*(G;, Z,) actually contains a
coalgebra isomorphic to B’ (¢) (the coalgebra generated by {1, -+, z:} ), the
twisting can be chosen to be homotopy associative provided B’ is coassociative.

2. Implications and secondary operations
Consider the following group homomorphism go and its induced fibration:

QK (Z, , 2mp) = K(Z,, 2mp — 1)

7\

LK (Z,, 2mp)

To

K(Z,, 2m) 9, KZ,,2mp)

g:‘Zmp = (Pmtzm = fiom = ‘g’m-
2.1.1. LEmMA. There exists a class v ¢ H™ (E, , Z,) satisfying

h:v = Bl'zmp—l
% = 1 * a * ?—a
Beyv = Z; 5 ) (rou2m)® @ (706m)
Proof. Since geBimp = BO™iem = 0, *Bizmp_ ¢ im ha. If Eyis the fiber of

’
K(Z,,2m + 1) % K(Z,, 2mp + 1)

(Go*tmpst = ®™tzms1) then QE, = Eo, Qg0 = ¢ and as go* is a mono in
dim < 2mp + 2,
Bizmp—1 ¢ im hgo*

(c* : QH* (B, , Z,) — PH*(Ey, Z,)), since im o* = PH* (B, Z,) in dim 2mp
it follows that Biamp— ¢ he (PH* (Bo, Z,)). This is possible only if there exists
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ve H*(Ey, Z,) with
* g | *  \a * *
: ~a
Brov = Z; » (2)(1o1zm)® ® (ro1m)”™® and hov = Bump—1.
&

Let ¢ be the secondary operation associated with the universal example
(Eo, T6tm, ). The main calculation of this section is the following:

2.1. ProrosiTioN. Let (X, u) be a homotopy associative H-space. Let

B c H*(X, Z,) be a sub-Hopf algebra over G (p) generated by a finite coalgebra.
B C ker £, Put

q: H*(X, Z,) - H*(X, Z,) /B
and let M be the coproduct in H*(X, Z,),/B induced by p.
If z e (ker £)*", i*z ¢ B ® B, then

Mge(z) = ¢ ® qa*(x)
»—1
=q®q;%(f)x"®x”’“+ﬁker(ﬁﬁ®1 - 1® m).
As a corollary we have

2.2. CoroLrARrY. Let (X, u), B and x be as in 2.1. If p s odd and

H*(X, Z,)/B is cocommulative then
(@) = (@) ® -+ ® ¢(x)

where §** is given by p** = p*, p¥ = @* ® 1)g*. Hence, for every
zelH* X, Z?)/B]*’ (x: z) = <¢(x)7 zp>'

Proof of 2.2. If 5 € ¢ (x) then by 2.1,

p—1
¢® gi'v =¢® qZ_;%(f)x“®x”‘“+Bz
where z eker (M ® 1 — 1 @ 9M). Hence, z represents a class in
Extize .z me (Zy, Zp)

but since [H* (X, Z,),/B]* is commutative the class of z can be represented by
a class in

PH*(X, Z,)/B ® PH*(X, Z,)/B.
Changing # if necessary by an element in im 8, we can assume that
pz ¢ [PH* (X, Z,)/B] ® H*(X, Z,)/B
and asp > 2, (8" ® 1)(8z) = 0 and 2.2 follows.

The remainder of this section is devoted to the proof of 2.1. Following
Corollary 1.7 we first construct homotopy associative H-spaces G, uo and G,
!

Mo
G =I1;K(Z,s,n), & =[], K(Z,, pny)
and H-mappingsf: X > Gand g = H, g;i + G@ — G’ so that im f* = Band
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Geimn; = &,. Letfo: X — K(Z,,2m) be given by foun = . By 1,
Go = G X K(Z,,2m) and Gy =G X K(Z,,2mp)

can be given homotopy associative H-structures j and fo so that (f X fo) o A
and g X go are H-mappings. Assume f, g are multiplicative fibrations and let
j + X — X be the inclusion of the fiber of g. We have the following commuta-
tive diagram:

.’7 — ° . g
g 1=0 kg om -k ’ K = K(Z,, 2mp)
J Jo jo'
X foA = X = g¢
X (f fO) f Go — G’ X K g 9o go Go’ = G” X K’.

We assume (f X fo)4, g X g0, and go are multiplicative. Note that X is not

necessarily homotopy associative. By [7, Theorem 4.5], or by [9, Theorem
4.9],

coker j* = H*(X, Z,)/im f* = H*(X, Z,)/B.
Now, a (g o jo) = a(joo go) = 0 = a(j); hence, by 1.2,
(Jo X Jo X jo)*a(g X go) = 0.

Since Qgo ~ * it follows that a(go o f*) considered as a vector of cohomology
classes in H¥*(X A\ X A\ X, Z,) is in the ideal generated by

(imf*)” ® (imf*)” ® (mf*) = B® B® B.
Let 7 : E — G be the fibration induced by g from
Q@ - &G - ¢

and put ~ : Q@ — E. Consider once again the universal example
(Bo,y = Totm,v) for . hov = Bump—s. We have

@Xg)o fFXfo)oA~w, gof~w Q~x Qo~
As in 1.1 we have H-mappings  and 7,
J:Xe=XXK(Z,,2mp —1)— E,
FT:Xi=XXo XK(Z,,2mp — 1) > E X E,,

with respect to some twisted multiplications p» and u; in X, and X respectively.
Now,

i (gXgo)e (F X fo)o A~ %
and Z:goofN*

can be chosen so that I = £ (P;) o [ o j and hence we have a commutative dia-
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gram of H-mappings:

X X K(Z,,2mp — 1) . By

JX1 to

Xi =X X' XKZp,2mp — 1) ———— E X E,.
By 13and 14
[A®a) — @ @ DEA® wnpt)
= (Pf ® P¥ ® PF)(@Py)y a(goof')

(where P, : G’ X K(Z,,2mp) — K(Z,, 2mp) and P; : X; — X are the pro-
jections) and hence [(1 ® a1') — (& ® 1)]af (1 ® tomp_1) is in the image of the
ideal generated by B ® B ® B. It follows that

Bl ® amp)eker (I3 ® 1 — 1 ® ).
Now,

Fo=G*@D)ef* 1 ®1) =j*u® 1+ 1 ® Biamps

where u € ¢ () and

=1
(Pf ® P1)j* ®j* 2, %(ﬁ’)x“ ® "
= Bl = (Pf ® P¥)(* ® 5 )afu + 5 (1 ® ump1)
and putting (P ® P1)*z = 5 (1 ® tamp1), (P1 : X3 — X — the projection),
zeker (I ® 1 — 1 ® a), by replacing j* by ¢ and g7 by 9, 2.1 follows.
3. Applications
In this chapter we bring some of the applications of 2.2.
3.1. DEFiNITION. Let A be a commutative Hopf algebra. « ¢ A is called a
split generator if the inclusion of the subalgebra A; generated by « into A

splits as a mapping of algebras. Ifv : A — A;is such a splitting we have co-
algebra inclusion v* : AF — A*.

Letuo,wa, -+ %+ ,0<r <t (t = o« isnot excluded ), be the elements in
A* with (u,, a”") = 1. We refer to v*uo - - - v*u, -+ - as to the set of cogenera-
tors associated with v and z.

3.2. TeEoREM. Let (X, u) be a homotopy associative H-space and p an odd
prime. Suppose Hy (X, Z,) 18 commutative.

(a) Let x ¢ Hy(X, Z,) be a split generator, 2 = 0, and let v¥u,



374 ALEXANDER ZABRODSKY

v¥uy, «+- v*u,y be the set of cogenerators associated with some v and x. If
(V*Um)? = 0, then (pv*um, z°" ") = 1, and hence, (v*u.1)® =+ 0.

(b) Letx, v*up -+ - v*u1be asin (a). There exists s, 0 < s < ¢ such that
(v*us)? ©s a non-zero primitive element of H* (X, Z,).

(¢) If x e Han(X, Z,) is a split generator *° = 0, then there exists a (split)
generator & € Hanpe+1 (X, Z,,) for some s,0 < s < t, & is a 1-implication of x*° in
the sense of W. Browder (see [3, p. 357]).

d) If H*(X, Z,) is primitively generated then it is a free algebra.

(e) If Hy«(X, Z,) is primitively generated then it is a free algebra.

() If for every m > O there exists ro(m) > O such that for r > ro(m),
PH™ (X, Z,) = 0 = QH*™ (X, Z,) then H* (X, Z,) is the exterior algebra
on odd-dimensional generators and H (X, Z) has no p-torsion.  (In particular
(f) holds if H*(X, Z,) s finite dimensional.)

Proof. (a) The coalgebra generated by the v*u; ¢ < m satisfies the condi-
tion for B, qun # 0, and one can see that for every z e Hx (X, Z,)2"" is annihi-
lated by B; hence 2*" ¢ [H*(X, Z,),/B]* and

1= (0¥un, 3" = ($0*un, a"""")
by 2.2.

(b) If s is the smallest integer such that (v*u.)” == 0 then (v*w.)? is a
primitive.

(¢) This is the dualization of (b).

(d) IfwePH*(X, Z,)is even dimensional and «4* = 0 then there exists a
split generator z ¢ H4 (X, Z,) with (u, z) = 1 = (¢u, ") and * + 0. Hence,
if H*(X, Z,) is primitively generated all even-dimensional generators have an
infinite height.

(e) If H«(X, Z,) is primitively generated, ¢ is defined on all H*"*" (X, Z,)
and by (a) no even-dimensional generator can have a finite height.

(&) IfyeH.um(X,Z,)is a split generator of finite height, then by (c) there
exists a (split) generator in dim 2mp®, s > 1. Since PH™" (X, Z,) = 0,
hence QHzmpr (X, Z,) = 0 for large r, so the existence of even-dimensional gen-
erator implies the existence of one of infinite height. If & is the smallest di-
mension in which a generator of infinite height exists then y*" is primitive for
all sufficiently large ¢ which contradicts the fact that QH*™*" (X, Z,) = 0 (and
hence PHonpr (X, Z,) = 0) for r large. Hence QHeven (X, Z,) = 0.
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