METABELIAN p-GROUPS WHICH CONTAIN A SELF-CENTRALIZING
ELEMENT:

BY
Marc W. KoONVISSER

Introduction. An element x of a group @ is called self-centralizing in G
if the set cq¢(z) of all elements commuting with z is just the cyelic group
generated by z. The existence of a self-centralizing element has a profound
effect on the structure of the group. In this paper we will concern ourselves
with groups G which are finite metabelian p-groups, p % 2, and which contain
a self-centralizing element z.

We will analyze the structure of such a group by examining the action of
the automorphism induced by a self-centralizing element  on a normal sub-
group M of G. We will find a decomposition of M which is analogous to that
of a vector space under the action of a linear transformation.

First we define the subsets Y; of M by

Yo =1, Yi={g|geM and [g,z] eY.y} fori=1,2 ---

It is clear from the definition that the Y;’s are invariant under the action of
2. Since G is nilpotent, it is easily seen that 1 = Vo< V1 < - <V, =M
for some integer m. In Lemma 4 we show that each Y is a subgroup. Thus,
the decomposition of M under z is analogous to a block triangular decomposi-
tion of a vector space under a linear transformation. In Theorem 1 we show
that Y < Y,y and Y,41/Y; is cyelic for ¢ = 0, 1, --- . Thus, the blocks
Y:41/Y, are one dimensional and the decomposition of M into the subgroups
Y, is triangular under z.

As a simple consequence of Theorem 1, we find that the number of gen-
erators of a metabelian p-group, p # 2, containing a self-centralizing element
is less than or equal to its class. Theorem 2 gives a different bound for the
number of generators of an arbitrary p-group. It is shown that for the groups
discussed in Theorem 1, we can exhibit a system of generators which is eco-
nomical in the sense that it satisfies the bounds of Theorem 2 and Corollary 2.
We conclude with an example which shows that both bounds are best possible.

Our notation will be that of Huppert [3] with the addition of the symbol
[a, ix] for the Engel element [a, x, - - - , 2] where x appears ¢ times.

Received July 31, 1968.

1 The results of this paper constitute a part of a doctoral dissertation written at The
Ohio State University under the direction of Professor Wolfgang P. Kappe. Sincere
thanks are extended to Professor Kappe for his encouragement and advice.
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The following identities will be useful in many of the calculations in this
paper.

InpENTITIES. Let G be a group with elements a, b, ¢, « -« ; then
1. [ab, c] = [a, c'D, c] = [a, clla, c, BB, ]
2. [a” bC] = [a’ c][a, b]c = [(l, c][a, b][a" b’ C]
3. [a’ b9 ca][c, a, bc][b, ¢, ab] = 17
and if G is a metabelian group, then
4. la,b,e¢ d] = [a,b,d,c]
5. [a’ b’ c][c’ a, b][b’ (2 a'] =1
6. [ab, ¢] = [a, blla, c] for b in G
7. Bb,a" = [[7= b, )™

Proof. Identities 1 and 2 are found in [2, p. 150]. Identity 3 can be found
in [7, Theorem 5.1]. Identity 4 is from [8, Lemma 34.51]. Identity 5 follows
trivially from Identity 3, and Identity 6 is a simple consequence of Identity 2.
Identity 7 is proved in [4, Lemma 3].

We will need several technical lemmas.

Lemma 1. Let G be a metabelian p-group, p = 2, and ([c, ;—z]) <| G; then
([¢”", 2]y = (e, -a2]™).
Proof (by induction on n). Since G is metabelian,
lle, 2], j-22)” = [lc, a1’ j-27]
by Identity 6. So forn = 1 it will suffice to show that
([¢” -]y = ([lc, 1%, j-s2]).
Now using Identities 6 and 7 we have
l[e, ¢, s-2] = TLi=1 [le, 1l”"®, j2].
Letting &, = C (p, k)/p we get
[z, ¢, s02] = d]IE=3 [lz, ael, j—s0]"*la, 5, j2],
where d = [[z, c]®, jz], and using Identities 4 and 6
[z, ], j2r] = dlz, 4, j—-zfl?]Hlf:zl d, pac]®s

Now ([¢, ;—12]) < G implies (d) = ([¢, ;—2]") < G implies (d*) < G.
We consider the above equation modulo (d”).

[[x’ cp]’ j—ﬂ] = d[xi 20y i—2x] mod <dp>

Since for k > 2, ([d, r—1c]) < (d) implies ([d, rc]) < (d*). But
[z, ¢, j—ox, ] € (d) implies [z, ¢, j—o%, ¢, c] € (d") s0 we have

[[x) cp]7 J'—2x] = d[x’ Cy j—2 I:—IC] =d mod (dp>,
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which implies that
(=, *], o]y = (d) = ([=z, c]’; j—22]).

Induction Step. Assume ([¢*", j_1z]) = (l¢, j_z]”") for all m < n.
Tko apply induction we must first show that (¢, ;—z]) < G implies
", j—z]) < G for any integral &k > 0. Now

[cpk’ J'—lx] = [[CI), cpk]—l’ i—-ﬂ]

= [z, '], ms]™ by Identity 6
k.
= [T [z, ] €777, joal™ by Identity 7

k.
= [T% &, i, joax] "7 by Identity 6.
H ¥
ence,
[, i) € ([c, j12]) <1 G.

Since all subgroups of a cyclic normal subgroup are normal,
(e, el < 6.
Now by induction since n > 1 we get
(", )y = (", o]
= ((le, " "")?) applying induction again
= (l¢, j-l”).
LemMa 2. If G is a metabelian p-group, p # 2, and ¢ ¢ N¢([z, cl), then
(e, ") = (e, cI”").
Proof (by induction onn). n = 1. By Identity 7
[z, ") = [z, d’]IE5 [, ¢, 1ae]*@ Pz, o]
= [z, I'TIF= [l=, ¢, o, kael™[z, 4],

where 8, = C(p, k)/p. Now since ¢ ¢ N[z, c]) implies that ¢ ¢ No([z, ¢, c),
we see that ([z, ¢, ¢, c]) < ([z, ¢, c|”), and if we consider the above equation
modulo {[z, ¢, c]”), we have

[z, ] = [z, ¢]” mod ([z, ¢, c]").
By Identity 6 we have [z, ¢, ]’ = [[z, c|’, ¢]. Since ¢ e N[z, c])
([, ¢, ") = ([lz, eI, cl) < ([x, cl).
Thus, ([z, ) = [z, c]").

Now assume we have shown ([z, ") = ([z, ¢]™) for all m < n. Since
¢ e N[z, c]), " ¢ No(lz, " '1). So by induction we see that

(e, ")) = (&, ',

(&, &N = ([, 1),

i.e.,
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and applying induction again,

(=, ")) = (=, ).

Lemma 3. Let G be a metabelian p-group, p = 2, and let ¢ normalize ([z, c]);
then

[z, ¢'] = [, ¢/] implies 4=j mod ]|z, c]].

Proof (by induction on the order of [z, c]). Assume | [z, c]| = p. Suppose

[z, ¢'] = [z, ¢']. Then using Identity 4 we have
[x7 ci] = [z, c]iII;;'ﬂ [z, c, k—lc]C("k) = [x’ c]‘
since [z, ¢, ¢]) < {[z, ¢’y = 1. Doing the same thing for j we get
[z, ¢'] = [, o’ = [&, ¢ = [z, ¢,

which implies that ¢ = j mod | [z, ¢] | .

Assume the lemma is true for commutators of order < p", and let

[[z,cl| = p""". Let H = {c, [z, c]) and b = [z, c]. Then (p*"y < H. Let
o 1 H— H/(b"") be the natural homomorphism. By induction
[z, ¢'] = [z, ] mod (")

implies

i1=j7 modp” (since | [z, c]” | = p™)
implies

1 =74+ "

We will show that p divides 8 which will imply that ¢ = j mod p"*.

[, cj] = [z, ci] = [x7 cj+6p"]

= [&, ¢z, "z, ¢, "]

= [, [, ™,
since the order of [z, c] is p™** and the p-part of the order of the automorphism
group of a cyclic p-group is less than the order of the group, we see that the

automorphism induced by ¢ on ([z, ¢]) has order less than p"*'. So applying
Lemma 2 we see that

1 = [z, c™"] implies p divides é.

Now we will discuss the structure of finite metabelian p-groups, p # 2,
which contain a self-centralizing element.

LEmMMA 4. Let G be a finite metabelian p-group with z ¢ G and M < G.
Let Yo = 1and

Yi={m|meMand [m, x| =1} fori=1,2,---.
Then Y is a group for i = 1,2, -+ .
Proof. Letm,n ¢ Y;. Then using Identities 1 and 6 we get

[mn_17 ix] = [m7 ix][m, x, n_ly i—lx][n—l) {27].
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Now m ¢ Y, so [m, «] = 1. We apply Identity 4 to the second term and
Identity 1 to the third term to get

mn™, @] = [m, @, n [, 217, izlln, 2, 077, ).

Applying Identities 4 and 6 we have

mn™, 2] = [n, @], @, n ]

and since n ¢ Y,

1’ i-T/] = 1

[mn~
Somn™isin Y;.
LemMa 5. Let G be a finite metabelian p-group, p = 2, and x be self-cen-
tralizing in Q. Then if () # G,
1#@nG@ 6.
Proof. 1 #Z(@)nG@ < @nG. Letwe(®)nG andgeG Then
W 2] = [w, 2 = [w, zlz, ¢ = [w, 2 = 1.

Hence, v’ ¢ G’ n (z) since ce(x) = (z). So (x) n @ <1 G. We now prove the
main theorem.

TuarorEM 1. Let G be a finite metabelian p-group, p # 2, and x self-cen-
tralizing in G. Let M be a normal subgroup of G. If subgroups Y are defined
as in Lemma 4, then

Y < Y;+1 and Y.'+1/Y; 8 cyclic f07‘ 7 = 1, 2, o
Proof. Since Y, is eyclic, it will suffice to show that
(a) Y1 < Yiimplies Y;/Y;; cyclic
(b) Y./Y, cyclicimplies V<] Y1
We first show Y, ; | Y, implies Y;/Y,_,is cyclic. We use the fact that
a p-group, p # 2, is eyclic if and only if it has exactly one subgroup of or-
der p [2, Theorem 12.5.2]. Let ¢, d ¢ Y \Y:; and ¢’, d* ¢ Yi.;. Now
1 5 (z) n G’ < G, so we apply Lemma, 1 as follows:
1 = [¢®, ;] implies [c, izl =1 and [¢, izl e @) n G
1 = [d®, ix] implies [d, 2]’ =1 and [d, ;2] € ) n Q.
Thus,
(e, imazl) = ([d, izaz]).
Now we note that the commutators [d, ;yz] forj = 1,2, -+, p — 1 all lie
in the group ([d, :_sz]) which has order p, and by Lemma 3 we see that these
commutators are all different so there exists an integer 6,1 < 6 < p — 1, so

that
A7, ] = [c, imaz] ™

Now by Identities 1 and 6,
[d—sc’ i) = [d_sy i-lx][d—ay , ¢, i—gxlle, i) = [d—aa , ¢, i—2]
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and by Identity 4,
[d%, iz) = [, ez, ¢] = 1
since | [d7°, 2] | = p and ([d, i_w]) <| G. Thus, cd™ ¢ Y, , which means
that (¢) = (d) mod Y., i.e., Yi/Y., has only one subgroup of order p.
Thus, since p # 2, Y;/Y;_, is cyclic.
We now show Y,/Y,_; eyclic implies V: <] YViyu. LetyeY;andge Y.
Then y° € Y if and only if [y, g] € YV, if and only if [y, g, ] = 1. Now

v, 9, &l = Iy, 9, %, i-17]
= [z, 9, 9, i@l "lg, @, ¥, i2]” by Identity 5
= [z, y, izsz), g1 lg, #], ¥, i-x]™ by Identity 4
= [lg, %, ¥, i—2]™ since y ¢ Y
and since [g, 2] ¢ Y; and Y;/Y;; cyclic imply [[z, g], y] € Yia

[y7 g, i(t] = 1.
CoroLLARY 1. Let G, z, M, Y; be as in Theorem I. Then

) |Yin/Yi| | Yi/Yiu|fori=1,2,---;
@) if |Yi/Yi| = | Yi/Yiu| and if Yip = (bi1, Yi), then

([biya, 2], Yicg) = V5.
PG+

Proof. Let 8(2 + 1) be chosen so that bf; €Y, but b?ﬁm’_‘ ¢Y;.
Since {[bit1, @]) < @) n G, (bis1, &]) < G so we can apply Lemma 1 to get

1= ([b?"a';ﬂl)’ ix]) = <[b€+17 sx]pmﬂ)).
By applying Identity 6 we get

3(s+1)
1= ([[b¢+1 ’ x]p ) e_w]),
ie.,
p6($+l)

[bis1, 7] eY, .
Thus, we see that .
P = | Yi/Vi| < | Vo/Via|
and if | Y.'.g.l/Y{I = ‘ Y{/Y;.},l N then | [b.'+1 ) x] mod Yi..1| = | Y./ Y,‘..l l .
Hence,
| Yor/Yi| = | Yi/Yia| implies Y= ((bis1, 2], YViza).

CoROLLARY 2. Let G be a finite metabelian p-group of class n containing a

self-centralizing element. Then d (@) < n.

Proof. Let M be a normal supplement for (z). Since the class of G is n,
foralla e M, [a,,x] = 1. Thus, M <Y,.
The groups Y;/Y ., are cyclic, so we can find elements b; of M so that
Y.’ = <bi, Y,'_1>. NOW
G = (x)M) = <937b1’ te ’bn> = (w7b27 abn)
since by e (x). Hence, d(G) < n.
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Application. We wish to find an economical generating system for a
metabelian p-group, G, p > 2, which contains a self-centralizing element. Ap-
plying Theorem 1 to G with M = Gwehavel = YV < V1 < ++- < ¥V, = G.
Using Corollary 1 we choose elements b; of G so that

(@) == by,
(b) Y¢=<bi,Yi_1>fOI"l:=2,3,"',
(c) if | Yi.|_1/Yi| = I Y,'/Yi..1l ) then b; = [bi+1 ) $] for ¢ = 2, 3, vt

Now @ = (z, b, , b, --- ), but we may eliminate each b; for which
| Yira/Ys| = | Yi/Yia| from this system of generators. This leaves only
those b/’s for which | Yi4/Y:| < |Yi/Yia|. Call these bis by, = =z,
biyy e, by, .

We will show that v < w + 1 where p” = |G n(z)|. Now by Lemma 2
| Yo/YVi| = | b2, 2l | < | G n (&) | = p°. Thus, for 4 > 2,
| Yiq/Yi| < | Yi/Yia| can happen at most w times. Hence, v < w + 1,
and so d(G) < w + 1.

This result is a specific case of the following theorem which was pointed
out to me by the referee.

THEOREM 2. Suppose G is a p-group, x an element of G, C = cq(z), and
|G'nC|=1p" Thend(@) <w+d(C).

Proof. Since @ is a p-group,
d(@) = d(@/F") < d(G/CF) + d(CG/G).
Using €/C n @ = CG'/@ and ¢’ < C n G’ we have
d(G) < d(G/CG") + d(C).
Now |G/CQ' | = |G| |G nC|/|C||G |and since

| G: C| = number of conjugates of # = number of commutators [z, a],
we have
l@l/lcl=1a:C|<|@].
So
|G/CG | <]|CnG | ="
Hence,
d(G/CG) < w.
Thus,

d(@) < w+d(C).

The following example will show that the results of Theorem 2 and Corollary
2 are best possible in the sense that we can find groups for which the bounds
are attained.

Ezample 1. We construct the group as follows. Let
M = {m) X (@) X +++ X (@),
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where |a;| = p" ™ fori=1,2,.--,n. Let 7 be the automorphism of M
so that

Tim—a, 7ia;—>a0{4 fori=23, ... n.

7 is an automorphism of M since r preserves the defining relations of M
(since M is abelian, this means 7 preserves orders of elements) and r is onto.
Let G = (x, M) where M <| G, and a" = a° for alla ¢ M, and z'" = a;.

‘We now show z is self-centralizing in G. It suffices to show cu{z) = (z) n M.
Letusdefine 4; = (@1, --+ ,a)fors =1, -+ ,n. We will show cu(z) = (@1).
Suppose g ¢ M\A4; and 1 = [g, z]. Since g e M, there is an integer j so that
g e ANAj1. Thus, g can be written as ¢ = a'm where m ¢ A;; and
(n,p) = 1. Alsop" < |a;| = p"*. Now 1 = [g, z] implies

1= [a}"”xm, 2] mod A;

A
=[af,2] modd,,.
Hence,

A1
1= a}fl mod A i—2 .

But this means that a?; ' = 1 so | |ajal|, e, A+ 1> n — 7, a con-
tradiction since p* < p" . Thus, ca(r) = (@) = M n (z).

Now @ = (af ,a, -+ ,ad)s0 (@) n G = (af), and |(x) n G’ | = p" "
Since d(G) = d(G/G’) we see that {z, az, -+, a,} is a minimal generating
system for G. Thus, d(@) = n.

We also see that since [a; , 2] = af-1, [@n,n-1] 7 1, but [as,.2] = 1. Hence,
cl(@) > n. Corollary 2 gives cl(G) < n so ¢l(@) = n, and the bound of
Corollary 2 is attained.
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