
ON THE MACINTYRE CONJECTURE

1. Introduction

Let

(1) f(z) -o c z

where {n} is an increasing sequence of non-negative integers satisfying

(2) no 0 and -il/n < .
Macintyre [10] conjectured that if f(z) is an entire function of the form (1)
with the gap condition (2), thenf has no finite asymptotic values. Macintyre
proved the conjecture for radial paths, and Fuchs [5] implicitly proved the
conjecture for functions of finite order. Kovari [8], [9], Gaier [6], and most
recently Anderson and Binmore [1] have shown the nonexistence of finite
asymptotic values for functions with stronger gap conditions than (2). In
this paper we obtain the desired conclusion for the gap condition (2), but we
must restrict the rate of growth of the function. We have

TmOREM 1. Let f(z) be an entire function of the form (1) for which {n,}
satisfies (2). Suppose f(z) has finite lower order . Then f has no finite
asymptotic value.

The ideas of the proof of Theorem 1 also yield two theorems which are
related to theorems of Gaier [7] and Anderson and Binmore [1].

THEOREM 2.

satisfies (2).
integer n,

Let f(z) be an entire function of the form (1) for which {n,}
Suppose f(z) has finite lower order #. If, for some positive

If(z) O( z[

on a path r receding to 0 (a Jordan curve joining zero to infinity), then f is
a polynomial of degree at most n.

TIEOREM 3. Let f(z) be an entire function of the form (1) for which {n}
satisfies (2). Suppose f(z) has finite lower order . If, for some a > O,

Jr(z) O(e

on a path F receding to , then f is of order at most o.

Gaier proved Theorems 2 and 3 for radial paths r without the growth
assumption on f, and Anderson and Binmore proved Theorems 2 and 3 for a
stronger gap condition than (2) without the growth assumption on f.

Received July 18, 1968.

613



614 L. . SONS

2. Statements of preliminary lemmas
The following lemmas are needed to obtain the stated theorems. Lemma 1

is closely related to Lemma 2 in [11] and will be proved in Section 5.

LEMMX 1. Let {n} be a strictly increasing sequence of integers satisfying
(2). For each sequence So, sl s with s 1 there exists a real-valued
fundion g() in 0 1 such that

(i) s fg(t)t dt B > O,
(ii) g(t) dt ,
(iii) i B’ > A(p, s)

for each fixed in 0 < < 1 and 0 < p < e where

h(p, c) K(log p-’-- c)(exp {-c2(log p--
(K is a constant in&pendent of the sequence {s} ).

LEMMA 2 (Edrei [3]). Let f be an entire functionf which

tim i(log log M(r) )/log r

where M(r) maxl,l_ If(z) Then there exists a sequee o/Polya peaks
f log M(r). That is, there exists anunbed positive segnce rz rs r
which is strictly increasing and four equences

{c}, {a}, {}, {A}
such that

fim c lim a fim 0, fim A
a such tha he ineqliies a r x A r imply

log M(x) (1 + ) (x/r)+ log M(r).

LEM 3. (Edrei [4]). Let G(t) be a real, continues, non-deeaing
function definedfor to > O. Assume that there exist
and ch that

lim sup.
G(t) T , lim i,. G(t) 0.

Then there exist arbitrarily large values r’ such that simultaneously
(i) (r’) G(r’),
(ii) G(t)/t G(r’)/(r’) , (to (r’)’).
Lemma 3 forms pa of the proof of Lemms 2.

3. mof of Theorems and 2
Suppose the theorem is false, and let r be a path tending to along wch

f(z) is bounded by L < . Choose 0 < e < 1 such that 2e < log 4/3.
Let z0 be the first point at which P intersects [z r, and let arg z be
the ray oing the ogin and the point z0.
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We assume first 0 0 and estimate

U(r) sup0<< If(u)
from below. Let

s sign(Reck) 1 if Reck_> 0,

=-1 if Re c <0.

Construct the function g(t) of Lemma 2 for this choice of {s}. Then, for
O(pe

h(p, e). IRe c(pr)] {infB }. [Re c(pr)[
--nk]Re c(pr)]Bp

The right-hand side is equal to

Re cr tg(t)dt Re ]o f(rt)g(t)dt

j ]f(rt)]]g(t) dt

U(r) ]g(t)]dt V(r).

Hence, for 0 < p < e-,
(3) (, ). le c(r)i V(r).

By the sme rgument, for 0 < p < e-,
(4) A(p, ). lXm v(pr)l U(r).

But
ire c(pr)l + Im c(pr)l c(pr)i M(pr).

Thus, dng (3) nd (4), we obtain, for0 < p < e-,
(5) U(r) A(p, ).M(pr).

By coidefingf(ue) instead off(u) nd noting that K in A(p, e) is independ-
en of the sequence {s}, we see, for 0 < p < e-,
(6) sup0 i](ue’) a h(p, )M().

We now e reflection trick of Polyp. Let r be the reflection of r cross
the rus ]oing the origin nd z0. Since [f(z) M(r) for z oa , the
inequality

holds for z’ on the rdius joing the origin nd z0. Hence, (6) becomes

(7) M(pr) A(p,

for0 <p<e-.
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Take p to be e-. By Lemma 2 there exists a sequence {r} of Polya peaks
for log M(r). Since a approaches zero and A approaches infinity as ]

approaches infinity, there exists an integer k0 such that for k > k0,

a r r < r/p < A r.
Hence, for k > ko,

(8) log M(r/p)

_
(1 + ) (l/p)+ log M(r).

If we set pr r for k > ]Co, we find that (7) and (8) imply

log M(pr) + log A(p, )

_
1/2 log M(r) + 1/2 log L,

and

(9) (1 -t- )-lp+ log M(r) + log A(p, )

_
1/2 log M(r) + 1/2 log L.

But since and both approach zero as ] approaches infinity and
2 log 4/3, there exists an integer kl for which

(10) (1 + )-lp+ (1 -t- )-e-(+’) > 3/4

when/ > /1. Thus, using (9) and (10), we see, for/ > max (k0,

1/4 log M(p-r)

_
1/2 log L log h(p,

in contradiction to the fact that log M (p-r) approaches infinity as ] ap-
proaches infinity.
We remark that Theorem 1 shows that there is no path tending to infinity

along which If(z) is bounded. Hence, Theorem 2 can be obtained by apply-
ing Theorem 1 to

(f(z) z /z

(The author would like to thank Professor W. H. J. Fuchs for this latter
simplification.)

4. Proof of Theorem 3
We split the proof into two parts according to whether f has regular or

irregular growth (i.e., whether the order of f and the lower order of f are equal
or distinct).

If f has regular growth, for each v, 0 7 1, we choose > 0 so that
e- > 1 7/2. Proceeding as in the proof of Theorem 1, we find (7) re-
placed by

i(pr) "A(p, )

_
M(r)Zer"/.K’,

for 0 < p < e where K’ is a positive constant, and (9) replaced by

(11) (1 -t- )-p"+ log M(r) + log A(p, e)

_
1/2 log M(r) + log K’ -r"/2

e-2ewhere p and pr r for
Since c and both approach zero as k approaches infinity and

e- 1 7/2, there exists an integer k such that for/c > / the inequality
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(11) implies

(1 7/2 1/2) log M(r)

_
(log K" log A(p, )) -t- r"/2,

and

(12) (1 7) log M(r)

_
2(log K" log h(p, )) -t- r ".

But (12) easily implies that t

_
a.

We now turn to the case when the lower order of f is strictly less than the
order of f. Let r be a real number for which r > t and

lim supt. (log M(t) )/t

Choose a to satisfy the conditions of Lemma 3 with G(t) log M(t). Choose
e so that 1/2e2 < < 1. Proceeding as in the proof of Theorem 1, we obtain
(in place of (7))

(13) M(pr) .A(p, )

_
M(r)ll.K’er/

for 0 < p < e and K" a positive constant.
e-.e rSet p By Lemma3 (with pr there exists asequence S of

radii r approaching infinity for which

log M(r) <_ (r/(pr)) log M(pr).

Hence, for r in S, (13) implies

log M(pr) + log A(p, )

_
(1/2p) log M(pr) + log K" + r/2,_
v log M(pr) + log K" + r"/2.

Thus, for r in S,
(1 7) log M(pr) + log (A(p, e)(K’) -)

_
r"/2.

However, (ii) of Lemma 3 gives

(14) pr(1 7) + log (A(p, e)(g’) -)

_
r"/2

for r in S, and since the radii in the sequence S approach infinity, (14) yields
r

_
a. It follows from our choice of

5. Proof of Lemma
Consider the function

G(z) (o/(Z + )) I]-o (m + - z)/(m + + z),

where the m are the midpoints of the segments (n, n+) for which s and
s+ are distinct. By (2) we see that 1/m .< . Hence G(z) defines
an analytic function in Re z > -1.
A Laplace inversion theorem (see Churchill [2, p. 178]) implies that G(z)

is the Laplace transform of the function

fcO+i
g(e-’) (1/2ri) e*’G(z) dz,

"co--io
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where Co is any real number greater than -1. Therefore the function

g(t) (1/2r) e-tG(iy) dy

satisfies (i), with Bk G(nk - 1) I.
(ii) follows easily, because

Ig(t) dt <_ -To obtain (iii), we proceed to estimate G(nq + 1) for fixed q > 1.
note that for positive z

1 1/2(n -- n+) -- 1 z(;(z)I > {z-+- 1l --0 1/2(nkWn+l) + 1 +z
so that

We

1 < (nq-t- 2)2II nk-n+l-t- 4+ 2nq(15)
G(nq - 1) -o nk - nk+l 2nq

Setting n n+, we estimate separately the terms of the products
H, H, and Ha with 2nq, 2nq 4nq, and > 4nq, respectively.
We have the inequalities

k=o nk nk+ 2ha

2(2 + 2n)
(a- )

<(2e(1 +nq))q. 2(q--1)
q--1 e

sincen’/nl eEforn 0,1,2, .... But then

log H nq.(q/nq) {log (nq/q) + C} + log (2(q 1)/e),

where C a constant. Since k/n 0 as k , we have

(16) log o(n.) (q ).

Assume H contains N factors (if N 0, put H 1). Then as above

H ((4nq + 4 + 2nq)/2).2/Nl ((3nq + 2)e/N).2,
and therefore,

log H nq.(N/nq){log (nq/N) + C’} + log 2,
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where C’ is a constant.

(17)

Finally,

II3-- II
Ph>4nq

Thus,

(18)

But q -[- N o(nq+) o(nq), so N o(nq), and

log II,. o(nq) (q --. ).

log II _< ,>4. log (1 -t- 4(1 -t- nq)/n)

< 4(1 + nq) ,>4.q 1/n o(nq) (q ).

Combing (15), (16), (17), and (18), we find

1/{ G(n, + 1)] (nq + 2)e(’q) (q ).

Hence, for a ven e in (0, 1) we see for all nq

1/ G(nq

where K is a positive constant. So if K (K)- for all n
G(n, + 1)[ Kne-"’.

For 0 p < e let
h(u) K u-e-(1/p) (u > 0);

then
h’(u)/h(u) 2/u +iog (1/).

Therefore, inf h (u) occurs whea

log (l/p)
That is,

u 2(log (l/p) e)-.
Returng to h(u), we have for 0 < p < e-,

--1 --1} p--2(log l--e)-i p K ((lo
from which (iii) is clear.
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