A NOTE ON COBORDISM

BY
K. VARADARAJAN!

1. Introduction

In his paper “Cobordism and Stiefel-Whitney numbers” [6] Stong proves
the following result.

TuaeorEM (Stong). Let M be a closed differentiable manifold of dimension
5-2°. Suppose that the Stiefel-Whitney classes wy, wa, Woz, *+ -, wes of M are
zero. Then whenever s > 4 the manifold M s cobordant to zero.

He remarks that easy examples can be constructed to show that the above
theorem is false fors = O and s = 1. He also comments that he does not know
what the situation is like for s = 2 and s = 3. In fact the Dold manifold
P (1, 2) is an example to show that Stong’s result is false for s = 0. The mani-
fold N* = P(1, 2) X P(1, 2) is a manifold with the property that all its
Stiefel-Whitney numbers divisible by wy and w, are zero. Hence by a theorem
of Milnor [4] N is cobordant to a manifold M for which w; and w, are actually
zero. This manifold M serves as an example to show that Stong’s result is
not valid for s = 1.

The object of this paper is to prove the following:

TaeorEM. If M is a closed differentiable manifold of dimension 40 with
wy = wy = ws = ws = 0 and further satisfying ws = 0 then M 1is cobordant to
zero.

The method of proof lies in a finer analysis of the indeterminacy group oc-
curring in Adams’ formula [2]

STV = Docici<aimiot @i @05 (V) mod D ociciss imima @iy Qi (X)
valid (independent of X) for any V ¢ H" (X; Z,) satisfying S¢'V = 8¢V =
Sq¢'V = S¢*V = 0. We will state Adams’ result more precisely in §2.

Throughout this paper by a manifold we mean a compact differentiable

manifold without boundary. The cohomology groups considered are with
Z,-coefficients. We denote the Steenrod Algebra mod 2 by Q.

2. Adams’ Result

J. F. Adams [2] has defined secondary cohomology operations &; ; for each
pair of integers 0 < ¢ < jand ¢ # j — 1 having the following properties:

(2.1) Let X be a space. The operation ®;; is defined on cohomology
classes w e H* (X ) such that S¢"u = 0for0 < r < 4.
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Ifue H"(X) (m > 0) then &; ; () is an element in H™H-1 %y modulo an
indeterminacy subgroup Q;,; (X). Moreover if 7 < j,
Qs (X) = SPH™ 7 (X) + Xogics b ™7 (X)
where b; ¢ @ and deg b; = 2' + 27 — 2.

Take an integer k > 3 and suppose that v e H" (X) (m > 0) is a class such
that S¢¥u = 0for 0 < r < k. Adams’ main result is

(2.2) TueoreMm (Adams). There is a relation
8™ = T aus By (u)

valid (independent of X) modulo Y, ai; Qi;(X) where the summation is ex-
tended over all 1, j such that0 <1 <j < k an_d 1 7% j — 1. Here a;; denotes a
certain element in @ of degree 2™ — (2° 4+ 2/ — 1),

3. Right action of the Steenrod Algebra on H*(M)

Let M" be a connected manifold of dimension n. Adams [1] has defineda
right action of @ on H* (M) and this right action has been later exploited by
Brown and Peterson [3]. We need the identities obtained by Brown and Peter-
son relating the usual left action of @ on H* (M ) with the above right action of
@. We recall how this right action is defined.

Given any a € @' and any z ¢ H* (M) define (x)a ¢ H*** (M) by the property

@)avy =zualy), YyeH ™).

Because of Poincare duality (x)a is well-defined.
Let ¢ : @ — @ denote the canonical conjugationand V : @ — @ ® @ denote
the usual diagonal map in @. (Refer, Chap. II of [5]). For any « ¢ @’ with

’

j> 1lwecan write V(a)asa® 14+ 1® a + Za.{ ® af for some o; and af
in @ with deg i > 0, deg &/ > 0. For the right action of @ on H* (M ) we
have the following identities:

(3.1) (x) 8¢’ =z, VzeH*"(M)
(3.2) 1) ¢(Sg°) = w:(M)
where w; (3 ) is the ¢-th dual Stiefel-Whitney class of M.

(3.3) Foranyze H*(M) and y e H'(M) with k > 0, 1 > 0 arbitrary and
for any o € @’ with 7 > 1 we have

@uyle = @avy +azucl)y) + X @)aiucll)y)
where V() =a® 1+ 1® a+ 2 o ® of with degai > 0; deg af > 0.
The formulae (3.2) and (8.3) are due to Brown and Peterson. Actually
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(3.3) is the analogue for the right action of @ on H* (M) of the well-known
Cartan-formula for the left action of @ on H™ (M), namely

(34) a@uy) =a@)uy+zualy)+ 2ialz)ual(y)

The identity of Wu which states that S¢*z = v; u = for any z ¢ H"* (M)
where v; is the 7-th Wu class of M/ can be stated in terms of right action as

3.5) Q) S¢* = v;.

4. Manifolds M*

Throughout the rest of this paper M = M* denotes a 40-dimensional con-
nected manifold such that w1 (M) = we(M) = ws(M) = ws(M) = 0. We
denote the j-th Stiefel-Whitney class of M by w; ; the j-th dual Stiefel-Whitney
class of M by w; and the j-th Wu class of M by v;.

Lemma 4.1. The only possible non-zero Stiefel-Whitney classes in positive
dimensions of M are weg , Wes , Wog , Wso , W1 AN Wap .

Proof. Immediate from Propositions 2 to 4 and Theorem 2 of [6].

Thus the only possible non-zero Stiefel-Whitney number is wig- w[M].
Sections 4 and 5 of this paper mainly analyse this Stiefel-Whitney number.

Lemma 4.2. For an M of the above type we have
Sq*wie = wos,  Sgwie = Sg'we = wis,
Sq"*wis = SgPwu = Sg’ws = w0,
Sqws = Sq'we = Sq*ws = Sg'ws = wa,
Sq*wn = Sq'wss = Sq'wso = Sq'ws = 0.

Proof. Immediate from the Wu formula

(43) Sq"wj = ; <'7 - -l- t = 1) Wi—t * Wit for 1% < j

LEmMA 4.4. The dual Stiefel-Whitney classes of M are given by
w; =0
for
1 <7< 15 17 <7 £ 28; 25 <1< 27; t =29 and 7 > 33.

Wig = Wie; W = Wa; W = Weg; W = Wi; Wu = Wa
and
Wae = Waz + Wie U Wie .

Proof. Immediate from the Whitney duality formula.
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Lemma 4.5. For any a e @° with ¢ < 15 we have

aW;) = Na,j Wi
for some Na,j€Zsy.

Proof. Immediate consequence of (repeated application of) the Wu formula
(4.3) and the fact that w, = 0 for 1 < u < 15.

Levma 4.6. For any ae G’ with 1 < ¢ < 15 we have
LVa=0
where 1 ¢ H (M) is the unit element.
Proof. It suffices to show that
(1)Sg™ --- 8g" =0
wheneverd; + -+ + d, < 15and d; > 1. But
(1)8g™ -+ 8¢ = (va,)8¢™ --- 8¢™
by (38.5). Since w, = 0 for 1 < u < 15 we get from the inductive formula
Wi = vy + 8¢01 + -+ + S¢* v

the relation v, = 0 for 1 < p < 15. Hence (1)Sg™ -+ S¢™ = 0 whenever
1<dianddy + --- 4+ d. < 15.

LemMA 4.7. For any o e @ with 1 < 15 we have

(Wi)o = pa,j Witi

for some pa,; €Zs .

Proof. If deg o = 0 there is nothing to prove since (w;)Sq° = w;. Where
1 < deg @ < 15 an application of formula (3.3) together with Lemma 4.6
yields

(wi)a = (Luw)a = c(a) w;).

But ¢(a) (w;) = Ney,; Wiri by Lemma 4.5. Hence pa,; = A(o,; Satisfies the
requirements of Lemma 4.7.

COROLLARY 4.8.

(wot)@ =0 fori=0,4,6,7,8
and

(wa)@ = 0 fors # 0, 1.
Proof. Immediate consequence of Lemma 4.7 and Lemma 4.1.

LeMMA 4.9.  (ws)@ = 0.

Proof. The elements S¢*; S¢'Sq'; S¢°S¢*; S¢°S¢’Sq' form a basis for @°
over Z,. Hence it suffices to verify that (wx)a = 0 when « is one of the
above four basis elements.
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By Corollary (4 8) we have (w:)Sg" = 0 and hence (wxS¢’Sg’Sq" = 0).
Take any z e H* (). We have
S (wuuz) =v5u (Wuuz) = 0.
Cartan’s formula and Lemmas 4.1 and 4.2 give
@) w U S¢®r + wes U Sg'c + ws U S¢’r + wa u Sg'z = 0.
Similarly we have S¢*(wss U ) = v, U (wes u ) = 0 yielding
(ii) was U 8¢*c + wso U 8¢’ + ws u Sg'z = 0.

Adding (i) and (i) we get wss U S¢’z = 0. Thus (w.)S¢® u 2 = 0 and this
Yz e H(M). Poincare duality for M* now yields

(’U-’24)S¢18 = 0.
Also we have Sq’ (ws U S¢'t) = v7 U wy U S¢'z = 0 yielding

(iii) wa U S¢S¢'z + ws u 8¢’Sg'r + wu u S¢'z = 0.
Similarly S¢® (wss u S¢g'z) = 0 yields
(iv) was U 8¢°Sq'x + ws u Sg'z = 0.

Adding (iii) and (iv) we get ws u S¢’Sq'z = 0. This means (wz)Sq'Sq" = 0.
The proof for (w.)Sq°S¢" = 0 is similar and hence omitted.

5. Thom class of the normal bundle of M* in 8

We want to bring into force the relationship between Stiefel-Whitney
classes and the Steenrod squares via the Thom isomorphism. For this
purpose we imbed M* differentiably in S for some d. Let » = »* denote
the normal bundle of M*’in §°™. Let E denote a closed tubular neighborhood
of M in §“* with E as the boundary. E can be identified with the total
space of the disk bundle associated to ».

Let p: E — M denote the projection and & : H*(M) — H™™(E, E) the
Thom isomorphism. Then H?(E, E) =~ Z, with (1) = U as the generator
and

®:H'(M)— H* (B, B)
is given by ®(z) = p™*(z) u U where p™ : H* (M) — H*(E) is induced by the
homotopy equivalence p : E — M. As is well known, w; = 7 (S¢'U).
Let T (») denote the Thom space of » and 1 : (E, E) — (T (»), « ) the canon-

ical projection. If k: T () — (T'(v), « ) denotes the inclusion, the com-
posite isomorphism

wan -2 5@, ) -7, g e), @) o BT e)

will be denoted by ¥. Sometimes we will refer to ¥ also as the Thom-iso-
morphism



208 K. VARADARAJAN

Let us denote the class ¥(1) e H(T'(»)) by V. Then ¥7'(S¢'V) = ;.
From Lemma 4.4 we have w; = 0for 1 < 7 < 15. It follows that S¢'V = 0
for 1 < ¢ < 15. Thus we are in a position to apply Adams’ result to V. We
get

(5.1) 8¢V = D oci<i<nomi1 i, ®i,; (V) mod D ogici<s,imio1 i, Qi (T ()

where Q,,; is the subgroup of indeterminacy corresponding to the secondary
operation ®; ;.

Set P;; = n*k* (Q:j(T(»))) and 8;; = 2*%k* '®;;(V). Then equation
(5.1) yields

16
(62)  8¢°U = D ocicicaivi—10i,i05,; Mm0d D ogi<i<s i1 @i P

We are interested in the Stiefel-Whitney number was- wis[M]. From Lemma
4.4 we have i = wys and W = wy. We have

8¢°U = p* () u U = p*(ws) u U.
Hence
p*(’U)24) U Squ = p*(wn) U p*(w;e) v U = ‘I)(’IDM”WN).

Since ® is an isomorphism it follows that ws-wis is zero whenever p*(wa) v
8¢°U is zero. Motivated by this we analyse the class p*(ww) u S¢*U
further.

PROPOSITION 5.3. We have p™* (we) u S¢°U = \p*(ws1) v 6015 for some
NeZ,.

For the proof of this proposition we need the following
LemMA 54. Forany x e H' (M) and o e @ with 1 < j < 15 we have
afp*(@) v U} = p*(a(@))u U.

Proof. Let V(a) =a® 14+ 1® a4+ 2 o ® of with deg ai > 0,
deg ai > 0. Then by Cartan’s formula we have

adp*@)u U} = a@* @) u U + p*@) u a(U) + 2 ai(@*@)) u i (U).

But since S¢’U = 0 for 1 < j < 15 it follows that 8(U) = 0 for any 8 e @’
with 1 < 7 < 15. Hence

afp*@)u U} = a(p*@))u U = p*(a(@))u U.
Proof of Proposition 5.3. From (5.2) we get
p* (wn) u 8¢°U
= Docicisnimi-1D” Wn) U @i30:; mod p*(wu) U D ai; Py

To prove Proposition (5.3) we have only to prove the following three state-

(5.5)
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ments:

(a) Each of the groups p™* (wx) U as; Ps,; is zero.
(b) For (4,7) # (1, 3) the element p™ (we) U a;,;0;,; is zero.
(¢) P*(wau) U ars61s = M\p™*(ws1) U 615 for some A eZ,.

Denote the groups ) A (E, E) and ) ; e (M) by L;; and B;;
respectively. Since 0;; € L;; to prove (a) and (b) it suffices to prove state-
ments (a') and (b’) mentioned below:

(8') For (7,7) # (1, 3) the group p™* (wa) U a;,; L; ; is the zero subgroup
of H** (B, E).

(') p*(wu) uarsPis = 0.

First consider p™ (wx) U as; Li; with (2, 7) # (1, 3). Let e;; e L;; be an

arbitrary element. We can write e;; as p*(z:;) u U for some z;; e Bi;.
Hence

P¥ (W) U @i, = p¥ (wu) U ais{p* (@) u U}
= p* (wn) v p*{ai @i )} U U
by Lemma, 5.4, because dega;; = 16 — (2° +2' — 1) and for0 < ¢ <; < 3
we have 1 < deg @;,; < 15. Thus
p*(wu) Uaijei; = p*wuu ai;(zi;)) u U.

Now deg a;,; + degx;,; = 16 and since M is of dimension 40 by the definition
of right action of @ on H* (M) we have

Woa U @i,j (i) = (Wea)@i,j U 2.

The a;,;’s oceurring in the sum (5.5) with (2, j) # (1, 3) are aoo; o2 ; o3 ;
01,1 ; az,2 and a5 and their respective degrees are 15, 12, 8, 13, 9 and 1. By
Corollary 4.8 and Lemma 4.9 we have (wy)@" = 0 for p = 15, 12, 8, 13, 9
and 1. Hence (wa)a:; U z;; = 0 and it follows that p™ (ww) U a:je; = 0
for every e; ;e L; ; with (¢, j) # (1,3). This proves statement (a’).

As for statement (b’) we have

Pis = 0'6* Qs (T (v))
2" SCH? (T () + Docics b HH (T ()}

]

by (2.2).
Setting bs = Sq’ we have

Pz = 11*70*—1{205153 by H* ! (TN
with b; e @ of deg 10 — 2'. However
260 HY (T () = b HYYU(E, B)
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and l )
p* (W) U a15P1s = ™ (W) U 13 Qosis b H 7 (B, E))
= D oci<sp” (wae) U a1 b H (B, E).

If ¢ eH’Ml:1 (E, E) is an arbitrary element we can write it as p*(z;) u U
with 2;¢ H* 7 (M). Then we have

p* (W) Uarsbier = p* (we) U arsbifp™ (1) u U}.
Since 1 < deg b; < 15 and deg a;1,3 = 7 applying Lemma 5.4 twice we have
P* (W) U arabier = p* (woe U ar3b (1)) U UL
By Lemma 4.7 we have (wa)ai,s = Mws for some NeZ,. Hence
(wed)ar,sb1 = Q\wsi )by = N (ws)b:.

Since deg b; = 10 — 2' > 0 and 1 we see from Corollary 4.8 that (wss)a1,sb; = 0.
Hence

p*(wa) Uarsbier = p* ((War)arsbiu ) u U = 0.

This completes the proof of statement (b").
As for statement (¢) we can write 613 as p (215 U U for some ;3 € Bys.
Then as before
P* (Was) U G130 = p* (Wnu U G13(13)) U U

= p*((wn)arsu 13) U U

]

p*(\ws U mg) u U
¥ (wa) U p*(@13) U U
= )\p*('wsl) u 01,3 .

This completes the proof of Proposition 5.3.
6. The main theorem
As remarked earlier the main result proved here is

TaEorEM 6.1. If M* 4s a 40-dimensional closed differentiable manifold
with wy = we = wy = Wg = wy = O then M s cobordant to zero.

Proof. Follows immediately from Lemma 4.1 and Proposition 5.3.
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