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1. Introduction

In his pper "Cobordism nd Stiefel-Whitney numbers" [6] Stong proves
the following result.

THEOREM (Stong). Let M be a closed differentiable manifold of dimension
5.2. Suppose that the Stiefel-Whitney classes w w w,. w., of M are
zero. Then whenever s >_ 4 the manifold M is cobordant to zero.

He remarks that easy exumples can be constructed to show that the above
theorem is fulse for s 0 und s 1. He lso comments thut he does not know
what the situation is like for s 2 and s 3. Ia fuct the Dold manifold
P (1, 2) is an example to show that Stong’s result is false for s 0. The mani-
fold N P (1, 2) P (1, 2) is a manifold with the property that all its
Stiefel-Whitney numbers divisible by w and w are zero. Hence by a theorem
of Milnor [4] N is cobordant to a manifold M for which w and w are actually
zero. This manifold M serves as an example to show that Stong’s result is
not valid for s 1.
The object of this paper is to prove the following"

THEOREM. If M is a closed differentiable manifold of dimension 40 with
w w w4 ws 0 and further satisfying w 0 then M is cobordant to
zero.

The method of proof lies in a finer analysis of the indeterminacy group oc-
curring in Adams’ formulu [2]

Sql6V Zo<_i<_y<_a,i#i-1 ai,y i,(V) mod o<_<<,- ai, Qi,(X)

H (X; Z) satisfying Sq V SVvalid (independent of X) for ny V e

SqV SqSV O. We will stute Adums’ result more precisely in 2.
Throughout this paper by a manifold we mean u compact differentiuble

manifold without boundary. The cohomology groups considered are with
Z.o-coefficients. We denote the Steenrod Algebra mod 2 by a.

2. Adams’ Result

J. F. Adams [2] has defined secondary cohomology operations ,. for each
pMr of integers 0 _< i < j and i # j I buying the following properties"

(2.1) Let X be space. The operation , is defined on cohomology
classes u e H* (X) such that Squ 0 for 0 _< r _< j.
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If u e (X) (m > 0) then (. (u) is an element in H’+s’+t-1 (X) modulo an
indeterminacy subgroup Q.(X). Moreover if i < j,

Q,, (X ) Sq’I+- (X ) - o<< b H+-(X)

wherebeaanddegb-- 2’W2- 2.
Take an integer k _> 3 and suppose that u H (X) (m > 0) is a class such

that Sqru 0 for 0 _< r _< k. Adams’ main result is

(2.2) THEOREM (Adams). There is a relation

Sq*+’u a, ,(u

valid (independent of X) modulo a, Q,,(X) where the summation is ex-
tended over all i, j such that 0 <_ i <_ j <_ k and i j 1. Here a, denotes a
certain element in a of degree 2*+ (2 -t- 2" 1).

3. Right action of the Steenrod Algebra on H*(M)
Let M be a connected manifold of dimension n. Adams [1] has defineda

right action of ( on H* (M) and this right action has been later exploited by
Brown and Peterson [3]. We need the identities obtained by Brown and Peter-
son relating the usual left action of a on H* (M) with the above right action of
a. We recall how this right action is defined.
Given any a e a and any x e HA (M) define (x)a e H+(M) by the property

H-- (M).(x)au y xu a(y) rye
Because of Poincare duality (x)a is well-defined.

Let c a --, ( denote the canonical conjugation and ( --, a (R) a denote
the usual diagonal map in a. (Refer, Chap. II of [5]). For any a e a with
j >_. 1 we cn write () s @ 1 -f- 1 (R) -I- (R) a for some nd
in with deg > 0, deg . > 0. For the right action of a on H* (M)we
have the following identities"

(3.1) (x) Sq x, VxeHA(M)

(3.2) (1) c(Sq’) (M)

where (M) is the i-th dual Stiefel-Whitney class of M.

(3.3) For any x e H (M) and y e H (M) with k >_ 0, >_ 0 arbitrary and
for any a e a with j _> 1 we have

(x u y)a (x)a u y - x u c(a) (y) W (x)a u

where.(a) a(R) 1-1- 1(R)a-I- a(R)a withdega)O;dega >0.

The formulae (3.2) and (3.3) are due to Brown and Peterson. Actually
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(3.3) is the analogue for the right action of ( on H*(M) of the well-known
Cartan-formula for the left action of ( on H* (M), namely

(3.4) (x u y) (x) u y -t- x u a(y) + , ,(x)’ u a (y)

The identity of Wu which states that Sqx v u x for any x H"-(M)
where v is the i-th Wu class of M can be stated in terms of right action as

(3.5)

4. Manifolds M
Throughout the rest of this paper M M denotes a 40-dimensional con-

nected manifold such that w(M) w (M) w(M) w(M) 0. We
denote the j-th Stiefel-Whitney class ofM by w the j-th dual Stiefel-Whitney
class of M by and the j-th Wu class of M by v.
LEMMA 4.1. The only possible non-zero Siefel-Whiney classes in positive

dimensions of M are w, w, ws, wo, w and w.

Proof. Immediate from Propositions 2 to 4 and Theorem 2 of [6].

Thus the only possible non-zero Stiefel-Whitney number is w.w[M].
Sections 4 and 5 of this paper mainly analyse this Stiefel-Whitney number.

IEMMA 4.2. For an M of the above ype we have

SqSWl W24, sql2ol6 Sq4W.4 W28,

14

SqlSvl6 SqTW24 Sqw28 Sqlw0 WI,

wSq8w Sqw Sq2wo Sq O.

Proof. Immediate from the Wu formula

(4.3) Sq,w (j-- i - t--1)-o
w-.w+ for i < j.

LEMM. 4.4. The dual Stiefel-Whitney classes of M are given by

0
for
1

__
i__ 15; 17__ i__ 23;

W; @ w4;
and

25 <_ i <_ 27; i 29 and i>_ 33.

@2 w2 -J- w U WlO.

Immediate from the Whitney duality formula.
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LEMMA 4.5. For any (x e with i <_ 15 we have

a

for some ),a, e Z

Proof. Immediate consequence of (repeated application of) the Wu formula
(4.3) and the fact that w, 0 for 1 g tt <_ 15.

LEMMA 4.6. For any a with 1 <_ i <_ 15 we have

(1)a 0

Hwhere 1 (M ) is the unit element.

Proof. It suffices to show that

sq 0

whenever dl + -4- dr _< 15 and dl > 1. But

sq
by (3.5). Since w, 0 for 1 < g _< 15 we get from the inductive formula

w, v, + Sqlv,_ -4-

the relation v, 0 for 1 < g < 15. Hence (1)Sq Sq 0 whenever
1 _< d and dl + -4- d _< 15.

LEMMA 4.7. For any a with i <_ 15 we have

(Wi )tx i.ta,i Wi+i
for some , e Z2.

Proof. If deg a 0 there is nothing to prove since (w)Sq w. Where
1 _< deg a <_ 15 an application of formula (3.3) together with Lemma 4.6
yields

(w)a (1 u w)a c (a) (wi).

But c (a) (w.) X(.),- w’+ by Lemma 4.5.
requirements of Lemma 4.7.

Hence g., hc(.), satisfies the

COROLLARY 4.8.

and
(w24)a 0 fori#O, 4,6,7,8

for i # 0, 1.

Proof. Immediate consequence of Lemma 4.7 and Lemma 4.1.

LEMMA 4.9. (’W24)a 0.

Proof. The elements SqS; SqSq; SqSq; SqSqSq form a basis for a
over Z. Hence it suffices to verify that (w)a 0 when a is one of the
above four basis elements.
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By Corollary (4.8) we have (w4)Sq 0 and hence (w2 SqSSq 0).
Take any x e H (M). We have

Za (v u x) u ( ) 0.

Cartan’s formula and Lemmas 4.1 and 4.2 give

(i) w24 u Sqx + w28 u Sx + m Sqx + m Sqlx O.

Similarly we have Sq (ws u x) v4 u (ws u x) 0 yielding

(ii) w u Sx + w0 u Sqx + w u Sqx O.

Adding (i) and (ii) we get w u SqSx O. Thus (w)Sq u x 0 and this
V x e H (M). Poincare duality for M now yields

(w)Sq O.

so we have Sq (w u Sqx v u w u Sqx 0 yielding

(iii) w u SqSqx W ws u SqSqx T wa u Sqx O.

Similarly Sq (ws u Sqx ) 0 yields

(iv) ws u SqSqx % wa u Sqx O.

Adding (iii) and (iv) we get w u SqSqx O. This means (w)SqSq O.
The proof for (w)SqSq 0 is similar and hence omitted.

5. Thorn class of the normal bundle of M
We want to bring into force the relationship between Stiefel-Whitney

classes and the Steenrod squares u the Thom isomorphism. For this
purpose we imbed M derentiably in S for some d. Let denote
the normM bundle ofM in S+. LetE denote a dosed tubular neighborhood
of M in S with as the bounda. E can be identified with the total
space of the disk bundle associated to .

Let p’E M denote the projection and " H(M) H (E, ) the
Thom isomorphism. Then H (E, ) Z with (1) U as the generator
and

H’ (M) gTM (, k)
is given by (x) p* (x) U where p*" H* (M) H* (E) is induced by the
homotopy equivMence p’E M. As is well known, -(SqU).
Let T () denote the Thom space of and " (E, ) (T (), the canon-
icM projection. If ’T() (T (), denos the inclusion, the com-
posite isomorphism

g(M) )g’+(E,) (v*)-H(T(), ) g’+(T())
will be denoted by . Sometimes we will refer to also as the Thom-iso-
morphism
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H (T ()) by V. Then -(SqV)Let us denote the class (1)
From Lemma 4.4 we have 0 for 1 i 15. It follows that SqV 0
for 1 i 15. Thus we are in a position to apply Adams’ result to V. We
get

(5.1) Sq6V o+,o-a,++i,+(V) mod 0i+a,++-t a,+Q+,+(T ()

where Q,+ is the subgroup of indeterminacy corresponding to the secondary
operation +,.

k*-Set P, **-(Q,(T ())) and , ,(V) Then equation
(5.1) yields

(5.2) SqU o,-a,# 0, mod 0a,-a,. P,.
We are interested in the Stiefel-Whitney number w.w[M]. From Lemma

4.4 we have @s w and @ w. We have

qU p*() U p* (w) .
Hence

p (wu) SqsU p (w) (w) U (w.w).

Since is an isomorphism it follows that w.w is zero whenever p*(ws)
SqU is zero. Motivated by this we analyse the class p*(w) SqU
further.

PROPOSiTiON 5.3. We have p* (w) SqU hp* (wa) u 0, for some
heZ.

For the proof of this proposition we need the following

LMMA 5.4. For any x H (M ) and a a with 1 j 15 we have

a{p* (x ) u U} p* (a (x ) ) U.

Proof. Let (a) a 1 + 1 a + a @ a withdega > 0,
deg a > 0. Then by Cartan’s forma we have

But since SqU 0 for 1 j 15 it follows that (U) 0 for any a
with 1 j 15. Hence

Prog of Propositi 5.3. From (5.2) we get

(.)

To prove Proposition (5.3) we have only to prove the follong three state-
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ments"

(a) Each of the groups p* (w24) u a,P, is zero.
(b) For (i, j) (1, 3) the element p* (w24) u a,0, is zero.
(c) p* (w2a) t] al, 01,3 kp* (W31) U 1,3 for some k e Z2.
Denote the groups Hd+2+2- (E, ) and H’+- (M) by L, and B,

respectively. Since , e L, to prove (a) and (b) it suffices to prove state-
ments (a’) and (b’) mentioned below"

(a’) For (i, j) (1, 3) the group p* (w4) a,L, is the zero subgroup
of H+d (E, ).

(b’) p* (w2) v a,P,3 O.

First consider p* (w24) u a, L,y with (i, j) (1, 3). Let e, e L, be an
arbitrary element. We can write e, as p* (x,) v U for some x,
Hence

p* (w2) a, e,y p* (w2) u a,{p* (x,) U}

p*(w2)v p*{a,,1(x,,)} u U

by Lemma 5.4, because deg a, 16 (2 W 2- 1)and for 0 i j 3
we have 1 deg s, 15. Thus

p (w2) a, e, p (w v a, (x,)) v U.

Now deg a, deg x, 16 and since M is of dimension 40 by the definition
of right action of a on H* (M) we have

The a,’s occurring in the sum (5.5) with (i, j) (1, 3) are a0,0 a0, a0,a
a, a2, and aa,a and their respective degrees are 15, 12, 8, 13, 9 and 1. By
Corollary 4.8 and Lemma 4.9 we have (w)a" 0 for g 15, 12, 8, 13, 9
and 1. Hence (w)a, u x, 0 and it follows that p* (w) u a, e, 0
for every e, e L, with (i, j) (1, 3). This proves statement (a’).
As for statement (b’) we have

*"*-’ (T ())

-v-*k*-{SqH+ (T () ) W 0<a b, Hd+2-I (T () )}
by (2.2).

Setting b Sq we have

P,a y’k*-’{0abH+- (T ())}

with b e a of deg 10 2. However

H b,H (E,
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and
p* (w4) u al,sPx,a p* (w.4) u al,a (o<< b I-I+-1 (E, )

o<<p* (w) u a,a bH+- (E, ).
If e e H+- (E, ) is an arbitrary element we can write it as p* (x) u U
with xz e H- (M). Then we have

* * b{p* (x) u U}p (w) u ax, b e p (w) u a,

Since 1 deg b 15 and deg a,a 7 pplng Lemmu 5.4 twice we have.
p (w) u ax,a b e p (w u a,a b (xz)) u U.

By Lemma 4.7 we have (w)ax,a Xwa for some X e Z. Hence

(wa)ax,a b (Xwa)b X (wa)b.

Since deg b 10 2 # 0 and 1 we see from Corolla 4.8 that (w)a,a b 0.
Hence

p (w) u a,abe p ((w)a,ab u xz) u U O.

This completes the proof of statement (b’).
As for statement (c) we can write O,a as p*(x,a)u U for some x,a e B,a.

Then as before
p* (,) u a, 0, p* (, u a, (,,,)) u V.

p (w)ax, u x,a) u U.
p (Xwaux,a) u U

Xp* (wax) u p* (x,a) u U

Xp* (w) u

This comples the proof of Proposition 5.3.

5. The moin theorem
As remarked earlier the main result proved here is

THEOREM 6.1. If M is a 40-dimensional closed differentiable manifold
with w w w ws wax 0 then M is cobordant to zero.

Proof. Follows immediately from Lemma 4.1 and Proposition 5.3.
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