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Introduction

For group given by generators nd defining relators, Vn Kmpen [3]
described suggestive representation for ech relator (see [2, pge 7], for
definitions). A connected nd simply connected plane complex ws used,
with generator ssigned to ech oriented 1-cell, so that defining relators (or
their inverses) corresponded to boundaries of 2-cells nd the relator cor-
responded to the boundary of the complex.
The plane configuration which will serve to represent relators ia rbitrry

presented groups is slightly more general. It is finite, connected plnr
gTph, together with n embedding of the graph in the Euclidean
plane. These graphs were used implicitly by the uthor in [4] to give new
proof of the solution of the word problem for sixth groups. More extensive
results on the word problem were obtained by Lyndon in [1] with the id of
these plnr graphs. In Lyndon’s terminology, these plnr graphs re mps;
when generators re ssigned to their oriented edges in suitable mnner, they
re referred to s diagrams.

In such mp, fce my hve boundary containing fewer vertices thn
edges. If there is such fce in diagram for relator in some presented
group, then that fce corresponds to defining relator (usually ssumed to be
cyclically reduced word) nd some proper subword of that defining relator is
relator.
The known results in sixth groups [4, pge 558] imply that no proper sub-

word of ny defining relator is relator. As usual this statement refers to
prticulr presentation for the group nd ech defining relator is cyclically
reduced word. Our min result is that the sme conclusion holds for ech
group with one defining relator. For the proof we find if convenient to replace
plnr graph by n bstrct structure, clled surface. This leds to b-

strict versions of mps nd diagrams. The proofs of key preliminary result
(Theorem 1) nd of the min result (Theorem 2) re bsed on scheme used
by Mgnus to prove the Freiheitsstz (see [2]). But the bsic tool in these
proofs is diagram. We close with digrm4heoretic modification of the
Mgnus proof of the Freiheitsstz.

1. Surfaces and spheres
A surface is determined by finite, non-empty se S, with n even umber

2e of elements, nd by two permutations f, g on S such that g is product of e
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disjoint transpositions. We think of the surface as an ordered triple but we
write it simply as Sfg. Let fg denote the composition of f and g with f applied
first. The oriented edges, vertices, edges, and faces are the elements of S and the
orbits of fg, g, f, respectively. The numbers of vertices, edges, and faces are
denoted by fg I, g I, if i, respectively. We write f fl"" f, if fl, f are
the restrictions of f to the orbits of f. Here n If I.
The edges and vertices which belong to a face F are just the ones which have

a non-empty intersection with F. Two faces are vertex disjoint (or edge dis-
joint) if no vertex (or no edge) belongs to both of them.

Remark 1. If two faces F, G are vertex disjoint, then they are edge disjoint

Proof. If an edge E belongs to F and to G, then we must have E {x, y}
with x in F, y in G. Then xf-1 and y are in the same vertex V
because (xf-1)fg xg y. So V belongs to F and to G, a contradiction.
A face F consisting of n >_ 1 oriented edges is said to be simple if n distinct

vertices belong to F.

Remark 2.
an edge.

No simple face F, consisting of n >_ 3 oriented edges, contains

Proof. If an edge Ix, y} is contained in such an F, then xg y and two
cases arise. If xf y, then xf- and y are distinct and (since (xf-) (fg) y)
are in the same vertex; if xf y, then yf- and x are distinct and are in the
same vertex. Either way, at most n 1 distinct vertices can belong to F and
so F is not simple, a contradiction.
A surface Sfg is the union of surfaces Sifig, 1 <_ i <_ m, if S is the union of

the S and if, for each i, f and g are the restrictions of f and g, respectively, to
S. This is a disjoint union of surfaces if the S are pairwise disjoint. The
surface is connected if no proper subset of S is closed under f and g. It is then
clear that each surface is uniquely a disjoint union of a finite number of con-
nected surfaces. Finally, a sphere is a connected surface Sfg with Euler
characteristic fg g + If equal to 2.

LEMMA 1. Let Sfg be a sphere with If[ >- 2. Let a, b be distinct oriented edges
belonging to different faces. Assume a, b are in the same vertex. Suppose

f (a... ar)(b’" bs)v and fg (c... cd...d)w

for some permutations v, w and some oriented edges a b c d where a ar
c, b b8 d. Then Spg is a sphere where p (al ab bs)v.

Proof. Observe that

p (a... arb"" bs)(b,’" b)(a.., a)f-- (ab,)f (c,d,,)f.

So pg (ctd) (cl cd d)w and thus

pg (c c)(d d,)w.
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Therefore Spg has Euler characteristic 2. It is commcted because any subset
T (of S) which is closed under p and g must contain all or none of the a, b
so T is closed underf and g, and T S or T is empty.

LEMM) 2. Let F {a, b} be a simple face of a sphere Sfg with a b and
f >- 2. Suppose f "- (ab)p for some permutation p. Then g "-" (ac) (bd) v

for some permutation v and for some oriented edges c, d such that a, b, c, d are
distinct. Furthermore, Tpq is a sphere where T F and q "-- (cd)v.

Proof. Let c ag and d bg. Then c a, d b because g has ao fixed
points; c d because a b and g is one-to-one. Also d a since d a
implies {a, b} is closed under f and g so that S {a, b}, contrary to If >- 2.
Finally, c b since c b implies d bg cg a, which again yields a con-
tradiction. Thus a, b, c, d are distinct and we have g "-- (ac)(bd)v for some
permutation v.

Since F is simple, it follows that a and b are ia different vertices and fg "-

(adl... d,)(bcl.., c,)w for some permutation w and some oriented edges
d, c. We note that d afg bg d and c bfg ag c.
We form a surface Sfk where k (ab)(cd)v. Since v and (ac)(bd) com-

mute, we have k (ac) (bd)v(ac) (bd) (ab) (cd) g(ad) (bc). So

fk fg(ad) (bc) w(ad d,) (bc cr) (ad) (bc).

Thenfk-" w(a) (b) (dl d,) (cl cr).
Therefore Sfk has Euler characteristic 4. It is a disjoint union of Tpq and a

sphere ({a, b}, (ab), (ab)). The latter expression is an ordered triple consist-
ing of a set followed by two permutations on that set. It follows that Tpq has
Euler characteristic 2.
To see that Tpq is connected, we consider any subset U (of T) which is

closed under pamd q. U must contain either both c and d or neither c nor d.
Hence either U u {a, b} or U is closed under f and g. It follows that either
U u {a, b} S or U is empty i.e. either U T or U is empty. Thus Tpq is
a sphere and we are done.

LEMMA 3. Let F {a, b, el, e,} be a simple face of a sphere Sfg where
a, b, e,..., e, are distinct oriented edges, Ill >- 2, and >_ 1. Suppose
$ (abel... e,)p for some permutation p. Then g "- (ac)(bd)v for some
permutation v and for some oriented edges c, d such that a, b, c, d, e e, are
distinct. Furthermore, Skg is a sphere where k "- (ab) (e e)p and one of its
faces {a, b} is simple.

Proof. Let c ag and d bg. Since {a, c} and {b, d} are edges, neither of
them is contained in F, by Remark 2. Hence each of the oriented edges c, d
is different from each oriented edge in F. Finally, c d because a b and
g is one-to-one. Thus a, b, c, d, e, e are distinct and we have g -"

(ac) (bd)v for some permuta$ion v.
Since F is simple, we find e, and b in different vertices. But e and c are in
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the same vertex because efg ag c. So b and c are in different vertices.
Thusfg (al arb) (cdl dr) w for some permutation w and some oriented
edges a, d where r, s >_ 1. We note that d]g c. So df cg a. Hence
d=et. Alsoa-bfg=eg. Then

k (ab) (e e,) (e eba) (abet e)p

So kg (be,)fg (bet) (at arb) (cdt d)w. Thus

kg "- (at... abcdt
Therefore Skg has Euler characteristic 2. To see that it is connected, we

consider any subset U (of S) which is closed unker k and g. U must contain
either all or none of the e. Hence either U u {a, b} or U is closed under
and g. Then either U is empty or U S. Thus Skg is indeed a sphere.
To see that/a, b} is a simple face of Skg, we observe that el, a, b are in

distinct orbits of fg because F is a simple face. Thus a, b, c are in distinct
orbits of fg because etfg c. Therefore a is not equal to any a or d. Then
a, b are in distinct orbits of kg since kg "- (at... arbcdl d)w.

2. Verbal surfaces
Let a, b, c, d be elements (of any sort). We call abcd an array. Similarly,

at...a, denotes an array of m >_ 1 elements. We need not require that
at, aM be distinct. If A, B are, respectively, the arrays al aM and
bt b, then AB is defined to be the array a a,b

If A, B are arrays, then (A, B) denotes the set of all arrays C such that
either C AB, or C BA, or C XBY and A XY for some arrays
X, Y. We think of the latter case as inserting B into A. This can arise
only ifA at aM where m >_ 2. For arraysAt,...,A,n >_ 1, we
define the set (A1, A) inductively. (At) has one element

A) is the set of all arrays V such that V is in (U, A) for some U in
(A,, "., A,_).
Now let p (c c) be a cyclic permutation on the set consisting of

r >_ 1 distinct elements at, cr. We say the array c c represents p.
If we denote this array by C, then exactly r arrays (C and its cyclic permuta-
tions) can represent p.

Let Sfg be a surface with f ft f and g g g for some cyclic
permutations f, g. We call Sfg verbal if

(At,...,A) n (lt,...,
is not empty for some arrays A, Ii representing f, gi, respectively.

Remark, 3. If W is in (At,..., A, X) and if X is in (Y, Z) where
W, X, Y, Z, and the A are arrays, then W is ill

(Ax, ,A, Y,Z).
Remark, 4. If C is a cyclic permutation of AB where A, B, C are arrays,
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then C is in (X, Y) where either Y A and X is a cyclic permutation of B
or Y B and X is a cyclic permutation of A.

Remark 5. If W is in (A1, At, C) and C is a cyclic permutation of
AB, where W, A, B, C and the A are arrays, then W is in

(A A X, Y)
where X, Y satisfy the conclusions of Remark 4.

Remark 6. Each connected verbal surface Sfg is a sphere.

Proof. We need some results in [4]. The terminology there is related to
our present set-up as follows. Let W be an array in

Where A1, A, 11, I represent the cycles of f and g, respectively,
andn If[ >_ 1, e [g[ _> 1. Then, as in [4], we have

1--W (insert A1,...,A,)

W--.1 (delete Io,...,11).

So (S, fi g, 0) is a structure where 0 is a cyclic permutation on the set S and
0 is represented by the array W. This structure is minimal (see definition in
[4, page 561]) because Sfg is connected. The structure is cancelled (see
definition in [4, page 560]) because g has no fixed points.
By Theorem 6.1 in [4], (S, f, g) is a spherical complex, in the terminology

of [4]. This is equivalent to saying Sfg is a sphere because the notions of
connectedness here and in [4] are equivalent (see definition in [4, page 561]).

Remark 7.
spheres.

Each verbal surface Sfg is a disjoint union of a finite number of

Proof. Let Wbe in (A1,...,A,) n (11,...,1,) for some arrays A,
1. representing, respectively, the cycles of f and g where n If[ >- 1 and
e g >- 1. Let T be any non-empty subset (of S) which is minimal with
respect to the property that T is closed under f and g. Then T is a union
of faces F1, Fr and also a union of edges El, E8 with r, s >_ 1. If
the corresponding cycles of f and g are fl, f and gl, gs, respec-
tively, then there exists some subsequence B1, ..., B of A1, ..., A, and
some subsequence J1,’", J, of I1,...,1, such that B, J represent
f,gforalli, j,l_<i_<r,l_<j_<s.
We form an array V (from W) by deleting all oriented edges in S T.

Then V is ir (B1, B) n (J1, J,). So Tpq is a connected verbal
surface, where p fl fi and q gl g,. The proof is completed by
observing that S is a disjoint union of a finite number of sets such as T and
that Tpq is a sphere by Remark 6.

Remark 8. Each sphere Sfg, with n If] => 1, is a verbal surface.
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Proof. In the terminology of [4], (S, f, g) is a spherical complex with n
boundaries. By Theorem 6.3 in [4], there exists a minimal, cancelled structure
(S, f, g, 0). Therefore, there is an array W, representing 0, and there are
arrays Ax, A., Ix, Ie representing the cycles off and g, respectively,
with gl e, such that

1-*W (insert Ax,...,A.)

W--.I (delete le,...,Ix).

Hence W is in (Ax, A,) n (Ix, Is) and so Sfg is verbal.

IEMMA 4. Let Sfg be a sphere with f >- 1.
edges in the same face and in the same vertex.

Let a, b be distinct oriented
Suppose

f (al...arbx... b,)v and fg (ca.." cdx...d,)w

for some permutations v, w and some oriented edges as, b, c, d where a
ar c b b, d,, and r, s, t, u >_ 1. Let

p (ax... ar)(bx’" ba)v.

Then Spg is a disjoint union of two spheres where {al a} is a face of one

of these spheres, and {bx ba} is a face of the other.

Proof. Observe that

p (ax.-. a)(bx.., b,)(b,.., bxa.., ax).f (a,b,)f.

So pg (axb,)(ca... cdx.., d,)w and thus

pg (cl... cr) (dx d,)w.

Therefore Spg has Euler characteristic 4.
To see that Spg is verbal, we suppose that arrays A1, A, represent the

cycles of f. One of these arrays is a cyclic permutation C of AB where
A al...a,,B bx...b,. SoA and B represent two cycles of p. By
Remark 4, C is in (X, Y) where X, Y are arrays representing these same two
cycles of p. We form a sequence Dx, D,+ of arrays from Ax, A,
by replacing C (in the latter sequence) by two successive terms X, Y. Then
any array in (Ax, A,) will also be in (Dx, D,+x) and, furthermore,
D, D,+x represent the cycles of p. It follows that Spg is verbal because
Sfg is verbal.
By Remark 7, Spg is a disjoint union of two spheres. The oriented edges

a, b must be in different spheres because f, p disagree only on a and on b. This
completes the proof.

3. Maps and diagrams

A labelled sphere, over a free group F with a given set of free generators, is
determined by a sphere Sfg and a function L which assigns a label xL to each
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X in S, where xL is a generator (of F) or its inverse. It is required that if
xg y then xL and yL are inverses of each other.
A map M is determined by a sphere Sfg and one face H of that sphere.

If, ia addition, Sfg and some L determine a labelled sphere, over some F, then
we say that M and L determine a diagram over F. In this context, the faces
of the map (or of the diagram) are all the orbits of f, except H;the vertices,
edges, and oriented edges of the map (or of the diagram) are those of Sfg.
We now establish notation which will be used repeatedly. We follow es-

sentially the pattern in [2, pages 254 and 256]. G denotes a group given by
two or more generators and by one defining relation R 1 where R is a non-
empty cyclically reduced word involving all the generators. Since sub-
scripts on generators will serve another purpose, we denote the generators
by b, c, t. By this, we mean, for instance, b, or b, c, or b, c, d, if
there are exactly 2, 3, or 4 generators, respectively. We now assume that the
generator b has a zero exponent sum in the word R. Then hr denotes the
smallest normal subgroup (of G) containing all the generators (of G) except
b. We use the powers of b (b, for any integer i) as a Schreier system of eoset
representatives for N (in G) to get a Reidemeister-Schreier rewriting process.
We use the symbols c, ..., t to denote the elements bcb-, ...,btb,-respectively, where i is any integer. The rewriting process changes a word

X into a word X’. Here X is a word in the generators b, c, and X
defines an element of N. X’ is a word ia the symbols c,..., t. The
rewriting process changes X in the following way. If p denotes a particular
symbol in X and p occurs among c, c-1, t, -1, then p is replaced by pk

t-(e.g. c is replaced by c, is replaced by t1) where k is the b-exponent sum
of the initial segment of X preceding p. The process is completed by dis-
carding any b symbols in X.

Let P (bRb-) for each integer i. Then each P is a cyclically reduced
word (see problem 2, page 98, in [2]). The Reidemeister-Sehreier method
leads to a presentation for N"

N (... c_, co, c, t_, to, tl, P_I, Po, P, "")
Since R involves c, t, P0 involves some c, some t. Therefore Pr
involves c+r, t.+. It follows that each generator in the presentation
for N appears in at least oe defining relator in this presentation. In contrast
to [2, p. 257], we choose to define N as the group having one defining relator
P and having, as generators, the generators involved in P, for each integer i.

Finally, let H {a, a} be a face of a labelled sphere Sfg over a free
group F. Suppose f "- (a a)p for some permutation p. Let L be the
label function. We say that a non-empty word W (in the generators of F)
corresponds to H or H corresponds to W if the word aL aL is, as it stands,
W or some cyclic permutation of W.
TttEOREM 1. Let M be a diagram over the free group with free generators

c t for i ranging over the integers. Suppose M is determined by a face H
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on a labelled sphere Sfg with label function L and If[ >- 2. Assume each face of
M corresponds to a relator in N, for some integer i depending on the face. As-
sume a word W not freely equal to 1 corresponds to H. The word W and the
relators corresponding to the faces of M need not be freely reduced or cyclically
reduced. Then there exists a diagram M, over the same free group, determined
by the face H’ on a labelled sphere Tpq with label function L and with P >- 2
such that:

(1) T S, L’ L on T, and H’ H.
(2) Each face of M corresponds to a cyclically reduced relator in same N

where i depends on the face.
(3) If two different faces (of M’) correspond to relators in the same N,

then the two faces are vertex disjoint.
(4) Each face of M is simple.
(5) The cyclically reduced form of W corresponds to

Note. The following two lemmas will be needed in the proof of Theorem 1
which requires an induction argument. Therefore, during the proof of
Theorem 1, we assume that the conclusions of Theorem 1 are true when the
induction hypothesis is valid. It is under these circumstances that Lemma 6
will be used. This note is intended to quiet the fear of using circular reasoning
when invoking Lemma 6 (and thereby invoking its predecessor Lemma 5).
This fear is raised because these lemmas assume that the conclusions of
Theorem 1 hold for some diagram.

LEMMA 5. Let M be a diagram over the free group with free generators
c t for i ranging over the integers. Let x denote one of these generators.
Suppose M’ is determined by a face H’ on a labelled sphere Tpq. Assume the
conclusions of Theorem 1 are satisfied by M’. Let I be the set of all integers i
such that some relator in N corresponds to some face of M. If x is involved in
P for a unique integer j in I, then the label for some oriented edge b in H’ is x

--1or

Proof. For such an x and such a j, we conclude that each non-empty
cyclically reduced relator in N involves x (by the Freiheitssatz). Let F be
a face (of M) corresponding to a non-empty cyclically reduced relator in
N. Call this relator Y. Then Y involves x. Suppose an oriented edge a,
inF, has the label x-1 (orx). Letb aq. Thenx (orx-1) is the label
for b. Now no P, for i in I and i j, involves x. Also any face (of M),
different from F and corresponding to a relator in N, has no vertex in com-
mon with F, and hence no edge in common with F (by Remark 1). So b is
not in any face (of M’) different from F. Since F is simple, b is not in F if F
contains at least three oriented edges (by Remark 2). Finally, if F contains
exactly two oriented edges, then b is not in F because, otherwise, F would be
equal to {a, b} and the non cyclically reduced word xx-1 would correspond to
F. Therefore, b is in H’ and we are done.
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LEMMA 6. If the assumptions of LEMMA 5 hold and if H’ corresponds to a
word W in the generators of Nk for some integer l, then I {k}.

Proof. Let r, s be, respectively, the minimum and maximum integers in I.
Let m, n be, respectively, the minimum and maximum subscripts on a, c
involved in P0. If x cr+ and y c8+., then the unique P (as i rangts
over I) which involves x is Pr. Similarly, if P involves y and i is in I, then
i s. Thus x and y are involved in W by Lemma 5.

If k # r then x is not involved in Pk hence a is not involved in W, a con-
tradiction. Therefore/c r. Similarly/ s (using y).

Proof of Theorem 1. Use induction on the number Ill + gl which is
>= 3. If If] + [gl 3thensince g] 1, S must have precisely two
elements. Then we can use M’ M. In this case, each of the two faces of
Sfg will correspond to a cyclically reduced word of length 1. Now suppose
Ill + Igl > 3.
We now consider 5 cases"

0. M satisfies (2), (3), (4), (5).
1. M does not satisfy (3).
2. M does not satisfy (4).
3. M satisfies (4), but not (2).
4. M satisfies (2), (3), (4), but not (5).

CaseO. We useM’ M.

Case 1. If property (3) does not hold for Sfg, we suppose that relators
X, Y in some N correspond to two different faces containing oriented edges
a, b, respectively, and that a, b are in the same vertex, as in Lemma 1. By
Lemma 1 there is a sphere Spg with the face H which, together, determine a
diagram M", if we keep the labels from M. Then there is a face (of M")
corresponding to a relator Z UV in Ni where U, V are, respectively, cyclic
permutations of X and Y. We note that W still corresponds to the face H
of the labelled sphere Spg and P < Ill. We find a suitable diagram M’
by applying the induction assumption to M".

Case 2. Assume M does not satisfy (4) so some particular face of M
corresponding to a relator in N is not simple. We suppose that the assump-
tions and all notation in the statement of Lemma 4 hold for Sfg. We mean
this to include the representation of

f (al... abl.., bs)v,

the definition of the permutation p, and the conditions on the oriented edges
a, b in the above-mentioned particular face. Thus Spg is a disjoint union of
two spheres (taken in some order). We make these labelled spheres by
keeping the labels from M.

Suppose H and A {a, ..., at} are faces of the first sphere and B
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{bl, ba} is a face of the second sphere. Let a word U be chosen to cor-
respond to the face (of M) containing a, b in such a way that U is of the form
XY where X, Y correspond to the faces A, B, respectively, of Spg. This
implies that U is a relator in N and that X and Y are words in the generators
of N.
We apply the induction assumption to the diagram M1 determined by the

face B on the second sphere. We thereby get a diagram MI determined by
a face HI on some third sphere. Here H corresponds to the cyclically re-
duced form Z of the word Y. By applying Lemma 6 to M’ and H, we
conclude that each face of M’ corresponds to a cyclically reduced relator in
Ni (because Z is a word in the generators of Ni).
We observe that all but one (namely B) of the faces of the third labelled

sphere correspond to relators in N. It follows from Theorem 6.4 in [4]
that the face B also corresponds to a relator in N, i.e. Z is a relator in N.
Therefore Y is a relator in N and so is X.
Now we apply the induction assumption to the diagram M" determined by

the face H on the first sphere to get a suitable diagram M.
Case 3. Assume M satisfies (4) but not (2) so each face of M is simple

and some face H" of M corresponds to a noncyclically reduced word. We
consider two cases. When H" contains more than two oriented edges, we
form the sphere Skg as in Lemma 3 (assuming that the oriented edges a, b
in the statenent of Lemma 3 have labels which are inverse generators). We
keep the labels of M to make Skg a labelled sphere. Going from Sfg to Skg
we lose one vertex and gain one simple face {a, b}.
We apply Lemma 2 to the face {a, b} on the sphere Skg to get a sphere

Tpl with face H. We use the restrictions of L to T as a label function fo
Tpq. Sincel + ql glandl + Pl fl,wecanusetheinduction
assumption on the diagram determined by the face H on the labelled sphere
Tpq to get a suitable diagram M.
In the second case, H" {a, b} is a simple face and aL, bL are inverse

generators. We again apply Lemma 2 to a face H" on the sphere Sfg to get
a labelled sphere Tpg, as above. We find a suitable M’ as before.

Case 4. Assume M satisfies (2), (3), (4) but not (5) so W is not cyclically
reduced. Then the cyclic word W contains some subword consisting of a
generator and its inverse. Since W is not freely equal to 1, the length of W
is at least 3. Suppose f (abc... cr)p for some oriented edges a, b, c,
1 _< i _< r and some permutation p such that

H {a, b, c, ..., cr}
and aL, bL are a generator and its inverse.

Subcase A. Assume b and c are in different vertices. Say

fg "- (d ds) (e e)w
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for some oriented edges d, e and some permutation w where d, b, e, cr
and s, >_ 1. Let k -" (ab) (cl c,.)p. We claim that Skg is a sphere. In
fact, k (bc)f and so

kg "-- (d d,e et) w.

Thus S]cg had Euler characteristic 2. To see that Skg is a verbal surface, we
may use the argument involving Spg in the proof of Lemma 4. Therefore, by
Remark 7, Skg is a sphere. We can now apply Lemma 2 to the face {a, b}
on the sphere Skg and find a suitable diagram M’ as in Case 3.

Subcase B. Assume b and cr are in the same vertex. Say

fg "-- (d d,e et)w

for some oriented edges d, e and some permutation w where d, b, et c
and s, _> 1. Let k (ab)(c... c)p. We claim that Skg has Euler
characteristic 4. In fact, k (bc)f and so

kg (d d,) (e e,)w.

Skg is a verbal surface, as in Subcase A. Therefore, by Remark 7, Skg is a
disjoint union of 2 spheres. One of these spheres (call it Tpq) has a face
H" {c, c} and the other sphere has a face {a, b}. These two faces
are on different connected pieces of Skg because Sfg is connected and f, k
differ only on b and on c. By restricting L to T, we make Tpq into a labelled
sphere. We can now apply the induction assumption to the diagram M"
determined by H" and Tpq to get a suitable diagram M’. This completes
the proof of Theorem 1.

In order to prove our main result, we need a final reference to [4] and a final
lemma.

Remark 9. For each relator W i a group given by generators and non-
empty cyclically reduced defining relators such that each generator appears
in at least one defining relator, there exists a labelled sphere with two or more
faces such that W corresponds to one face and each of the other faces cor-
responds to a defining relator or its inverse.

Proof. Use Theorem 6.2 in [4] and note that each spherical complex is a
sphere.

LEMMA 7. Let W be a word in the generators ofN for some integer k. If W
is a relator in N, then W is a relator in N, (This implies that the smallest sub-
group of N, containing the generators involved in P, is isomorphic to N, for
each integer k.)

Proof. We can assume that W is non-empty and cyclically reduced.
By Remurk 9, W corresponds to one face H of some labelled sphere Tpq
(with at least two faces) such that defining relators of N correspond to
the other faces. Thus H and Tpq determine a diagram M. By Theorem 1,
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we can assume that Tpq satisfies the conclusions of Theorem 1.
each face of Tpq (except H) corresponds to P or to p-l.
Theorem 6.4 in [4] that W is a relator in N.

By Lemma 6,
It follows from

4. Main result
THEOREM 2. Let G be a group given by one or more generators and one de-

fining relator R, which is a non-empty cyclically reduced word involving all the
generators. Then no proper subword of R is a relator.

Proof. We use induction on the length of R. When the length is 1, the
theorem is true. To avoid a trivial situation, we can assume that there are at
least 2 generators. Let U be a proper subword of R. Assume U is a relator.
Since R can be replaced by any of is cyclic permutations when describing G,
we can assume that R is a product UV which is cyclically reduced, as it stands.

Case 1. Suppose some generator, say b, has a zero exponent sum in R. We
now use the notation in Section 3. So we have a normal subgroup N, a
presentation for N using generators c, t as i ranges over the integers,
and a rewriting process X -- X. In particular, U -- U and U is a relato1
in N.

Since U is non-empty and freely reduced as a word in the generators of G,
the same is true for U as a word in the gererators of N (see problem 2, page
98, in [2]). Furthermore, R and U’V’ are identical words in the generators
of N (by property (vi), page 92, in [2]). Thus U’ is a proper subword of
R’ P0.
Now consider the word W’ which is the cyclically reduced form of the word

U’. By Remark 9, there exists a diagram M determined by a face H on a
labelled sphere Sfg such that H corresponds to W’ and each face of M cor-
responds to P or PT for some integer i depending oa the face.
We apply Theorem 1 to M to get a diagram M’, determined by the face H

oa a labelled sphere Tpq such that W’ corresponds to H. By Lemma 7, W
is a relator ia No. Hence, so is U’. This gives a contradiction because
the induction assumption can be applied to the group No with one defining
relator Po R’ UV’.

Case 2. Suppose each of the generators b, c, has a non-zero exponent
sum in R. Let b, have exponent sums m, n respectively. Instead of G
b, c, t; R(b, c, t) we now consider

E (, c, ..., t;tC(x, c, ...,)).
G can be mapped homomorphically into E by the mapping b -- x’, c --. c,
--. t. Since we are assuming that U, written functionally as

U(b, c, ..., t),
is a rela.tr in G, we find that the word

U(x’, c, ..., )



320 c.M. WEINBAUM

is a relator in E and it is a proper subword of

/(x, v, ..., ).

We apply Tietze transformations to E to get a presentation in which the
single defining relator R(xn, c,..., yx-’) has a zero exponent sum in the
generator x.

E (x, c, ..., t, y; R(x’, c, ..., t), y tx’),

E (x, c, t, y; R(x’, c, t), yx-’},

E (x, c, ..., y; R(x, c, ..., yx-m)}.

Again the word
U(x’, c, ..., yx-’)

is a relator in E and it is a proper subword of R(x, c, yx-’). Since the
latter word has a zero exponent sum ia x, we can use x (iust as we used b in
Section 3) to go to the normal subgroup N (in E) generated by c, y.

N (... c_1, Co, cl, y_, y0, yl, P’-, P, P;, "").

Here we have a rewriting process X --. X’ which comes from the Schreier
representatives x, ]c an integer, for N in E. So

P (xiR(x’, c, yx-’) x-i) ’.

Since the x-symbols in R(x’, c, yx-’) will contribute no symbols to P,
the latter word has smaller length than R(b, c, t).

Since the word (U(x’, c, yx-"))’ is a word in the generators of No
and this word is a relator in N, we conclude that this word is a relator in No,
by Lemma 7. Furthermore, it is a proper subword of P0. By applying the
induction assumption to the group No which has P0 as its single defining relator,
we get a contradiction.

5. A new proof of the Freiheitssatz

THEOREM 3. (The Freiheitssatz). Let G be a group given by one or more
generators and one defining relation R 1, where R is a non-empty cyclically
reduced word involving all the generators. Let W be a non-empty cyclically
reduced word in the generators. If W 1 in G, then W involves all the genera-
tors.

Proof. We use induction on the length of R. When the length is 1, the
theorem is true. To avoid a trivial situation, we can assume that there are
at least 2 generators. We shall show that a typical generator (to be called t)
is involved in W.

Case 1. The generators of G are b, and has a non-zero exponent sum in
R. For a brief proof, see [2, page 253].
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Case 2. The generators of G are b, aad has a zero exponeat sum iu R.
Form the normal subgroup N (of G) generated by t, the rewriting process
X -- X’, and the presentation for N as ia Sectioa 3. Here takes the place
of b in section 3. Then W is a cyclically reduced word in the geaerators of
N and W’ is relator.
By the induction ussumption, we are allowed to apply the Freiheitssatz to

each group N which has a single defining relator P whose length is smaller
than the length of R. If we regard the assumptions of Lemma 5 as applying
to the subgroup N of our present group G, then the proof of Lemma 5 still
holds since the application of the Freiheitssat will be permissible. It follows
that Theorem i is also valid when applied o the present N and G.
By Remark 9, there exists a diagram M determined by a face H on a

labelled sphere Sfg such thut H corresponds to W and each face of M cor-
--1responds to some P or P We pply Theorem 1 to M to get a diagram

M, determined by a face H on a labelled sphere Tpq, such that W corres-
ponds to H’.

Let m, n be the minimum and maximum subscripts on b’s appearing ia
R P0. Then m n, otherwise R tbt for some integer k, a contra-
diction. Let I be the set of integers i such that P or P corresponds to
some face of M’. Suppose r, s are, respectively, the minimum and maximum
integers inI, sothatr _< s. Sincer - m s W n, eitherr - morse- n
is different from zero. Assume r m 0. (The other case is similar.)
By applying Lemm 5 to M and x b+, we conclude that W involves

x. Suppose W’ Cb+, D for some words C, D in the generators of N, with
e +/- 1. Then W AbB for some words A, B in the generators of G. It
is understood that b is replaced by b+ during the rewriting process. There-
fore, must have an exponent sum r - m iu the word A. Thus A and hence
W involve t.

Case 3. G has 3 or more generators and the exponent sum (in R) of some
generator different from (say b) is zero. We follow the steps in Case 2,
except that the use of there is replaced by the use of b here. We find M’, I,
r, s as before and let m be the minimum subscript on t’s appearing in R’
P0. Here r W m may be zero. Once again W’ involves the generator x
t+. In the present case, we conclude that W involves t.

Case 4. G has 3 or more generators and the expoaeat sum on each generato
in R, other than t, is different from zero. In this case, W will be renamed V.
Let m, n be the exponent sums of b, c, respectively in the word R. We form
the group E:

E (x, c, ..., t;R(x, c, ..., t)).

We note again that G ca be mapped homomorphically into E by the mapping
b--,x,c--c, ...,t--t. Then since V(b,c, ...,t) is a relator in G, we
have that

Y V(x’, yx-’, t)
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is a relator in E. By Tietze transformations we arrive at another presenta-
tion for E:

E (x, y, t; R(x, y

(This is accomplished by interchanging the roles of c and in the Tietze
transformations of Case 2 of Theorem 2.)

Let N be the smallest normal subgroup (of E) containing y, t. We
now follow the steps in Case 2 (of Theorem 3), except that G, t, W are re-
placed by the present E, x, Y, respectively. We find M’, I, r, s, as before
and let k be the minimum subscript on t’s appearing in

Po (R(x’, yx-’, ..., t) )’

Here r W k may be zero.
Therefore V involves t.

Again Y’ involves tr+k. Hence Y involves t.
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