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1. Introduction

Perhaps the easiest proof of the Rogers-Ramanujan identities is the one ex-
pounded (in two different forms) by Rogers and Ramanujan [4]. The main
idea is to show that two apparently different q-series both satisfy the q-dif-
ference equation

(1.1) f(z) --f(zq) zqf (zq2) O.

It is an easy matter to show that if f(z) is analytic at z 0 and f(0) 1,
then f(z) is uniquely determined by (1.1). This implies that the two q-series
in question are actually identical, and the Rogers-Ramanu]an identities
follow by specializing z.
The object of this paper is to give a proof of the Rogers-Ramanujan identities

which hinges almost entirely on showing that two systems of partial q-differ-
ence equations are compatible (i.e. any set of solutions for one system is a set
of solutions for the other). In the final section of the paper, we discuss the
extension of this technique to other problems in the theory of partitions and
q-series identities.

2. Compatible q-difference equations
DEFINITION. Consider the systems of r equations

F, (fl (x, y), f (x, y), fl (xq, y), ..., f (xq, y), fl (x, yq), ...,
f (x, yq ), f (xq, yq ), ..., f (xq, yq O,

and

G(f (x, y), ..., f (x, y), f (xq, y), ..., f (xq, y), f (x, yq), ...,
f (x, yq ), fl (xq, yq ), ..., f (xq, yq O,

where 1

_
i

_
s, 1

_
j

_
t. These two systems are said to be compatible in

case every solution set {fl (x, y), f. (x, y) of analytic functions in x and y
for one system is a solution set for the other system.

LEMMA 1. Consider the partial q-difference equation

(2.1) _,.o -o a.k (x, y)f (xq, yqk) b (x, y),
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where the a, (x, y) and b (x, y) are polynomials in x, y, and q, q < 1. Further-
more

a,(0,0) 1 ifj k 0
(2.2)

0 otherwise.

Then there exists at most one function f (x, y) which is analytic in x and y near
(0, O) and satisfies f (O, y) f(x, O) 1.

We let

(2.3)

(2.4)

a, (x, y) -ooa, (h, i)xay’;

b(x, y) to :-o (t, u)xty";

(2.5) /(x, y) 7-.o 7-o A, xy",
where (2.3) and (2.4) are only formally infinite in that the a, @, y) and
b (x, y) are polynoMs.

Substituting these series into (2.1) and comparing coefficients of xty on both
sides we obtain

u a.,(h, i) B(t, u).

By (2.2), we may rewrite (2.6) as

(2.7) A,, + Z-o Z,% Za-,,+-.(.,)(o.o)A., u-+*’a., (h, i) B (t, u).

(2.7) shows that A,, is defined in terms of A.’s with at least one of m and n
less than and u respectively. Thus a simple double induction tablishes the
uniqueness of the A. given the initial condition

A,, 1 t=u=O

(2.8) =0 t=0, u0

=0 tO,u=O.

LM 2. Suppose c (x, y, q) and d (x, y, q) are rational functions of x, y, and
q without singularities at (x, y, q) (0, O, O) and c (0, O, q) 1, d (0, 0, q) 0.
Then for q < 1, there exists a unique function, f (x, y ), analytic in both x and
y around (x, y) (0, O) such that f(O, O) 1, and

(2.9) f(x, y) c(x, y, q) + qd (x, y, q)f (xq, yq).

Furtheore if c (x, y, q) and d (x, y, q) have no siularities in {x[ < W,
y < W,, then f(x, y) is analytic in x and y in this region.

Proof. Clearly if f(x, y) does exist, then setting x y 0 in (2.9), we
obtain

(0, 0) .
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Iterating (2.9) n times we obtain

f (x, y) "..-o c (xq, yqJ, q)qJ I- d (xqr, y, q)
(2.10) - q "f q, yq’ IIr%-o d (xq yq q ).
This suggests that

(2.11) /(x, y) o c (xqj, yq, q)q I2 d (xq, yq, q).

Indeed if f (x, y) is defined by (2.11) then the ratio test guarantees that f is
analytic in x and y in the neighborhood of (0, 0) for ql < 1 Ix < W,
Yl < W2, and a simple shift of the summation index shows that (2.9) is

satisfied.
Finally if q (x, y) is also a solution of the prescribed type, then (x, y) satisfies

(2.10)
Letting n --+ in (2.10), we note that

and consequently (x, y) satisfies (2.11).

THEOREM 1.

(2.12)
(A)

and

(B)

(2.13)

Hence the solution is unique.

g(x, y) yh(x, y) 1 y + yxq(1 xq)h(xq, y)

h (x, y) 1 y + y(1 xq)g (xq, y)

(2.14) .(x,y) 1 xy2q xyaq (1 xq)
(1 yq)

7(xq, yq)

(2.15) v(x, y) 1 xyq xy3 (1 xq)
(1 yq)

(xq, yq)

then (A) and (B) are compatible systems of equations with a unique analytic
solution set. Furthermore the solutions are analytic in x and y for all x and
I l<lql

Proof. First we note from system (B) that

(x, 0) ,(0, y) y(x, 0) (0, y) 1.

From system (A) we have clearly g (x, O) h (x, 0) 1. Setting x 0 in
(A), we obtain a system of two equations in the two unknowns g (0, y ), h (0, y),
and the unique solution set is g (0, y) h (0, y) I provided y +/- 1. Thus
if analytic g (x, y) and h (x, y) exist, g (0, y) h (0, y) I for all y.
Thus by Lemma 2, system (B) has a unique solution set and the solutions are

analytic for all x and ly < [q -. Substituting (2.13) into (2.12), we find
by Lemma 1 that at most one g (x, y) exists, and thus by (2.13) at most one
h (x, y) exists. Consequently if we can show that /(x, y) and y (x, y) (the
unique solution set of system (B)) satisfy (2.12) and (2.13) ), then Theorem 1
will be proved.
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Let

(2.16) L(x, y) ,),(x, y) yy(x, y).

If we multiply equation (2.15) by y and subtract from equation (2.14), we
obtain

(2.17) L(x, y) 1 y + xyq(1 xq) xyaq (1 xq) L(xq, yq).(1 yq)

Define H (x, y) by the following equation.

(2.18) L (x, y) 1 y W yxq (1 xq)g (xq, y).

Substituting (2.18) into (2.17) we obtain

(2.19) H(xq, y) 1 xyq xyq (1 xq) H(xq., yq).(1 yq)

Replacing x by xq- in (2.18), we obtuin

a (1 xq) H(xq, yq).(2.20) H(x, y) 1 xyq x y q
(1 yq)

Thus H (x, y) satisfies (2.15), and hence H (x, y) (x, y) by Lemma 2.
Consequently

"),(x, y) yq(x, y) L(x, y)

(2.21) 1 y + yxq(1 xq)H (xq, y)

1 y -t- yxq(1 xq) (xq, y).

Thus (x, y) und (x, y) satisfy (2.12).
Define M (x, y) by the following equation.

(2.22) M (xq-, y) 1 y -t-- y(1 z ), (x, y ).

Substituting (2.22) into (2.14), we obtain

(2.23) M(xq-, y) 1 xy xyaq (1 x) M(x, yq)
(1 yq)

Replacing x by xq in (2.23), we find

(2.24) M(x, y) 1 xyq xya (1 xq) M(xq, yq).
(1 yq)

Thus M (x, y) satisfies (2.15), and hence M (x, y) (x, y) by Lemmu 2.
Therefore

(2.25) 1 y -t- y(1 xq )’), (xq, y) M (x, y) (x, y ).

Thus (x, y) and y (x, y) satisfy (2.13), and so (A) and (B) are compatible
systems.
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COROLLARY (The Rogers-Ramanujan identities).

nl )--1 qn’t"4q ]-I (1 q-+ (1 )-;(2.26) 1

(2.27) 1 W Z (1 q) : (1 q’+)(1 q+a)-.

Proof. By (x, y) and (x, y) we denote the u&que solution set for the
compatible systems (A) and (B) of Theorem 1. If we set y x in (2.14)
we obtain

(2.28) (x, x) 1 x*q xq(xq, xq).
Iteration of this equation yields

(2.29) (x, x )
Therefore by the Jacobi identity [3, p. 282],

(.30) s(1,
Setting y x in (2.15), we obtain

(2.31)
Iteration yields in this case

(2.32) , (x, x) : (- 1 )’x’q(’/)(a’+3) (1 x"+).
Thus by the Jacobi identity [3, p. 282],

(2.33) n(1, 1) -0 (1 q’+)(1 q’+) (1
If we set y I in system (A) and solve for g (x, 1 (x, 1 ), we obtain

(2.34) (x, 1) (1 xq)(xq, 1) + xq(1 xq)(1 xq*)T(xq, 1).

Thus if G (x) (x, 1 H:-, (1 xq’)-*, then

(2.35) G( G (zq + qG(xq ).

We now proceed as in [3, p. 293] and obtain

(2.36) (x, 1) H
From (2.13), we find

(2.37) n(z, 1) H._, (1 xq)- e(xq) 1 + ,_,
(1 q) (1 q’)"

Thus setting x I in (2.36) and combining with (2.30) we obtain

1 W (1, 1) H (1 q")-_
(1 q) (1 q-) _,

(2.38)

H (1 q"+)-(1 q")-.
nO
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Setting x 1 in (2.37) and combining with (2.33), we obtain

(2.39)
=1(1 q) (1 q)

Hence the corollary is proved.

3.

(1, 1) 1-I (i >-’

II (i q=+=)-i(1 q=+)-1.
n==O

Extended results
The preceding technique can easily be extended to give a full proof of the

Rogers-Ramanujan-Gordon identities utilizing the analytic-combinatorial ap-
In this case there are two systems of (k + 1)-equations.

(3.1) C,(x, y) yC,-(x, y)

(A’) 1 y + y(xq)-(1 xq)Ck,-+(xq; y), 1

_
i

_
k;

(3.2) Ck,o(x, y) O.

x y+q_.+ (1 --xq) C,(xq; yq)(B’) (3.3) C,(x, y) 1 y q x
(1 yq)

0_i__<k.

The technique may also be extended to cover the results considered in [2].
It is to be hoped that general theorems on compatible systems of partial q-
difference equations could be found. Such results would surely have interest-
ing ramifications in the theory of basic hypergeometric series and partitions.
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