ON THE ROGERS-RAMANUJAN IDENTITIES AND PARTIAL q-DIFFERENCE EQUATIONS

BY
George E. Andrews ${ }^{1}$

1. Introduction

Perhaps the easiest proof of the Rogers-Ramanujan identities is the one expounded (in two different forms) by Rogers and Ramanujan [4]. The main idea is to show that two apparently different q-series both satisfy the q-difference equation

$$
\begin{equation*}
f(z)-f(z q)-z q f\left(z q^{2}\right)=0 \tag{1.1}
\end{equation*}
$$

It is an easy matter to show that if $f(z)$ is analytic at $z=0$ and $f(0)=1$, then $f(z)$ is uniquely determined by (1.1). This implies that the two q-series in question are actually identical, and the Rogers-Ramanujan identities follow by specializing z.

The object of this paper is to give a proof of the Rogers-Ramanujan identities which hinges almost entirely on showing that two systems of partial q-difference equations are compatible (i.e. any set of solutions for one system is a set of solutions for the other). In the final section of the paper, we discuss the extension of this technique to other problems in the theory of partitions and q-series identities.

2. Compatible q-difference equations

Definition. Consider the systems of r equations

$$
\begin{array}{r}
F_{i}\left(f_{1}(x, y), \cdots, f_{n}(x, y), f_{1}(x q, y), \cdots, f_{n}(x q, y), f_{1}(x, y q), \cdots\right. \\
\left.f_{n}(x, y q), f_{1}(x q, y q), \cdots, f_{n}(x q, y q)\right)=0
\end{array}
$$

and

$$
\begin{aligned}
G_{j}\left(f_{1}(x, y), \cdots, f_{n}(x, y), f_{1}(x q, y)\right. & , \cdots, f_{n}(x q, y), f_{1}(x, y q), \cdots \\
f_{n}(x, y q), f_{1}(x q, y q) & \left., \cdots, f_{n}(x q, y q)\right)=0
\end{aligned}
$$

where $1 \leq i \leq s, 1 \leq j \leq t$. These two systems are said to be compatible in case every solution set $\left\{f_{1}(x, y), \cdots, f_{n}(x, y)\right\}$ of analytic functions in x and y for one system is a solution set for the other system.

Lemma 1. Consider the partial q-difference equation

$$
\begin{equation*}
\sum_{j=0}^{r} \sum_{k=0}^{s} a_{j, k}(x, y) f\left(x q^{j}, y q^{k}\right)=b(x, y) \tag{2.1}
\end{equation*}
$$

Received November 20, 1969.

${ }^{1}$ Partially supported by a National Science Foundation grant.
where the $a_{j, k}(x, y)$ and $b(x, y)$ are polynomials in x, y, and $q,|q|<1$. Furthermore

$$
\begin{array}{rlrl}
a_{j, k}(0,0) & =1 & \text { if } j=k=0 \tag{2.2}\\
& =0 & & \text { otherwise }
\end{array}
$$

Then there exists at most one function $f(x, y)$ which is analytic in x and y near $(0,0)$ and satisfies $f(0, y)=f(x, 0)=1$.
Proof. We let

$$
\begin{align*}
a_{j, k}(x, y) & =\sum_{h=0}^{\infty} \sum_{i=0}^{\infty} \alpha_{j, k}(h, i) x^{h} y^{i} \tag{2.3}\\
b(x, y) & =\sum_{t=0}^{\infty} \sum_{u=0}^{\infty} \beta(t, u) x^{t} y^{u} \tag{2.4}\\
f(x, y) & =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m, n} x^{m} y^{n} \tag{2.5}
\end{align*}
$$

where (2.3) and (2.4) are only formally infinite in that the $a_{j, k}(x, y)$ and $b(x, y)$ are polynomials.

Substituting these series into (2.1) and comparing coefficients of $x^{t} y^{u}$ on both sides we obtain

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m+h-t, n+i=u} A_{m, n} q^{j m+k n} \alpha_{j, k}(h, i)=\beta(t, u) . \tag{2.6}
\end{equation*}
$$

By (2.2), we may rewrite (2.6) as
(2.7) $\quad A_{t, u}+\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m+h=t, n+i=u,(h, i) \neq(0,0)} A_{m, n} q^{j m+k n} \alpha_{j, k}(h, i)=\beta(t, u)$.
(2.7) shows that $A_{t, u}$ is defined in terms of $A_{m, n}$'s with at least one of m and n less than t and u respectively. Thus a simple double induction establishes the uniqueness of the $A_{t, u}$ given the initial condition

$$
\begin{align*}
A_{t, u} & =1 \quad t=u=0 \\
& =0 \quad t=0, u \neq 0 \tag{2.8}\\
& =0 \quad t \neq 0, u=0
\end{align*}
$$

Lemma 2. Suppose $c(x, y, q)$ and $d(x, y, q)$ are rational functions of x, y, and q without singularities at $(x, y, q)=(0,0,0)$ and $c(0,0, q)=1, d(0,0, q)=0$. Then for $|q|<1$, there exists a unique function, $f(x, y)$, analytic in both x and y around $(x, y)=(0,0)$ such that $f(0,0)=1$, and

$$
\begin{equation*}
f(x, y)=c(x, y, q)+q d(x, y, q) f(x q, y q) \tag{2.9}
\end{equation*}
$$

Furthermore if $c(x, y, q)$ and $d(x, y, q)$ have no singularities in $|x|<W_{1}$, $|y|<W_{2}$, then $f(x, y)$ is analytic in x and y in this region.

Proof. Clearly if $f(x, y)$ does exist, then setting $x=y=0$ in (2.9), we obtain

$$
f(0,0)=1
$$

Iterating (2.9) n times we obtain

$$
\begin{align*}
f(x, y)=\sum_{j=0}^{n-1} c\left(x q^{j}, y q^{j}, q\right) q^{j} & \prod_{r=0}^{j-1} d\left(x q^{r}, y q^{r}, q\right) \tag{2.10}\\
& +q^{n} f\left(x q^{n}, y q^{n}\right) \prod_{r=0}^{n-1} d\left(x q^{r}, y q^{r}, q\right)
\end{align*}
$$

This suggests that

$$
\begin{equation*}
f(x, y)=\sum_{j=0}^{\infty} c\left(x q^{j}, y q^{j}, q\right) q^{j} \prod_{r=0}^{j-1} d\left(x q^{r}, y q^{r}, q\right) \tag{2.11}
\end{equation*}
$$

Indeed if $f(x, y)$ is defined by (2.11) then the ratio test guarantees that f is analytic in x and y in the neighborhood of $(0,0)$ for $|q|<1|x|<W_{1}$, $|y|<W_{2}$, and a simple shift of the summation index shows that (2.9) is satisfied.

Finally if $\varphi(x, y)$ is also a solution of the prescribed type, then $\varphi(x, y)$ satisfies (2.10)

Letting $n \rightarrow \infty$ in (2.10), we note that

$$
q^{n} \rightarrow 0, \quad \prod_{r=0}^{n-1} d\left(x q^{r}, y q^{r}, q\right) \rightarrow 0, \quad \varphi\left(x q^{n}, y q^{n}\right) \rightarrow 1
$$

and consequently $\varphi(x, y)$ satisfies (2.11). Hence the solution is unique.
Theorem 1. If $|q|<1$,

$$
\begin{equation*}
g(x, y)-y h(x, y)=1-y+y^{2} x q(1-x q) h(x q, y) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
h(x, y)=1-y+y(1-x q) g(x q, y) \tag{A}
\end{equation*}
$$

and
(B)

$$
\begin{equation*}
\gamma(x, y)=1-x^{2} y^{2} q^{2}-x^{2} y^{3} q^{3} \frac{(1-x q)}{(1-y q)} \gamma(x q, y q) \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
\eta(x, y)=1-x y q-x^{2} y^{3} q^{4} \frac{(1-x q)}{(1-y q)} \eta(x q, y q) \tag{2.14}
\end{equation*}
$$

then (A) and (B) are compatible systems of equations with a unique analytic solution set. Furthermore the solutions are analytic in x and y for all x and $|y|<|q|^{-1}$.

Proof. First we note from system (B) that

$$
\gamma(x, 0)=\gamma(0, y)=\eta(x, 0)=\eta(0, y)=1
$$

From system (A) we have clearly $g(x, 0)=h(x, 0)=1$. Setting $x=0$ in (A), we obtain a system of two equations in the two unknowns $g(0, y), h(0, y)$, and the unique solution set is $g(0, y)=h(0, y)=1$ provided $y \neq \pm 1$. Thus if analytic $g(x, y)$ and $h(x, y)$ exist, $g(0, y)=h(0, y)=1$ for all y.

Thus by Lemma 2, system (B) has a unique solution set and the solutions are analytic for all x and $|y|<|q|^{-1}$. Substituting (2.13) into (2.12), we find by Lemma 1 that at most one $g(x, y)$ exists, and thus by (2.13) at most one $h(x, y)$ exists. Consequently if we can show that $\gamma(x, y)$ and $\eta(x, y)$ (the unique solution set of system (B)) satisfy (2.12) and (2.13)), then Theorem 1 will be proved.

Let

$$
\begin{equation*}
L(x, y)=\gamma(x, y)-y \eta(x, y) \tag{2.16}
\end{equation*}
$$

If we multiply equation (2.15) by y and subtract from equation (2.14), we obtain

$$
\begin{equation*}
L(x, y)=1-y+x y^{2} q(1-x q)-x^{2} y^{3} q^{3} \frac{(1-x q)}{(1-y q)} L(x q, y q) \tag{2.17}
\end{equation*}
$$

Define $H(x, y)$ by the following equation.

$$
\begin{equation*}
L(x, y)=1-y+y^{2} x q(1-x q) H(x q, y) \tag{2.18}
\end{equation*}
$$

Substituting (2.18) into (2.17) we obtain

$$
\begin{equation*}
H(x q, y)=1-x y q^{2}-x^{2} y^{3} q^{6} \frac{\left(1-x q^{2}\right)}{(1-y q)} H\left(x q^{2}, y q\right) \tag{2.19}
\end{equation*}
$$

Replacing x by $x q^{-1}$ in (2.18), we obtain

$$
\begin{equation*}
H(x, y)=1-x y q-x^{2} y^{3} q^{4} \frac{(1-x q)}{(1-y q)} H(x q, y q) \tag{2.20}
\end{equation*}
$$

Thus $H(x, y)$ satisfies (2.15), and hence $H(x, y)=\eta(x, y)$ by Lemma 2. Consequently

$$
\begin{align*}
\gamma(x, y)-y_{\eta}(x, y) & =L(x, y) \\
& =1-y+y^{2} x q(1-x q) H(x q, y) \tag{2.21}\\
& =1-y+y^{2} x q(1-x q) \eta(x q, y)
\end{align*}
$$

Thus $\gamma(x, y)$ and $\eta(x, y)$ satisfy (2.12).
Define $M(x, y)$ by the following equation.

$$
\begin{equation*}
M\left(x q^{-1}, y\right)=1-y+y(1-x) \gamma(x, y) \tag{2.22}
\end{equation*}
$$

Substituting (2.22) into (2.14), we obtain

$$
\begin{equation*}
M\left(x q^{-1}, y\right)=1-x y-x^{2} y^{3} q^{2} \frac{(1-x)}{(1-y q)} M(x, y q) \tag{2.23}
\end{equation*}
$$

Replacing x by $x q$ in (2.23), we find

$$
\begin{equation*}
M(x, y)=1-x y q-x^{2} y^{3} q^{4} \frac{(1-x q)}{(1-y q)} M(x q, y q) \tag{2.24}
\end{equation*}
$$

Thus $M(x, y)$ satisfies (2.15), and hence $M(x, y)=\eta(x, y)$ by Lemma 2. Therefore

$$
\begin{equation*}
1-y+y(1-x q) \gamma(x q, y)=M(x, y)=\eta(x, y) \tag{2.25}
\end{equation*}
$$

Thus $\gamma(x, y)$ and $\eta(x, y)$ satisfy (2.13), and so (A) and (B) are compatible systems.

Corollary (The Rogers-Ramanujan identities).

$$
\begin{align*}
& 1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1-q) \cdots\left(1-q^{n}\right)}=\prod_{n=0}^{\infty}\left(1-q^{5 n+1}\right)^{-1}\left(1-q^{5 n+4}\right)^{-1} \tag{2.26}\\
& 1+\sum_{n=1}^{\infty} \frac{q^{n^{2}+n}}{(1-q) \cdots\left(1-q^{n}\right)}=\prod_{n=0}^{\infty}\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)^{-1}
\end{align*}
$$

Proof. By $\gamma(x, y)$ and $\eta(x, y)$ we denote the unique solution set for the compatible systems (A) and (B) of Theorem 1. If we set $y=x$ in (2.14) we obtain

$$
\begin{equation*}
\gamma(x, x)=1-x^{4} q^{2}-x^{5} q^{8} \gamma(x q, x q) \tag{2.28}
\end{equation*}
$$

Iteration of this equation yields

$$
\begin{equation*}
\gamma(x, x)=\sum_{n=0}^{\infty}(-1)^{n} x^{5 n} q^{(n / 2)(5 n+1)}\left(1-x^{4} q^{4 n+2}\right) \tag{2.29}
\end{equation*}
$$

Therefore by the Jacobi identity [3, p. 282],

$$
\begin{equation*}
\gamma(1,1)=\prod_{n=0}^{\infty}\left(1-q^{5 n+5}\right)\left(1-q^{5 n+2}\right)\left(1-q^{5 n+8}\right) \tag{2.30}
\end{equation*}
$$

Setting $y=x$ in (2.15), we obtain

$$
\begin{equation*}
\eta(x, x)=1-x^{2} q-x^{5} q^{4} \eta(x q, x q) \tag{2.31}
\end{equation*}
$$

Iteration yields in this case

$$
\begin{equation*}
\eta(x, x)=\sum_{n=0}^{\infty}(-1)^{n} x^{5 n} q^{(n / 2)(5 n+3)}\left(1-x^{2} q^{2 n+1}\right) \tag{2.32}
\end{equation*}
$$

Thus by the Jacobi identity [3, p. 282],

$$
\begin{equation*}
\eta(1,1)=\prod_{n=0}^{\infty}\left(1-q^{5 n+5}\right)\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right) \tag{2.33}
\end{equation*}
$$

If we set $y=1$ in system (A) and solve for $g(x, 1)=\gamma(x, 1)$, we obtain (2.34) $\quad \gamma(x, 1)=(1-x q) \gamma(x q, 1)+x q(1-x q)\left(1-x q^{2}\right) \gamma\left(x q^{2}, 1\right)$.

Thus if $G(x)=\gamma(x, 1) \prod_{n=1}^{\infty}\left(1-x q^{n}\right)^{-1}$, then

$$
\begin{equation*}
G(x)=G(x q)+x q G\left(x q^{2}\right) \tag{2.35}
\end{equation*}
$$

We now proceed as in [3, p. 293] and obtain

$$
\begin{equation*}
\gamma(x, 1) \prod_{n=1}^{\infty}\left(1-x q^{n}\right)^{-1}=G(x)=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}} x^{n}}{(1-q) \cdots\left(1-q^{n}\right)} \tag{2.36}
\end{equation*}
$$

From (2.13), we find

$$
\begin{equation*}
\eta(x, 1) \prod_{n=1}^{\infty}\left(1-x q^{n}\right)^{-1}=G(x q)=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}+n} x^{n}}{(1-q) \cdots\left(1-q^{n}\right)} \tag{2.37}
\end{equation*}
$$

Thus setting $x=1$ in (2.36) and combining with (2.30) we obtain

$$
\begin{align*}
1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1-q) \cdots\left(1-q^{n}\right)} & =\gamma(1,1) \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1} \\
& =\prod_{n=0}^{\infty}\left(1-q^{5 n+1}\right)^{-1}\left(1-q^{5 n+4}\right)^{-1} \tag{2.38}
\end{align*}
$$

Setting $x=1$ in (2.37) and combining with (2.33), we obtain

$$
\begin{align*}
1+\sum_{n=1}^{\infty} \frac{q^{n^{2}+n}}{(1-q) \cdots\left(1-q^{n}\right)} & =\eta(1,1) \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1} \\
& =\prod_{n=0}^{\infty}\left(1-q^{5 n+2}\right)^{-1}\left(1-q^{5 n+3}\right)^{-1} \tag{2.39}
\end{align*}
$$

Hence the corollary is proved.

3. Extended results

The preceding technique can easily be extended to give a full proof of the Rogers-Ramanujan-Gordon identities utilizing the analytic-combinatorial approach of [1]. In this case there are two systems of $(k+1)$-equations. Namely

$$
\begin{align*}
& C_{k, i}(x, y)-y C_{k, i-1}(x, y) \tag{3.1}\\
& =1-y+y^{i}(x q)^{i-1}(1-x q) C_{k, k-i+1}(x q ; y), \quad 1 \leqq i \leqq k \\
& \quad C_{k, 0}(x, y)=0 \tag{3.2}
\end{align*}
$$

$$
\begin{array}{r}
C_{k, i}(x, y)=1-x^{i} y^{i} q^{i}-x^{k} y^{k+1} q^{2 k-i+1} \frac{(1-x q)}{(1-y q)} C_{k, i}(x q ; y q) \tag{3.3}\\
0 \leqq i \leqq k
\end{array}
$$

The technique may also be extended to cover the results considered in [2]. It is to be hoped that general theorems on compatible systems of partial q difference equations could be found. Such results would surely have interesting ramifications in the theory of basic hypergeometric series and partitions.

References

1. G. E. Andrews, An analytic proof of the Rogers-Ramanujan-Gordon identities, Amer. J. Math., vol. 88 (1966), pp. 844-846.
2. - On q-difference equations for certain well-poised basic hypergeometric series, Quart. J. Math. (2), vol. 19 (1968), pp. 433-447.
3. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4 th ed., Oxford University Press, Oxford, 1960.
4. S. Ramanujan and L. J. Rogers, Proof of certain identities in combinatory analysis, Proc. Camb. Phil. Soc., vol. 19 (1919), pp. 211-216.
