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1. Let G be a fuchsian group of Moebius transformations acting on the
upper half-plane H, i.e., G is a discrete subgroup of LF(2, R). As usual, we
treat G as though it were a matrix group. Let G contain translations. We
consider the parameter

co(G) Co min {Icl v 0: (a, b: c, d) G}. (1.1)

It is well known that the minimum is attained and that Co > 0. Under certain
circumstances the value of Co characterizes G up to conjugacy.

Since G contains translations, it will contain a smallest translation z z + 2,
2 > 0. If 2 we say G is normalized. Any group G can be normalized by
conjugation with 0 (2-1/2, 0" 0, /1/2) and we write

G* OGO- (1.2)

for the normalized group. The notation K* means that K is normalized.
Obviously co(G*) 2c0(G).
Among the well-known groups in this class are the Hecke groups Ha. Here

Ha 3 < q < oo, (1.3)

where

24 2cos-, 2 < q < c; 2oo 2.
q

The Hecke groups are included in the more general class

H"a= 1 -2,-1)/’ 2 < p < q < oo, p + q >4; (1.4)

in fact Ha H2, 4" (There is no group H2, 2; see the lines following (2.6).) We
shall see (Section 2) that

co(Ha) co(H,,a) 1; (1.5)
hence

co(H) )a, co(Ha)= 2n + a" (1.6)

It is known [-3] that Hp, a is the free product of a cyclic group of order p and
one of order q when p, q < .

In this paper all conjugacies will be over SL(2, R).
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It should be noted that in Theorems 1-4 there is no a priori assumption that
G* is finitely generated; rather, this is a conclusion.

THEOREM 1. If co(G*) < 2 then Co 2q for a q > 3, q < , and G* is
conjugate to the Hecke group Hq.

THEOREM 2. Let 2 < co(G*) < 4. Then G* has minimal elliptic elements
(see Section 2). Let p > 2 be the lowest order of any such element. If

co(G*) < 2, + 2, (1.7)

then co(G*) 2p + 2for a q >_ p, p + q > 4, q < c, and G* is conjugate
tO Op, q.

THEOREM 3. Let 2 < co(G*) < 4 and let

Co(G*) =,,q.v + 2, 2 <p < .
Then G* is conjugate to Hv, oo.

(1.8)

THEOREM 4. Let co(G*) 2. Then G* is conjugate either to Hoo or to Ha, a.

A group G is called horocyclic if every real number is a limit point of G;
otherwise nonhorocyclic. The groups H, Hp, are horocyclic.

THEOREM 5. Let 2 < co(G*) < 4 and let (1.8) be violated. Then G* may be
finitely generated (horocyclic or not) or it may be infinitely generated.

In this case, then, there is no uniqueness.
I am greatly indebted to A. F. Beardon, who called my attention to this

problem and kindly supplied a statement and proof (geometric) of Theorem 1.

2. Let G be a discrete subgroup of SL(2, R). We can assume -I
(-1, 0"0 1) G, for we can always adjoin -I to G without affecting the
transformation group G/(L -I}.
An element A e G* will be called minimal if

A (a,b’co, d), Co co(G).

LEMMA 1. IfE is a minimal elliptic element ofG* oforder p > 2, then

2 cos r
trace E __+ (2.1)

The point of the lemma is that in general we could assert only that tr E
2 cos rk/p. We may assume tr E _> 0, otherwise replace E by -E -1. Let

trE, 0 < < 2, and set

E" .E+ fl.I, n_> 0,zo fll 0,z flo 1, (2.2)
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where (t), etc. Then

a.+ ta.- a._, n > 1; a. n > 0 (2.3)
_

-,
where is either solution of

t={+{-It follows that E" has third element a.Co, so

[a,[ > or a, 0, n > 0. (2.4)

Since E is of order p and > 0, we may write

rck rcik
2cos,(k,p) 1, < k < p

p 2 p

Obviously we may assume p _> 5. Choosej so thatjk (mod p), _< j < p.
Then

sin (njk/p) sin (n/p)
aj(t)---- q-

sin (tk/p) sin

It follows that aj(t) # O, hence I(t)l _> by (2.4). But if < k < p/2,
[=j(t)l < 1. Hence k and the lemma is proved.
We say K SL(2, R) is maximal ([1]) if there is no discrete group L such

that K < L < SL(2, R). Here the inequality sign means "proper subgroup".
A finitely generated horocyclic fuchsian group containing translations

(= H-group) has a known presentation"

G (aa, bx,..., ao, bo, xx,..., x,, px,..., p," x’’

i=1
fi a’bia;lb;1

j=l
fi Xj

k=l
1!I p 1), (2.5)

mj >_ 2,9 >_ O,r > O,t > O.

Such a group, then, is the free product of r cyclic groups of finite order and
2g + cyclic groups of infinite order. The xj are elliptic, thep parabolic,
the a, b hyperbolic, and g is called the genus of the group. Instead of (2.5) we
also use the abbreviated symbol {g" m,..., m, ,..., m} and this is called
the signature of G; if g 0 we write {m,..., m, m,..., m}. The m arc
called the periods of G.
The hyperbolic area of G, a(G) is given by the formula

l(t+ (1-)) (2.6)a(G) g 1 +- =1

and a(G) > 0 if and only if G is a group of the above type. For example, there
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is no group {2, 2, oo). According to results of Siegel, the minimum area for a
group with translations is 1/12, and the minimum is attained by the modular
group, with signature (2, 3, o).
We say a signature is maximal if every group having this signature is maximal.

LEMMA 2. The signatures {p, q, c}, 2 < p < q < ct3, are maximal. If G
has signature {p, p, oo }, p > 3, G is a subgroup ofexactly onefuchsian group Go.
Moreover, [Go: G] 2 and Go has signature {2, p, c}. In particular, Hp, is
contained only in Hp.

This result can be deduced from results of Singerman [4]. The first statement
appears on examination of Theorems and 2 of [4]. (Note that if G has sig-
nature {p, q, oo} and G < Go, then 0 < it(Go) < tr(G) < ; hence [Go: G]
a(G)/tr(Go) is finite.) Now let G have signature s {p, p, o}, p > 3 and let
G < Go. Then s is not maximal. According to [4], the only signature contain-
ing s is So {2, p, oo), hence Go has signature So.
We now make use of Proposition 4 of [4]. Let A c Ao, [Ao: A-I N, and

let Ao have signature {ml,..., mr), where now m can be oo (i.e., the corres-
ponding generator is parabolic). Let Ao (xl,..., xr), where x’ 1. The
exponent of x modulo A is the least positive integer n that xT’ A; clearly
n < oo and n m ifm is finite. Proposition 4 states the following. Ifn m,
the period m does not appear among the periods of A. If nj < mj it is easily
seen that m nt, < t < oo. Then the period tj appears N/n times among
the periods of A and these constitute all the periods of A.

In the application G has signature s as above and presentation

(Yl, Y2, Y3" Y’ Y YlY2Y3 1),

while Go has signature So and presentation

(xi, x2, xa" x2 x xix2xa 1).

Since the period p appears in s twice, n2 1, and x2 is conjugate to y or Y2,
say yl. A generator can be replaced by a conjugate, so we may set x2 y.
Also, n3 2. Suppose Ya ’(1, 2)." 0, 1), then since x Ya, xa (1, ; 0, 1).
From xlx2x3 we can now solve for xl xix xy?. Hence Go
is completely determined.
The last statement of the lemma is now easily checked.

LEMMA 3. The signatures (p, oo, oo) are maximal ifp > 3. lfG has signature
{2, o, oo) or (3, c, oo), then G is contained in exactly one fuchsian group,
which has signature {2, 3, c). In particular H2, is contained only in Ha;
similarly Ha,oo is contained only in Ha.

The first assertion follows from [4]. Now suppose G has signature {2, oo, o }
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and suppose there is a fuchsian group Go such that G < Go; by the results of
[41, Go has signature {2, 3, }. Let

GO (x1, X2, X3" X-- X XIX2X3 1),
G (yt, Y2, Y3" Y YlY2Y3 1).

Since Yl is conjugate to a power of xl, Yl must be conjugate to xl, and we may
take xl Yl. Secondly, x2 G since G has no elements of order 3. Suppose
xaeG, then x-I xlx2 =ylx2G and so x2G. Hence xaG, which
implies xa2 G. Since we may assume xa and Ya have the same fixed point, xa
is determined and thus so is x2 x-x 1. Therefore Go is unique. It is clear
there is a group Go, since the group (Yl, xa" x] Ya) satisfies the requirement.
The proof for the case {3, oo, } is similar. This completes the proof of the

lemma.
We shall now compute the Co ofsome groups. Let G be a group with minimum

translation 2. The Ford fundamental region for G is the region contained in
(Ixl < 2/2, y > o} and lying outside all isometric circles of G. It is clear that
co(G) is the reciprocal of the radius of the largest isometric circle.
The well-known fundamental region ofHq is bounded below by the unit circle,

henceco(Hq) 1. Here3 < q < . Next, letp > 2, q >p. Consider the
region within Ixl < (, / ,)/2 and outside the circles Iz T- 2/21 1. The
circles are the isometric circles of

and the translation conjugating the vertical sides is S (1, 2p + 2q" 0, 1).
Thus E SE has trace 2 and it fixes the point of intersection of the side
x (2p + 2)/2 and the isometric circle. According to Poincar6’s theorem the
above region is a fundamental region for the group G ge.nerated by S and E.
Clearly co(G) 1. Now conjugate G1 G2 by (1, 2/2: 0, 1); S is unaffected
and E - E2 (0, 1: -1, 2p). Furthermore (a, b: c, d) - (a’, b’: c, d’), so
co(G) co(G2). But G2 Hp, by (1.4). Hence (1.5).

3. Theorems 1-4 are consequences of

THEOREM 6. Let G* have a minimal elliptic element ofsmallest periodp > 2.
Assume

co(G*) < ’v + 2.

Then G* is conjugate to H, for a q > p. Moreover,

co(G*) + ,.
Proof.

(3.1)

(3.2)

As usual we assume the minimal elliptic element has nonnegative
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trace; let it be E (a, b: Co, d), a + d >_ 0. By Lemma 1, a + d 2p. Since

Co d 0 Co d Co

is in G* with trace 2p Co, and by (3.1)

2 < 2- Co < 2 < 2, (3.3)

F is elliptic and minimal and has period q > p. By Lemma 1,
But q > p means 2q > 2, and 2p Co 2 would imply 2 < 2 by (3.3).
Hence (3.2).

Write S (1, 1"0, 1). Conjugate G* by

M (-Co, a: 0, 1), Co co(G*). (3.4)

The elements S, E, and F go into

Sx (1, -Co:0, 1),Ex (0, 1: -1,2), and E2 (0, 1: -1, -2),
in view of(3.2). The transformed group G1 MG*M-x (no longer normalized)
contains -E and Si- 1, hence contains H, (Si- 1, _Ea). Note that the
smallest translation in G is co(G*) 2p + 2.
Now if q > p, Hp, is maximal (Lemma 2); hence G H,, and G* is

conjugate to G1.
If q p, G = H,. Here p > 3, for there is no fuchsian group H2,2.

Hence, again by Lemma 2, G H, p or G H. The smallest translation
in H is X--see (1.3)--whereas the smallest translation in G1 is 22, as remarked
above. But 22p > 2p since p > 2. It follows that

4. We now turn to the proofs of Theorem 1-5. Observe that when Co < 4
there is a minimal elliptic element. For let E (a, b" Co, d) be a minimal
element of G*; then

El,1 Co Co

belongs to G*, is minimal, and, for the proper choice of u,

o o-2 < < trE a + d + UCo <-- < 2. (4.1)
2 2

Hence E1 is elliptic, as asserted. Let p be the smallest order of any minimal
elliptic element in G* and let E be a minimal element of order p with non-
negative trace.
Suppose now Co < 2. By Lemma 1, tr E 2 cos /p and by (4.1), -1

2 cos nip < 1. Hence p 2, 2 0. The hypotheses of Theorem 6 are satis-
fied and we conclude that G* is conjugate to H2, H. Necessarily q > 2.
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This completes the proof of Theorem 1. In view of (1.6) we may restate the
result"

THEOREM 1’. A fuchsian group G is conjugate to the Hecke group Hp,
3 <_ p < , ifand only if co(G*) ,.
For the proof of Theorem 2 assume 2 < Co < 4; as we have seen there is a

minimal elliptic element E of lowest period p > 2. Because of the hypothesis
(1.7) we can again apply Theorem 6, which produces the desired conclusion.

Proof of Theorem 3. Conjugate G* with the M of (3.4), obtaining G1
MG*M-, which contains S (1, -Co" O, 1), E (0, 1" -1, 2), and

P is parabolic because of (1.8). Hence G contains H,, S[ , -E). Now
H,, is maximal when p > 3 (Lemma 3); therefore G II,, . And when
p <_ 3, H, Ha, Ha, H, so H,, G Ha, p 2, 3. But
co(H) whereas co(G1) co 2, + 2 > 1. Hence - Ha, Q.E.D.
Theorem 4 follows from previous results. Let G* have co 2; then G* has a

minimal elliptic element of lowest order p > 2. If p 2, so that 2, 0, we
have co 2 , + 2 and we can use Theorem 3; then G* is conjugate to
II, H. If p_> 3, 2,_> 1, 2 < 2 + 2 and Theorem 6 applies" (7* is
conjugate to Hp, q, and also co(G*) 2 2 + 2q. Since 2 > 1, 2 < 1.
Since also q > p, the only solution is p q 3.
To prove Theorem 5 we shall construct certain groups by the method of free

products !-2, pp. 118-120]. Fix an integerp > 2 and a real number Co > 2 + 2
Let

The isometric circles of E, E- are

I" CoZ+] 1 and I’" CoZ-l 1.

The extreme endpoints of/, I’ are x (2/2 + 1)/Co and -x. By hypothesis
-1/2 < -xl, x < 1/2. Thus I w 1’ lies in the strip Ixl < 1/2.
We shall construct 3 types of groups"

(1) Place a finite number of mutually tangent circles with centers in (xl, 1)
so that the first is tangent to I and the last to the line x 1/2. The radii of the
circles shall be less than I/co. Place symmetrical circles in the interval
(-1/2, -x).

(2) Same as in (1) except that the circles are not tangent; the first and last,
however, are tangent as before to I and x 1/2.
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(3) Place an infinite number of circles (tangent or not) with centers in
(xl, 1) and radii less than 1/Co so that the first is tangent to I and the centers of
the circles --, 1/2; place symmetrical circles in (-1/2, -xl).

In all cases the region bounded by the circles and by the half-lines

{x +1/2, y > 0}

is a fundamental region for a fuehsian group G*. Since Co(G*) is the reciprocal
of the radius of the largest bounding circle, we have co(G*) co. In case (1),
G* is horocyclie and finitely generated; in case (2), it is nonhorocyclic and
finitely generated; in case (3) it is infinitely generated.
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