UNIQUENESS OF A CLASS OF
FUCHSIAN GROUPS!'

BY
JOSEPH LEHNER

1. Let G be a fuchsian group of Moebius transformations acting on the
upper half-plane H, i.e., G is a discrete subgroup of LF(2, R). As usual, we
treat G as though it were a matrix group. Let G contain translations. We
consider the parameter

¢o(@) = ¢y = min {|c| # 0: (a, b: ¢, d) € G}. (1.1)

It is well known that the minimum is attained and that ¢, > 0. Under certain
circumstances the value of ¢, characterizes G up to conjugacy.

Since G contains translations, it will contain a smallest translationz — z + 4,
A > 0. If A =1 we say G is normalized. Any group G can be normalized by
conjugation with 8 = (A71/2, 0: 0, A1/%) and we write

G* = 0GO~! (1.2)

for the normalized group. The notation K* means that K is normalized.
Obviously ¢o(G*) = Acy(G).
Among the well-known groups in this class are the Hecke groups H,. Here

R Y eesn o

}tq=200szq,25q<oo;lw=2.

where

The Hecke groups are included in the more general class

g,={(L 2T (O I\ 2cp<cqg<o,pta>d; (14
na=o "1 1 -4,

in fact H, = H, ,. (There is no group H, ,; see the lines following (2.6).) We
shall see (Section 2) that
co(Hy) = co(Hy, ) = 15 (1.5)
hence
co(HY) = Ay co(Hy ) = 4, + A, (1.6)

It is known [3] that H,, , is the free product of a cyclic group of order p and
one of order ¢ when p, ¢ < oo.
In this paper all conjugacies will be over SL(2, R).
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It should be noted that in Theorems 14 there is no a priori assumption that
G* is finitely generated; rather, this is a conclusion.

THEOREM 1. If ¢o(G*) < 2 then ¢y = A, for a ¢ > 3, q < ©, and G* is
conjugate to the Hecke group H,,.

THEOREM 2. Let 2 < ¢o(G*) < 4. Then G* has minimal elliptic elements
(see Section 2). Let p > 2 be the lowest order of any such element. If

co(G*) < 4, + 2, (1.7

then co(G*) = A, + A foraq > p,p + q > 4, g < o, and G* is conjugate
toHp ,.

THEOREM 3. Let 2 < ¢o(G*) < 4 and let
(@) =2,+2 2<p<oo. (1.8)
Then G* is conjugate to H, .
THEOREM 4. Let co(G*) = 2. Then G* is conjugate either to H,, or to H; ;.

A group G is called horocyclic if every real number is a limit point of G;
otherwise nonhorocyclic. The groups H,, H, , are horocyclic.

THEOREM 5. Let 2 < ¢o(G*) < 4 and let (1.8) be violated. Then G* may be
finitely generated (horocyclic or not) or it may be infinitely generated.

In this case, then, there is no uniqueness.
I am greatly indebted to A. F. Beardon, who called my attention to this
problem and kindly supplied a statement and proof (geometric) of Theorem 1.

2. Let G be a discrete subgroup of SL(2, R). We can assume —I =
(—1,0: 0 — 1) € G, for we can always adjoin —I to G without affecting the
transformation group G/{I, —1I}.

An element 4 € G* will be called minimal if

4= (aa b: Cos d)’ Co = CO(G)'
LemMA 1. If E is a minimal elliptic element of G* of order p > 2, then

trace E = + 2 cos T 2.1)

p

The point of the lemma is that in general we could assert only that tr £ =
2 cos nk/p. We may assume tr E > 0, otherwise replace E by —E~!. Let
t=1trE 0<t <2 and set

E”:"anE"'BnIs n209“0=ﬂl=03a1=ﬂ0=19 (2'2)
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where o, = a,(t), etc. Then

Opiyg = B0y — 0y_q, n =15 an=§_—é:7, nx=0 (2.3)
¢-¢
where £ is either solution of
t=¢+ ¢t
It follows that E” has third element «,cq, SO
¢, =1 or a,=0, n>0. 24)

Since E is of order p and # > 0, we may write

t=2COS-@,(k,p)=1, ISkSQ; €=exp1lk.
p 2 p

Obviously we may assume p > 5. Choosejsothatjk = 1 (modp),1 <j < p.
Then

sin (njk/p) _ n sin (n/p)

sin (nk/p) ~ ~ sin (nk/p)’

It follows that a;(r) # 0, hence |x;(z)] = 1 by (2.4). But if 1 < k < p/2,
|¢;(¢)] < 1. Hence k = 1 and the lemma is proved.
We say K < SL(2, R) is maximal ([1]) if there is no discrete group L such
that K < L < SL(2, R). Here the inequality sign means “proper subgroup’.
A finitely generated horocyclic fuchsian group containing translations
(= H-group) has a known presentation:

ait) =

G = <a19b19'-~:ag, bgaxls'--’xrapl,"wpt:x,l”l=.”= x:'lr
g . . r t
= H a;ba; "b; l_[ X P = 1>9 (2.5)
i=1 ji=1 k=1

m;>2,9>0r>=0,t>0.

Such a group, then, is the free product of r cyclic groups of finite order and
2g + t — 1 cyclic groups of infinite order. The x; are elliptic, the p, parabolic,
the a;, b; hyperbolic, and g is called the genus of the group. Instead of (2.5) we
also use the abbreviated symbol {g: m,, ..., m,, ©,..., oo} and this is called
the signature of G; if g = 0 we write {m,,..., m,, ©,..., c0}. The m; are
called the periods of G.

The hyperbolic area of G, o(G) is given by the formula

a(G)=g—1+%<t+ i(l—i>>, (2.6)

i=1 m;

and 6(G) > 0 if and only if G is a group of the above type. For example, there



UNIQUENESS OF A CLASS OF FUCHSIAN GROUPS 311

is no group {2, 2, w}. According to results of Siegel, the minimum area for a
group with translations is 1/12, and the minimum is attained by the modular
group, with signature {2, 3, co}.

We say a signature is maximal if every group having this signature is maximal.

LeMMA 2. The signatures {p, q, ©}, 2 < p < q < o, are maximal. If G
has signature {p, p, 0}, p = 3, G is a subgroup of exactly one fuchsian group G,.
Moreover, [Gy: G] = 2 and G, has signature {2, p, ©}. In particular, H, , is
contained only in H,.

This result can be deduced from results of Singerman [4]. The first statement
appears on examination of Theorems 1 and 2 of [4]. (Note that if G has sig-
nature {p, ¢, 0} and G < Gy, then0 < ¢(Gy) < 0(G) < o0; hence [Gy: G] =
0(G)/o(Gy) is finite.) Now let G have signature s = {p, p, 0}, p = 3 and let
G < G,. Then s is not maximal. According to [4], the only signature contain-
ing s is 5o = {2, p, 0}, hence G, has signature s,.

We now make use of Proposition 4 of [4]. Let 4 = A,, [4y: A] = N, and
let A, have signature {m,, ..., m,}, where now m; can be o (i.e., the corres-
ponding generator is parabolic). Let 4, = {xy,..., x,), where x* = 1. The
exponent of x; modulo A is the least positive integer n; that x}' € 4; clearly
n; < oo and n; | m; if m; is finite. Proposition 4 states the following. Ifn; = m;,
the period m; does not appear among the periods of 4. If n; < m; it is easily
seenthat m; = n;t;, 1 < t; < co. Then the period ¢; appears N/n; times among
the periods of 4 and these constitute all the periods of 4.

In the application G has signature s as above and presentation

(Y V2o Y32 Y0 = Y8 = y1yay3 = 1),

while G, has signature s, and presentation
2 = =
{xy5 Xa, X310 X7 = X5 = X1x,%3 = 1).

Since the period p appears in s twice, n, = 1, and x, is conjugate to y; or y,,
say y,. A generator can be replaced by a conjugate, so we may set x, = y;.
Also, n; = 2. Suppose y; = (1, 24: 0, 1), then since x2 = y;, x5 = (1, 1; 0, 1).
From x,x,x; = 1 we can now solve for x; = x3!x;! = x5!y, Hence G,
is completely determined.

The last statement of the lemma is now easily checked.

LeMMA 3. The signatures {p, o, oo} are maximal if p > 3. If G has signature
{2, 0, 0} or {3, 0, 0}, then G is contained in exactly one fuchsian group,
which has signature {2, 3, o}. In particular H, , is contained only in Hj;
similarly Hj , is contained only in Hj.

The first assertion follows from [4]. Now suppose G has signature {2, oo, o0}
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and suppose there is a fuchsian group G, such that G < G,; by the results of
[4], G, has signature {2, 3, 0}. Let

Gy = (X1, X3, X3: xf = x% = X1X;%3 = 1),
G = {(y1, V2, ¥3: y% = y1y2ys = 1).

Since y, is conjugate to a power of x,, y; must be conjugate to x,, and we may
take x; = y;. Secondly, x, ¢ G since G has no elements of order 3. Suppose
x; € G, then x;! = x,x, = y;x, € G and so x, € G. Hence x; ¢ G, which
implies x2 € G. Since we may assume x; and y, have the same fixed point, x;
is determined and thus so is x, = x[ 'x3*. Therefore G, is unique. It is clear
there is a group G, since the group {y;, x3: X3 = y,) satisfies the requirement.

The proof for the case {3, co, oo} is similar. This completes the proof of the
lemma.

We shall now compute the ¢, of some groups. Let G be a group with minimum
translation A. The Ford fundamental region for G is the region contained in
{|x] < 4/2, y > 0} and lying outside all isometric circles of G. It is clear that
¢o(G) is the reciprocal of the radius of the largest isometric circle.

The well-known fundamental region of H, is bounded below by the unit circle,
hence co(H,) = 1. Here 3 < g < 0. Next, let p > 2, ¢ > p. Consider the
region within |x| < (4, + 4,)/2 and outside the circles |z F 4,/2| = 1. The
circles are the isometric circles of

= (M ) B

and the translation conjugating the vertical sides is S = (1, 4, + 4,: 0, 1).
Thus E; = SE has trace — A, and it fixes the point of intersection of the side
x = (A, + A,)/2 and the isometric circle. According to Poincaré’s theorem the
above region is a fundamental region for the group G, generated by S and E.
Clearly ¢o(G,) = 1. Now conjugate G; —» G, by (1, 4/2: 0, 1); S is unaffected
and E—» E, = (0,1: —1, A,). Furthermore (a, b: c,d) = (a’,b": ¢, d’), so
co(Gy) = ¢o(G,). But G, = H, , by (1.4). Hence (1.5).

3. Theorems 1-4 are consequences of

THEOREM 6. Let G* have a minimal elliptic element of smallest period p > 2.
Assume
co(G*) < A, + 2. 3.1

Then G* is conjugate to H, , for a q > p. Moreover,
co(G*) = 2, + 4, 3.2)

Proof. As usual we assume the minimal elliptic element has nonnegative
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trace; letit be E = (a, b: ¢y, d),a + d 2 0. By Lemma 1,a + d = 4,. Since

a b\(1 -1\ _fa . _F
o dNO 1) " \eg d—co)
is in G* with trace A, — ¢, and by (3.1)

—2<A,—c <4, <2 (3.3)

Fis elliptic and minimal and has period ¢ > p. By Lemma 1,4, — ¢y = £4,.
But ¢ > p means A, > 4,, and 4, — ¢, = 4, would imply 1, < 4, by (3.3).
Hence (3.2).

Write S = (1, 1: 0, 1). Conjugate G* by

M = (—cg,a:0,1), co = co(G*). (3.4
The elements S, E, and F go into
Sy =(, —¢:0,1), E; = (0,1: —=1,4,), and E, = (0,1: —1, —4,),

in view of (3.2). The transformed group G, = MG*M ~! (no longer normalized)
contains —E; and Sy, hence contains H, , = (S{!, —E,). Note that the
smallest translation in G, is co(G*) = 4, + 4,

Now if ¢ > p, H, , is maximal (Lemma 2); hence G, = H, ,, and G* is
conjugate to G,.

If g =p, Gi © H, ,. Here p > 3, for there is no fuchsian group H, ,.
Hence, again by Lemma 2, G, = H, , or G; = H,. The smallest translation
in H,is A,—see (1.3)—whereas the smallest translation in G, is 24, as remarked
above. But 24, > A, since p > 2. It follows that G; = H,, ,.

4. We now turn to the proofs of Theorem 1-5. Observe that when ¢, < 4
there is a minimal elliptic element. For let £ = (q, b: ¢y, d) be a minimal
element of G*; then

1 u\fa b\ _ fa+uc -\ _
(0 1)(C0 d>_( Co d)—El, uez

belongs to G*, is minimal, and, for the proper choice of u,
—2<-c—2°5trE1=a+d+uco<529<2. 4.1

Hence E, is elliptic, as asserted. Let p be the smallest order of any minimal
elliptic element in G* and let £ be a minimal element of order p with non-
negative trace.

Suppose now ¢, < 2. By Lemma 1, tr E = 2 cos n/p and by (4.1), —1 <
2cos /p < 1. Hence p = 2, A, = 0. The hypotheses of Theorem 6 are satis-
fied and we conclude that G* is conjugate to H, , = H,. Necessarily ¢ > 2.
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This completes the proof of Theorem 1. In view of (1.6) we may restate the
result:

THEOREM 1'. A fuchsian group G is conjugate to the Hecke group H,,
3 < p < oo, ifand only if ¢o(G*) = A,

For the proof of Theorem 2 assume 2 < ¢, < 4; as we have seen there is a
minimal elliptic element E of lowest period p > 2. Because of the hypothesis
(1.7) we can again apply Theorem 6, which produces the desired conclusion.

Proof of Theorem 3. Conjugate G* with the M of (3.4), obtaining G; =
MG*M ™!, which contains S; = (1, —¢: 0, 1), E; = (0, 1: —1, 4,), and

—_q-tp _ [~
P=S{'E, = (_1 lp)'
P is parabolic because of (1.8). Hence G, contains H,, ,, = {87!, —E;>. Now
H, ,, is maximal when p > 3 (Lemma 3); therefore G; = H, . And when
p <3, H,, < H, Hy, <« Hy,so H, , = Gy < Hy, p = 2, 3. But
co(H3) = 1 whereas ¢o(Gy) = ¢ = 4, + 2 > 1. Hence G; # H;, QE.D.
Theorem 4 follows from previous results. Let G* have ¢, = 2; then G* has a
minimal elliptic element of lowest order p > 2. If p = 2, so that 1, = 0, we
have ¢, = 2 = 1, + 2 and we can use Theorem 3; then G* is conjugate to
H, ,=H, Ifp>3,2,>21,2< A4, + 2 and Theorem 6 applies: G* is
conjugate to H, ,, and also ¢o(G*) = 2 = A, + A, Since 1, > 1, 4, < L.
Since also ¢ > p, the only solutionisp = ¢ = 3.
To prove Theorem 5 we shall construct certain groups by the method of free
products [2, pp. 118-120]. Fix aninteger p > 2 and areal numberc, > 4, + 2

Let
E = '):2,':(:0,&2 .
2 2

The isometric circles of E, E~! are

A
I: coz——zf = 1,

coz+%2’ =1 and I":

The extreme endpoints of 1, I’ are x; = (4,/2 + 1)/co and —x;. By hypothesis
-3 < —x, x; < 3%. ThusIu I'lies in the strip |x| < 3.

We shall construct 3 types of groups:

(1) Place a finite number of mutually tangent circles with centers in (x;, 1)
so that the first is tangent to I and the last to the line x = 4. The radii of the
circles shall be less than 1/c,. Place symmetrical circles in the interval
(_%a _xl)'

(2) Same as in (1) except that the circles are not tangent; the first and last,
however, are tangent as before to  and x = %.
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(3) Place an infinite number of circles (tangent or not) with centers in
(x;, 1) and radii less than 1/c, so that the first is tangent to I and the centers of
the circles — %; place symmetrical circles in (—%, —x;).

In all cases the region bounded by the circles and by the half-lines

{x==%%,y>0}

is a fundamental region for a fuchsian group G*. Since c,(G¥*) is the reciprocal
of the radius of the largest bounding circle, we have ¢o(G*) = ¢,. In case (1),
G* is horocyclic and finitely generated; in case (2), it is nonhorocyclic and
finitely generated; in case (3) it is infinitely generated.
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