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Introduction

The main purpose of this paper is to give a class of integral representations
for the fractional powers (-A), where 0 < and A is the infinitesimal gener-
ator of a bounded strongly continuous semigroup T of bounded linear operators
on a Banach space X. The definition of (-A) used in [-3] is

(0.1) lim C (I T)’f dt
g--O

where 0 < a < r, r is a positive integer and C is an appropriate constant. For
the case 0 < a < 1, r 1, the above definition of (-A)" can be motivated by
noting that if a < 0, then by a simple change of variable

t--(1 et") dt (-a) t--(1 e-t) dt;

so (-a)" is a constant times the integral on the left. Komatzu [2] has shown
that the operator defined by (0.1) can also be represented in the form

(0.2) lim C (- tA(I tA)- )’f dr.
-*0

A similar motivation could be given for this integral representation.
In this paper we introduce kernels"

where d(o(u) d(u]t) and show (see Theorem 1.4) that limits of the form

lim -- S((o)f dt
-*0

all define the same operator as a ranges over a wide class of measures. In Sec-
tion 2 we show that the "kernels" in (0.1) and (0.2) correspond to special choices
of a within the class. In Section 3 we show that the class cannot be enlarged by
establishing a converse to Theorem 1.4 (see Theorem 3.1). In Section 4 we
define Lipschitz spaces corresponding to the "kernels" S(o(o) and prove a
Lions-Peetre type theorem, Theorem 4.1, relating these Lipschitz spaces to
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certain real interpolation spaces; special cases of this theorem were proved
in [2], [3].

1. The integral representation

Throughout, Tt denotes a bounded strongly continuous semigroup ofbounded
linear operators on a Banach space X with norm ]]. The infinitesimal gener-
ator is denoted A and its domain space is denoted D(A). We let M denote the
class of all complex Borel measures on [0, oo); we will often refer to these as
measures. For each semigroup Tt and measure a we define the operator S(a) by

S(a)f T,f da(u), f e X,

where the integral converges in X. For o’, # in M, a # denotes the usual con-
volution, I1 the total variation measure, 0"(k) denotes a ,..., a (k times), a
denotes the usual Laplace transform of a, and ’M denotes the class of all
Laplace transforms of measures in M. For > 0, a(t)(E) a(t-XE) for each
Borel set E in [0, ). We let 6 denote the measure which is the unit point mass
at t, _> 0. By the extended measures, denoted Me, we mean the class of set
functions from the bounded Borel sets of [0, ) to the complex numbers which
are countably additive on the Borel sets of each bounded interval. The letter u
usually denotes a point in [0, oo) and du the Lebesgue measure on [0, oo). For a
locally integrable function h, a h is the usual convolution of a measure and
function and oWh denotes the Laplace transform of h. We also write a u" for
a.h, ifh(u) u.

For each measure a and > 0 define the operator B,(a)1.1. DEFINITION.
on X by

B,(a)f lim t-=- aS(a,))f dt
0

where the domain of B(a) is all f in X for which the above limit exists in X.

1.2. DEFINITION. A measure a is an r-measure, where r is a positive integer,
if

lu-’( * u=)l du <
o

forO < < r.

1.3. LEMMA. If a & an r-measure and 0 < < r, then the integral

o
Oqa(t)t-,- dt

converges absolutely. (Denote the values of this inte9ral by C(a).)
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Proof It clearly suffices to show that a(s) O(sot), as s --, 0, for each
0 < a < r. Clearly

( u)(s) Cr(s)s .
This, and the fact that H u-act uot is in L1, gives

[Acr(s)[ _< Cs’+Is-le-"sulH(u)ldu1.
And, the right-hand side of this last inequality is O(sot).
We now state the main theorem.

1.4. THEOREM. If 0 < < r and r is a positive integer, then the operators
Cot(if) Bot(o’) are equal as a ranges over the r-measuresfor which C(cr) O.

Before we give the proof of the theorem we will obtain the following five
needed lemmas.
The first lemma is well known.

1.5. LEMMA. (i) The map # S(g) is a homomorphismfrom the convolution
algebra of complex measures into the bounded linear operators on X.

(ii) S(l(o)f ( d#)f as e 0 for each f in X and complex measure l.

1.6. LEMMA. lf1, kt2 M, It Me and ! * !, !2 * I.t M, then

S(/l * fl)S(fl2) S(//1)S(fl

Proof. Apply Lemma 1.5 and the fact that the extended measures form an
associate algebra.
The following lemma is easily proved.

1.7. LEMMA. Suppose that
(i) F is a differentiable complex valuedfunction on (0, oo),
(ii) Ig(u)lu-ae-tu du < c, each > O, and
(iii) g(s) F’(s), s > O.

Then for some C,
Z’(-u-Xg(u) + C6o) F(s), s > O.

1.8. LEMMA. Given a measure a, positive real numbers cz, and a Borel subset
E of[O, c), let v(a, E) a(o(E)t dt. Then v, is a measure such that

(i) I G’at)(s)t-ot- dt I e-"S dv(u)
(ii) t-ot-IS(ao)f dt T,f dv,(u).

Proof From the definition of v, we have

)(1) 9(u) drr(t)(u) -ot-1 at g(u) ave(u)

where g is the characteristic function of E. By using bounded pointwise con-
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vergence we obtain (1) for bounded continuous complex and vector valued
functions g, which includes (i) and (ii) of the lemma.

1.9. LEMMA. Corresponding to > 0 and a measure a, define the extended
measure 2 and the measure p asfollows:

d,(u) F()- lug- du,

dp(u) r( 1)- u- tr u du.

If tr is an r-measure, r > and C(a) 1, then
(i) j" dp=
(ii) A,v p().

Proof. We see from the definition of 2 and Lemma 1.8 (i) that

(2 * Ve)(S) S tT(t)(s)t --1 dt-- o’(t)t --1 dt;

and, if we denote the latter as F(se), then F’(s) -a(s)s--. Thus,

F’(s) -( r( + )-u).

We have assumed that a is an r-measure, which means that j" la * ulu du is
finite. Thus, we conclude from Lemma 1.7 that for some constant C,

F(s) q(u-la,F(z- 1)-lu" + Cgo), s > 0.

However, F(s)O and &a(u-la,u")0 as s--, oo. Thus, C= 0. This
shows that F(s) 2’p(s). Since F(es) p()(s), we have

2. v p().

Also, j" dp F(0)= j" ’tr(t)t--dt C(tr), and we have assumed that
C(tr) 1. The lemma is proved.

Proof of Theorem 1.4. Let tr and tr’ be two r-measures for which C - 0.
We may assume that C(r) C(r’) 1. We must show that B(r) B(a’).
Suppose thatf is in the domain of B,(tr’). Lemma 1.9 shows that the extended
associativity, Lemma 1.6, holds in the following case:

S(v(tr))S() v,(tr’))f S(2 v(tr))S(v,(a’))f.

If we take the limit as r/ 0 and apply Lemma 1.9 and Lemma 1.5, we conclude
that

S(v,(a))f S(2 v,(a))B(a’)f

If we now let e 0, we see that f is in the domain of B(r) and from 1.9 (ii)
that B,(a)f B(a’)f This completes the proof of the theorem.
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2. Special cases

Komatzu [2] shows that for appropriately normalized constants C, the limits
(0.1) and (0.2) define the same operators. The following two lemmas show that
Komatzu’s result is part of Theorem 1.4.

2.1. LEMMA. Forr 1,2,...,

( T,)’ _t" T., d(u),
where a (60 fl)(r);furthermore, a is an r-measure.

2.2. LEMMA. For r 1, 2,...,

(- tA(I tA)- ,)r _[ Tu, da(u)

where tr (60 e-" du)(r) furthermore, a is an r-measure.

The first assertion in Lemma 2.1 is clear; the second assertion follows from
Lemmas 2.3 and 2.4 below. The first assertion of Lemma 2.2 follows from the
identity

tA(I tA) -1 I (I tA)- l,

the well-known representation [1, p. 32],

() A)-I =.f Te-t dt’ Re2 > 0,

for the resolvent and Lemma 1.5, which is needed for r 2, 3,.... The
second assertion follows from Lemmas 2.3 and 2.4 below.
To complete the proofs of Lemmas 2.1 and 2.2 we will establish the following

lemmas.

2.3. LEMMA. Suppose r is a positive integer and a is a complex Borel measure
on [0, c) such that:

(i) there are positive real numbers a, Co such that lal < Cou-- du on

[a, ); and,
(ii) $ uda(u) Ofork O, 1,...,r 1.

Then, a is an r-measure.

2.4. LZMMA. Let al, a, be complex Borel measures on [0, c) such that

f da O and f u dla’ < , 1 < j <- r.

If a a *’"* tr and O <_ k < r, then

f uk dla[ < c and f u da O.
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Proofof2.3. We must show that Ix-ltr * x] has a finite integral on [0, o).
The integral over [0, a) is clearly finite, so we will obtain a bound for Ix- a x[
when x > a. We will first establish

I(1) O" * :X: E (--1)k X
a-k tlk da(u for x > a.

k=0

But, this follows if we show that

(2) lim R(u/x) d(u) 0 (as n oo), x > a,

where R(v) is the remainder in the Taylor formula for (1 v). From the
integral form of the remainder we deduce the bound

IR,(v)l < (const)n-’x[1 + (1 x)-x], 0 < v < 1;

and this shows that (2) holds provided that

However, (3) follows from the fact that the integrand is bounded on [0, a)
and I1 -< cou-’- d on [a, oo). We have now established (1). By considering
the cases k < r, k r, and k > r and applying (ii) to the first case we obtain

<_ x-"[Co --]- ak]a]([O, a]) + Co log (x/a)] for x > a, 1.

()1_< const k--’

and (1), shows that [x-a, xl is bounded by an integrable function on
[a + 1, ), which completes the proof.

Proof ofLemma 2.4. From known properties of the Laplace transform we
have

q(uka)(S) .( e-"uk da(u)

(1) (-1)k dk ;sk
e da(u)

(--1)k
dk
(,()... (s)).

The kth derivative ofa is a sum of terms of the form

(2) (,)’ ()

x-k uk da(u)

This, the fact that
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where each ks >_ 0 and k + + k, k. Since each factor in (2) is bounded,
which follows from the assumption that each j" uk dlas] is finite, and ks 0 for
some j and .’as(0) 0, the conclusion of the lemma follows.

3. A converse theorem

Our purpose in this section is to prove Theorem 3.1, which is a converse to
Theorem 1.4. Again, we let r denote a positive integer and let 0 < a < r. For
convenience, let

c,,, c,((ao B C,,,B,((aO
By the right shift semigroup on L1 we mean the semigroup Tt defined by"
Ttf(u) f(u t) for u >_ t, Tf(u) 0 for 0 < u < t, for eachfin L[-0, o).
Recall that M denotes the complex Borel measures on [0,

3.1. THEOREM. Ifa is a measure such that B,(a) Bfor the right shift semi-
group on La, then a is an r-measure.

To prove the theorem we need the following lemma.

3.2. LEMMA. Suppose r is a positive integer, 0 < < r and T is the right
shift semigroup on Lx. Forf in L,

lim C,, t-(I T)"ft- dt

exists in L ifand only ifsCf(s) is in .’Lx. If the limit exists, its Laplace trans-

form is sf(s).

Proof It is convenient to consider L instead of La. If g is in L1, the
norm of g is defined as the L norm offwhere olaf g. We consider oqM in
the same manner. We first observe that

(1)

where

C,, t-(1 e-st)rt -1 dto(s)= F(es)so(s)

t)rF(s) C, (1 e- dt.

It follows from Lemma 1.7 that F M and F(0) by choice of Cr,,. If
we assume that g(s) and s’g(s) are in &L,, then the limit on the left-hand side
of (1) exists in L, because of the right-hand side of (1) and the limit is s’g(s).
Now suppose that g is in &aL and the limit of the left-hand side of (1) exists.
Then, F(es)sg(s) converges to some h in 56’L1; but, F(es)sg(s) converges
pointwise to sag(s). Thus, s’g(s) is in LI and is the limit of the left-hand side
of (1). This proves the lemma.
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We will now prove the theorem. From the hypothesis and the lemma we
conclude that

(2) lim t-%L’a(ts)t -1 dtg(s)= so(s)
e- O

in L if g(s) and s’g(s) are in L1. It is easy to show that (1 + s)
(s/(1 + s))" are in M. This and (2) imply that

(3) lim_o (1 + s) f t-a(ts)t -1 dt 9(s) (s/(1 + s))’O(s),

and

g in

The left-hand side of (3) is (s/(1 + s))’F(es) where

f(s) t-a(t)t- dt.

Since the norm ofM is an operator norm, we conclude from (3) and the
uniform boundedness principle, that

(4) II(s/(1 + s))f(es)llaM < const., e > 0.

Since the norm in (4) is not changed if s is replaced by ns, n 1, 2,..., if we
let e n-1, we have

II(ns/(1 / ns))f(s)lle < const., n 1, 2,

This shows that F is in M. Since F is in EM and

F’(s) -F(a + 1)-lEa(a u’),

it is clear that u-10 * Uz is in L1. This completes the proof.

4. A Lions-Peetre type theorem

For each measure a, 0 < < l, and _< q < oo we let lip (a, , q) denote
the space off in X for which the norm

Ilfl[ / [t-=llS(a,))fll]qt dt

is finite. We will refer to these spaces as the lip spaces. The spaces (o, X1)
and (Xo, X1)r are defined in rl, p. 166]; we will refer to them as the J spaces
and K spaces, respectively.
The object of this section is to prove the following theorem.

4.1. THEOREM. Suppose that tr is a complex measure on [0, c) which satisfies:
(i) there exist a, C > 0 such that Iffl -< Cu-3 du on [a, );
(ii) j’do- O.

Then, lip (a, , q) (X, D(A))a for 0 < < 1, <_ q <_ v and, the norms

of these spaces are equivalent.
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Proof For convenience, let St denote S(at)). We will first show that the J
space is continuously embedded in the lip space. Since the J space is equal to
the K space [1, p. 173], it suffices to show that the K space is embedded in the
lip space. By an argument similar to that of [1, p. 194] it suffices to show

(1) ,,Stf,, <_ (M.f d,t,) ,,f,,, f X;

where M sup Ttl[. It is clear that (1) holds. To prove (2) we first note that
since

h- ’(S,+hf Stf) T,,, (uh)-’ TAf ds u da(u)

and (i) is assumed, we have

d
S,f T,,tAfu da(u)(3) d-

where the derivative exists in X. The inequality (2) now follows from (3) and
the identity

fo d
S,f du.S,f=

We will now show that the lip space is embedded in the J space. As in [3],
we first note that we can assume that A has a bounded inverse; because, if the
semigroup T, is replaced with the semigroup e-’T, then the lip space and the
J space are unchanged except that the norms are replaced by equivalent norms.
This is clear for the J space since e-’T, has infinitesimal generator A L We
now show why the lip space is the same. Let

S’t e-t"T, da(u).

It suffices to show that

[t-l[(S,- S;)f[[]qt -1 dt< , f eX.

This will hold if we show

(4) .((ut)-(1 e-"’)u dial(u) O(t-’), as 0.

But, the integral in (4) is dominated by

(ut)X-u dial(u) + 2 (tu)-u dial(u)
/t
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and we can apply (iii) and (ii) to show that both terms in this sum are O(t 1-)
as 0. We have now shown that we can assume that A has a bounded inverse,
which we denote by A-1.
By the definition of the J space, to show thatfis in the J space and the J norm

is dominated by a multiple of the lip norm, it suffices to show that there is a
function v(t) such that:

(5) v(t) is strongly measurable as a function with values in D(A);
(6) j’ [-t-llv(t)ll]t-x dt < oo
(7) j’ [t-+Xllv,t)llo<a)]t- dt < o
(8) j" v(t)t dt f.

Before we define v(t) we first note that if z is a measure such that (a) z has finite
support and (b) j" dz 0, then

(9) z tr is a 2-measure.

The assumptions we have made for tr and z together with Lemma 2.4 show that
the conditions of Lemma 2.3 are satisfied by z a for the case r 2; thus,
z, tr is a 2-measure. Clearly, we can choose z so that we also satisfy (c)
C(z tr) (C(tr) is defined in 1.3). Now define v(t) by

v(t) t- S(,)S(r.)4- f.
First consider (8). Since A-ife D(A), to prove (8) it suffices to show that

(10) St-S(zo)S(tr,)et - dt A#, # D(A).

Since S(z(o)S(tr(o) S((z, tr)o), z, tr is a 2-measure, (io -di)(2 is a 2-
measure (see 2.1), it follows from Lemma 2.1 and Theorem 1.4 that the integral
in (10) is equal to

lim C((i0 1)()- t- (I T)t dr;
--0

and, in [2, 2.3, p. 93] it is shown that this latter limit is A.
We now turn to the other conditions, (5), (6), (7). Both (5) and (7) are obvious.

To prove (6) it suffices to show that IIt-S(c(o)A-ll is bounded; and, this
follows from the fact that " u dll(u) < oo and that, consequently, (2) holds
withfreplaced by A-Ifand r replaced by
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