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BY
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Introduction

The purpose of this paper is to improve our previous result [3] concerning the
duality of decomposable operators. In that paper we have proved that the dual
of a 2-decomposable operator is also 2-decomposable. We shall prove here that
the dual of a 2-decomposable operator is actually decomposable. This result
has some interesting consequences. The first one is that on a reflexive Banach
space, any 2-decomposable operator is decomposable, thus improving a result
contained in [1] and answering positively a question raised in [4]. A second
one is that the dual of any decomposable operator is a decomposable operator.
A similar result for a more restrictive notion of decomposability was obtained
in [5]. Some other consequences are related to the quasinilpotent equivalence
of 2-decomposable operators.

The paper consists of four sections. In Section 1 we give some definitions and
auxiliary results. In Section 2 we prove a general decomposition theorem for
continuous linear functionals which will be used essentially in the proof of our
main theorem and which seems to be interesting by itself. Finally, Section 3
contains the main result of the paper, and Section 4, its consequences.

1. Preliminaries

We begin by recalling some definitions from the theory of spectral decomposi-
tions. Let X be a complex Banach space and L(X) be the space of all continuous
linear operators on X.

DerINITION 1. [2], [4] (8) An operator T € L(X) is said to be m-decom-
posable (m is a natural number, m > 2) if for every finite covering {G;, . . ., G}
of the spectrum o¢(7) of T consisting of k& < m open sets, there exist £ maximal
spectral subspaces Yj, ..., Y, of T such that:

0 X =3,

(i) o(T|Y) < G;(1<j<k).

(b) Tissaid to be decomposable if it is m-decomposable for every number m.

A maximal spectral subspace Y of T is a (closed linear) subspace invariant for
T, and containing any other invariant subspace with a smaller spectrum (i.e.,
TZ <« Zand o(T | Z) < o(T| Y) imply Z < Y).

It is easy to see that some results proved in [2] for decomposable operators
remain valid for 2-decomposable operators. Thus, denoting the resolvent of T,
by R(-; T), for any x € X, the analytic function z — R(z; T)x defined on the
resolvent set, p(T), has a single-valued maximal extension. We denote by
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z — x7(z) this extension, by p;(x) (the resolvent set of x with respect to T) its
domain of definition, and by o(x) (the spectrum of x with respect to T) the
complement of pp(x) in C, a(x) = C\pp(x).

For an arbitrary set F « C we denote X (F) = {x: xe X, op(x) < F}. If
T is 2-decomposable and F is a closed set, then X;(F) is closed and
o(T | X((F)) < F; thus it is a maximal spectral subspace of 7. Conversely if Y
is a maximal spectral subspace for T and we denote F = o(T| Y), then
Y = X (F).

DEFINITION 2. Two operators 7, S € L(X) are quasinilpotent equivalent if

(M -k kan—k o (M) —kgk -k
Z(k)( 1" *T*S Z<k>( 1) ST

k=0 k=0

1/n 1/n

lim = 0.

n— oo

= lim

n— o

It is known [2] that if T, S are decomposable operators, then they are quasi-
nilpotent equivalent if and only if X;(F) = Xy(F) for any closed set F.

Some formal similarities of the conditions (i)-(ii)) with the corresponding
properties of the partition of the unity suggest the question if indeed a 2-
decomposable operator is decomposable. In [1] it was proved, by using simple
arguments of topological dimension theory, that any 3-decomposable operator
is decomposable. We shall improve this result by using arguments of duality.
Let 7 € L(X) be a 2-decomposable operator and let us denote by X' the dual of
X and by T’ the dual of 7, so that (T'u)}(x) = u(Tx), ue X', xe X. Then T’
is also 2-decomposable and we have X}.(F) = X (6F)* for any closed set
F = C[3]. The following proposition gives us an equivalent condition for the
decomposability of 7’ which is easier to handle.

PROPOSITION 1.  Suppose T is 2-decomposable. Then T' is decomposable if
and only if for any finite family {F,, . .., F.} of closed sets with void intersection,
we have X' = X, (F)* + - + X (F)*"

Proof. 1If T' is decomposable and F,,..., F, are closed sets such that

k-1 F, = 0, then the open sets G, = C\Fy,..., G, = C\F, cover C. If
{Uy, ..., Uy} is another open covering of C such that U; « G; (1 <j < k)
then, by the decomposability of 7’, we have

k k
X’ = Z X;r(UJ) = Z X"'(%)Uj)l.
i=1 i=1
On the other hand, X,;(¥U;) > X,(F;), whence
k k
Y X{6U) <= Y XuFpt < X',
i=1 Jj=1
and therefore X' = Y%_, X;(F)". Conversely, let us suppose the condition
stated in the proposition is satisfied. Let {G,,..., G,} be an arbitrary finite
open covering of C and {U,, ..., U,} be another open covering of C such that
U; = G;(1 <j < k). Theclosed sets F; = ¥U; (1 < j < k) have void inter-
section and, consequently, we have

X' = Xo(F)' + -+ Xo(F)h
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on the other hand X (F))* < XH(%U,)* = X7.(U)) so that
X' = Xp(U) + -+ XU

and the decomposability of 7" is proved (see [2, Chapter 2, Notes and Remarks]).
Proposition 1 motivates our next section.

2. A decomposition theorem for continuous linear functionals

We shall formulate now, in a general setting, the decomposition problem
from above. Let X be a normed linear space and let X, . .., X, be closed linear
subspaces of X. The problem is to find a necessary and sufficient condition in
order to have the equality X’ = X{ + -+ + X. Such a condition is given in
the following theorem.

THEOREM 1. In order to have the equality X' = Xt + -+ + X{ it is neces-
sary and sufficient to have an inequality of the form

(M x| < M[d(x, X,) + -+ + d(x, X})]

where M is a positive constant and d(x, X;) is the distance from x to the set X,
1<j<k

Proof. Let us suppose first that X’ = >*_, X} and let us find a constant
M > 0 such that inequality (1) is satisfied. It is well known that the space X; n
is isometrically isomorphic to the dual (X/X;)’ of the quotient space X/X 2
Under this isomorphism, to an element u; € X7 corresponds the element
ii; € (X/X;)" defined by @;({) = u;(x), £ € X/X;, x € {. On the other hand the
equality X' = Y%, X7 implies the surjectivity of the (continuous linear)
application @%_; X7 — X’ defined by @%_, u; » 3%_, u;. Therefore, by the
open mapping theorem, there exists a constant M > 0 such that for any u € X’
we can find a representation u = Y%_, u;, where 35_, u;ll < M|ul.
using such a representation for any u € X' we shall obtain successively

WGl = 2 u(x)l

J

.Ma‘ IIMx-

[ii(x + X))l

~,
[

\ lugll l1x + Xjllx/x,

~.

If IA
IIM;:- =

[N

llusll d(x, X;)

(Z I, u)(Z d(x, X, ))

k
Miul 3, dex, X

~.

IA

IA
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Since || x| = supj, <1 [u(x)], we have
Ixl = sup |u(x)|
[lul <1
k
< sup (Mnun Y dx, X,-))
llull <1 i=1
k
i=1

and inequality (1) is satisfied. Conversely, let us prove that X’ = ¥%_, X} by
assuming that inequality (1) is satisfied. It is easy to see that inequality (1) may
be written in the form |x| < M Z’;=1 [x + X;lx/x,» Thus for any u € X', we
have

u(x)]

IA

flull f1x1

IA

k
M |ul| -;1 Ix + X;lxx,

M ul

k
@ (x + Xj)
j=

1

Therefore, by applying the Hahn-Banach theorem, we deduce that, for any
u € X', there exists a continuous linear functional U on @%_, (X/X,) such that
U(@%, (x + X;)) = u(x), xeX. For such a functional U we can find
U; e (X/X;)' such that

U(é (x + X,)) = }E U(x + X)).
j=1 j=1

Taking into account the isomorphism X7 = (X/X;)’, we deduce that there
exist u; € X f such that U; = #i;, 1 < j < k. Consequently we have

u(x) = U((-kB (x + Xj)>

Jj=1

Il
II.M -

Ui(x + X))

j=1

i(x + X))

It
P =

ji=1

J;l u(x)

for x € X; thatis, u = ¥%_, u;, u; € X, 1 < j < k and the proof is finished.
If » = 2 and X is a Banach space then inequality (1) has a simple “geometric”
interpretation.
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ProPOSITION 2. If X is a Banach space and X, X, are closed linear subspaces
of X, then an inequality of the form

Ixl < M[d(x, X,) + d(x, X3)]
is satisfied if and only if X; + X, is closed and X; n X, = {0}.
Proof. 1If the inequality |x| < M[d(x, X,) + d(x, X,)] is satisfied, then
for any x, € X, x, € X, we have
Ixil < M[d(x;, Xy) + d(xy, Xp)] = M d(xy, X3) < Mllx, — x,]

and analogously |x,|| < M|x, — x,||. Therefore, for any x, € X;, x, € X,
we have

Xl + llx2ll < 2M[x; — X,

and this inequality easily implies that X, + X, is closed and X, n X, = {0}.
Conversely, let us suppose that X; + X, is closed and X; n X, = {0}. By
the open mapping theorem there exists a constant M > 0 such that

xil + lxzll < Mllx; + xz[ for any x, € Xy, x; € X,.
Consider now an arbitrary element x € X. Since
d(x, X;) = inf {||x — x)||, x; € X}
for any ¢ > 0 we can find elements x; . € X; such that

lx — x; .0 <d(x, X)) +¢ (j=12).
Then we obtain

flx1

IA

Ix — xp,ell + llxq,l

dx, X)) + e + M|x;,. — x5 .|l

dx, Xy) + & + M[llxy,. — x| + lIx = x3,./]
d(x, X)) + ¢ + M[d(x, X)) + d(x, X;) + 2¢]
< (I + M)[d(x, X)) + d(x, X,)] + & + 2Me.

A A

IA

Thus for any x and any ¢ > 0 we have
[x < (1 + M)[d(x, X,) + d(x, X,)] + & + 2Me
whence, taking the limit when ¢ — 0, we deduce
Ixll < (@ + M)[d(x, X)) + d(x, X,)]
and the proof is complete.
3. The main result

Let T be a 2-decomposable operator on the complex Banach space X. We
shall prove the dual 7' of T is a decomposable operator.

THEOREM 2. If T is 2-decomposable, then T' is decomposable.
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Proof. By using Proposition 1 and Theorem 1 it will be sufficient to prove
the following statement: for any finite family {F,, ..., F;} of closed sets with
void intersection there exists a constant M > 0 such that

Ixl < M[d(x, Xp(F\)) + - + d(x, Xz(F))], xeX.

We shall proceed by a reductio ad absurdum. Let us suppose this statement is
not true. Then there exists a sequence (x%) = X satisfying the following con-
ditions: |x9] = 1, ne N, d(x3, X;(F;)) > 0 when n > o0, 1 < j < k. Con-
sequently for every j, 1 < j < k, there exists a sequence (x?, w) < Xp(F;) such
that for n — oo, [x% — x¥ |l > 0; furthermore these sequences are bounded
because ||x)| = 1, n € N. Taking into account that x? , € X;(F;) and letting

G; = C\F; and f; (z) = R(z; T| X((F)))x}, forzeG,,

we obtain x9 , = (z — T)f; .(2), z € G;; moreover the sequences of analytic
functions (f;,,) are uniformly bounded on compact sets. We can put now this
situation in a more adequate framework. Let us consider the space /(X)) of all
X-valued bounded sequences, and its quotient space [ (X)/co(X) by the sub-
space co(X) of all sequences convergent to 0. Therefore an element of
I,(X)/co(X) is a class, modulo sequences convergent to zero, of X-valued
bounded sequences. Denote by X° the class defined by the sequence (x%) and
by f; the function defined on G; to I,,(X)/co(X) by

J12) = (5,u2) + co(X), z€G,

Since, by definition, f; ,(z) = R(z; T | Xr(F;))x} ,, it is easy to see that the
function z — (f;, ,(z)) is an analytic function on G; to /,,(X) and therefore f ;18
an analytic function on G;. Moreover, let us remark that for z € G; n G,, we
have fi(z) = f(z). Indeed we know that as n — oo, then ||x3 — x9 | - 0 and
x5 — x2,ll = 0, hence ||x9, — x{,| — 0. On the other hand, forz € G; n G,
we have

Sin2) = fi,u2) = R(z; T | Xp(F))X].,, — R(z; T | X((F))x; ,
R(z; T | XT(Fj v Fl))(xj,n — X1, )

Thus as n — oo, then f; ,(z) — fi,.(z) = O uniformly on compact sets and
consequently fi(z) = f(z), z € G; N G,, as desired. Let T be the (continuous
linear) operator defined by 7 on /,(X)/co(X) by

T[(x) + co(X)] = (Tx,) + co(X).

Then we have £° = (z — T)f|(z), z € G; and fi(z) = f(z), z€ G, A G,. Since
U%-1 G; = C, we can define an analytic function f on C to /,(X)/co(X) by
F(@) = fi(z) if z ¢ G; and we obtain X° = (z — T)f(z), ze C. By taking a
circumference I' contained in the resolvent set of T and surrounding the spec-
trum of T, we deduce
%0 = 1 R(z; TY®® dz = —l—j f(z)dz = 0.
27 Jr

2ni Jr
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We have obtained a contradiction because on the one hand %° is defined as
(x%) + co(X) where [|x%] = 1, ne N, and on the other hand %° = 0. The
proof is concluded.

4. Applications

Let us first give some simple corollaries of our main theorem.
COROLLARY 1. If T is decomposable, then T' is also decomposable.

COROLLARY 2. On a reflexive Banach space, any 2-decomposable operator is
decomposable.

Proof. If T is a 2-decomposable operator on a reflexive Banach space X,
then by Theorem 2, T’ is decomposable and by Corollary 1, T” is also decom-
posable. Since T = T, the proof is finished.

The last consequence is a characterization for the quasinilpotent equivalence
of 2-decomposable operators, similar to that recalled in Section 1 for decom-
posable operators.

ProrosiTiON 3. If T, S € L(X) are 2-decomposable operators, then T is
quasinilpotent equivalent to S if and only if for any closed set F = C, the corre-
sponding spectral spaces are equal, that is, Xp(F) = Xs(F).

Proof. Let us note first that T is quasinilpotent equivalent to S if and only
if 7" is quasinilpotent equivalent to S’. This statement is a consequence of the
following equalities:

i (n> (_ l)n—kT/kSm—k
k=0 \ k

5 (9w
p

p=0

2": <n)(_1)n—ks/k'rm—k i <n>(_1)n—prSn—p
K=o \ k p=0 \p

If T and S are 2-decomposable and X(F) = X(F) for any closed set F < C,
then we have X (6F) = Xi(6F) and therefore X (6F)" = Xg{%F)*. By
applying the duality of spectral spaces we obtain X7.(F) = X5 (F) for any
closed set F = C. Now, by Theorem 2, 7’ and S’ are decomposable and con-
sequently 7" is quasinilpotent equivalent to S’ whence T is quasinilpotent to S.
Conversely, if T, S are 2-decomposable and T is quasinilpotent equivalent to S,
then o5(x) = g5(x) for any x € X (see Section 1 and [2, Chapter 1, Theorem
2.4]) and thus X,(F) = Xy(F) for any closed set F = C. This finishes the proof.

and
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