ON THE DIFFERENTIABILITY OF FUNCTIONS OF
SEVERAL REAL VARIABLES

BY
C. P. CALDERON AND J. E. LEWIS

Introduction

This paper is concerned with two problems. In the first place, we show that
if a function f belongs to L.(R") (see definition below), then f(x) possesses
total differential of order n at almost all the points of R" (see definition below).

In the second place, if we restrict our attention to functions arising from
Bessel Potentials of order #, that is

J(x) = f Gi(x — 1g(y) dy
Rn

where G, = (1 + |x|*)~"2, G, is the Fourier Transform of G, and g € L'(R"),
our result in this case is that if g € I}(R") n L! log* L' then, f possesses total
differential of order n at almost all the points of R". This result is the best
possible in the sense that given an Orlicz Class Ly(R") that contains a function
g for which

j lgl log* |g| dx = oo,
Rn

then there exists a function g, € L!(R") N L4(R") such that G, * g, fails to have
total differential of any order at almost all the points of R".

These two results complete the ones in [5], [6], [7]. We are indebted to the
referee for a simplification of the proof of Theorem A.

1. Notation and definitions

As usual a will denote the n-tuple of integers (ay, oy, ..., a,), o] =
oy + oy + -+ 4+ , and
Df = o'l f, X% = x%...x%n
OX%t -+ Ox%n ? 1 n >

al = ala,!. ..o, D°f=f
The Taylor’s expansion of order m will be written as

f= Y %ﬁz—)u .

la|<m
(m+1)
lal=m+1 o!

+

(x — 2)* j Y= "D+ t(x — 2)) di
0
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(1.1) LE(R"™, k integer, k > 0, 1 < p < oo, denotes the Sobolev space of
functions such that
Dfe LP(R", 0 < o < k.

Here, the derivatives are taken in the distribution sense and

e = X 1D,

O0<|a|<k

(1.2) ZL%(R") denotes the Bessel Potential Class of functions f represented
by the convolution

f=Ggxg, geL(R"),1 <p< o0,

n

~ 1/2
G =1+ |x]H7M2, |x| = (E x?) , k integer, k > 0.
1

G, is called the Bessel kernel of order k. See [9 p. 130]. We define || fllg,, =
lgll,. Notice thatif 1 < p < oo, then £} = L;. (See [9, Chapter V].)
(1.3) Given a vector 4 € R", we define A, f(x) = f(x + h) — f(x) and
APS(x) = AAFTVNX) (AP = Ay
(1.4) Following [5] we shall consider the maximal operator
APf(x)
h|*

where f is any real valued function defined on R". Likewise, we are going to
consider also the Hardy-Littlewood maximal operator

M f(x) = Sup

heR"

1
Sup — |f1dy = M(f)(x).
r>0 r |x=—y]<r
Here, fis measurable and locally integrable.

(1.5) Let f(x) be a real valued measurable function defined on R". We say
that f has total differential or order k at x,, if there exists a homogeneous
polynomial P(x) of degree k, P(x): R" — R, such that

lim L

lim 5 1AL/ 50) = POD = 0.

2. Statement of results
(2.1) THeoreM A. Let f belong to LE(R"), 1 < p < . Then

(i) IMifll, < CpEjaj=n 1D 1 < p < 0.

Here C, depends on n and on p only.
(i) Ifp = 1 we have

EQMEf > 1) < % PRLAE
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(iii) If1 < p < oo, f possesses total differential of order n at almost all the
points of R".

(2.2) TueoreM B. (i) Let f be given by
f=G,*g.
Then, ifg e L'(R") n L'(R") log™ L'(R"), f possesses total differential of order n at
almost all the points of R".

(i) Let Ly(R") be an Orlicz class that contains a function g for which
frelgllog®lgldy = oo. Then there exists a function g, € L'(R") n Ly(R") such
that G, * g, fails to have total differential of any order at almost all the points of
R".

3. Proof of Theorem A

We are going to show (i) and (ii) for functions in C§(R") since the general
case follows from a standard density argument. C will denote a constant
depending on n, not necessarily the same at each occurrence.

Given x and /4 consider the points xq = x,x; = xo + A, . . ., X, = Xo + nh.
We also consider a variable point z in the ball B = {z| |z — xo| < 3nlh|}. Let
fe CF(R" and consider the Taylor expansion of f about the point z, namely

GH fo= 3 HD_

O<]al<n—1

+n Y (s-— z)“‘J‘l t" DY (s + t(z — s)) dt.

la]=n 0

Observe that
Aﬁ,”){ y D@ _ z)“} ®) = 0.

O<lajgn—1 & !
Consequently

n |z=x;l
A <C Y X j g

j=0 laj=n Jo

z — X

D"‘f(x,-+p j)
[z — x|

dp.

Integrating over |z — x| < 3n|h|, we have

IARS ()]

C 6n|h| net
<—=3% X J p f
[Al" =0 1aT=n Jo lz—x|<3n|h|

Observe that

jlz—xlg?mlhl

D“f(xj +p 1= x,-) dz dp.

lZ - x_,l

dz

D“f(x,-+p z - xj)

|Z - le

dZ < j D“f(xj + p'£‘>
|zl <6n|h| |z]

< Clhl"j [D*f(x; + po)| do.
z
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Hence

A <CY ¥ f DY (x, + )] dz
|z| <6n|h|

Jj=0 la|=n

<cyYy Y J [D¥(x + z)| dz.
J=0 |al=n J|z-x|<12nlh|
We conclude that

(3.5) IMEf(0)] < CM( ¥ ID"fI> ).

lef=n

Parts (i) and (ii) of the thesis follow from (3.5) and the Hardy-Littlewood
maximal theorem.

The differentiability a.e. follows from the maximal inequalities and from the
fact that the property holds for a dense subset C(R"); see argument in [ 5, p. 892,
Corollary IJ.

4. Proof of Theorem B

In the first place, we are going to show that if fis given by the Bessel potential

4.1.1) S(x) = G,xg

where g € L'(R") n L'(R") log™ L'(R") then, f(x) possesses total differential of
order n at almost all the points of R".
We shall prove first an auxiliary lemma.

(4.2) LemMA. Let K(f) be a singular integral operator, that is

K(f) =af + p.v.f K(x — »)f(y)dy, where K(x)

R»

is homogeneous of degree —n, has mean value O on the unit sphere and is C* in
R — {0}. Here, a stands for a fixed constant. Suppose that

fe LM(R") n L}(R") log* L'(R".
Then f admits the decomposition

(4.2.1) f=hHh+1r
where f, € I*(R") and f, satisfies

4.2.2) J [f2] dx < oo, j IK(f2)] dx < 0.
R» Rn

Proof. There is no loss of generality if we assume that f > 0. Fix a real
number 4, > 0 and consider the corresponding Calderon-Zygmund decomposi-
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tion for f. (See [9, Chapter 1, p. 17].) There exists a family of non overlapping
cubes {Q,}, k = 1, 2, ... with edges parallel to coordinate axes, and such that
1

(4.2.3) b < —— | rdx < 27,
|Qk| Qk

Let Go = J? Q4 then f(x) < 4, ae. in R" — G,. Call m, the mean value
(/194D So, f dx, ¥, the characteristic function of the cube Q,. ¥, will denote
the characteristic function of R* — G,,.

Now define
“4.2.4) f1 = Yo(x)f(x) + {::,mk‘{’,‘(x).
Consequently
(4.23) fr = £ U = m¥o).

Clearly, f; € I*(R") n L'(R"). Letnow 5G, be |J{ 50, where 50, is the dilation
of Q, 5 times about its center. By using the smoothness of K(x) outside the
origin, its homogeneity and the fact that f,(x) has mean value O over Q,, we
have

(4.2.6) f IK[(f — mp¥:]l dx < COJ |f] dx.
R"—5Q 3
Consequently
(427) | o= e [ e
R"-5Go R®

Now, using the fact that K(f) is of weak type 1-1 we have
4239) j K(l dx < €, + C, j (fsl + 1) log" £l d
5Go Rn®

where, the constant C; depends on the measure of 5G, which does not exceed
(5"/4o) frn f dx and C, depends on the operator K only. This finishes the proof
of lemma (4.2). Let us now return to the proof of Theorem B and consider
f = G, *g. Consider now the decomposition of g as g; + g, as introduced in
Lemma (4.2). From Theorem 3, p. 185in [9], it follows that G, * g, € L2(R") and
consequently, it possesses total differential of order » at almost all the points of
R"

Our next step will be to show that G, * g, belongs to L{(R"). Observe that
G, * g, is an L!-function, therefore D?G,g, is a tempered distribution. Denoting
by T the Fourier transform of T we have, for 0 < || < n,

B
(3.1 DFGrgn)" = AV (L ()T (L4 (x0T g,



540 C. P. CALDERON AND J. E. LEWIS

Here x*/|x|'?! is the symbol of a singular integral operation K, satisfying the
conditions of Lemma (4.2) (see [2 Chapter 5], [3]), |x|"P!(1 + [x|?)~1#1/% is
the Fourier transform of a finite measure p, (see [9 pp. 133-134]) and finally,
(1 + |x|*)~@~1#D/2 js the Fourier transform of G,_ if || < n and that of
6 if |B| = n. Consequently, we have for all ¢ € & (L. Schwartz space of rapidly
decreasing C*® functions),

(4.3.2) <DﬂGn * g,y @) = <K11 s fg - Gn— I 32, ¢
~ /\ ~
= <ﬂ/3 : Gn—m : Kp(gz), >
Taking anti-Fourier transforms we have
(4.3.3) DBGn * gy = Up * G,,_[,”*K,g(g;) if [B] < n,
(4.3.4) D’G,* g, = ug * Ky(gy) if [Bl = n.

The identities (4.3.3) and (4.3.4) should be interpreted in the distributions sense.
Finally, from lemma (2.4) we have

4.3.5) | Kp(g2)ll; < o for |B] < n.
This concludes the proof of the first part of Theorem B.
(4.4) Proof of the second part of Theorem B. Let g be a function belonging
to L'(R") n Ly(R") such that
4.4.1) J gl dx < oo and j &(lgl) dx < 0.
Rn Rn

Here ¢ is a non-negative convex function, such that ¢(0) = Oand ¢(2t) < Ce(r)
t > 0. Assume also that

4.4.2) j |g] log* |g| dx = oo.
R”

Without loss of generality, we may assume
(4.4.3) [E(lgl > A9l # |E(gl > )| if Ay # A,.

Our next step will be to construct the function g, of the thesis. Call g, the
radial non-increasing rearrangement of |g| and S, the set {g; > 2*}. Calling
W, (x) the characteristic function of the sphere S, we have

(4.4.4) Y 2T < g, < 3 W),

That shows that § = 3% 2*¥,(x) € L'(R") n Ly(R").
From (4.42) a summation by parts yields

(4.4.5) Y k24S,| = co.
1
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Consider now (G, * g)(0). Notice that G,(x) > — C(n) log |x| if |x] < ¥,
C(n) > 0, and in general G,(x) > 0.

Consequently,

(=log r)r" ! dr.

|Sk|1/n
0

(4.4.6) (G, * §)0) = C(n) |} f 2 f

Here |Y°| is the “area” of the unit sphere in R"; k, has been chosen so that
IS,I'" < % and |S|2* < 1 for all k > k,. The right hand member of
(4.4.6) equals

4.4.7) CoC(n) kz 2"|Sk|{—log IS}
Notice that
(4.48) —log|S,| = —log (IS;2¥27%) = —log|S,|2* + klog 2 > k log 2.

By using this last remark and (4.4.5) we see that the series (4.4.7) is divergent
and moreover

(4.4.9) lim (G, * g)(h) = .
h—0
Let C; be a sequence of positive numbers such that

C;, =1

J

(4.4.10)

..Mg

Select a denumerable family of points {x;} in R", such that the set {x;} is dense
in R"; let

(4.4.11) go(x) = -; Cig(x — xj).

Clearly, g, € L}(R") N L4(R") and on account of (4.49) g, * g, is essentially
unbounded on each neighborhood of R". Thus, G, * g, fails to possess total
differential of any order at almost all the points of R". This concludes the
proof of Theorem B.
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