ON THE DIFFERENTIABILITY OF FUNCTIONS OF SEVERAL REAL VARIABLES

BY

C. P. CALDERÓN AND J. E. LEWIS

Introduction

This paper is concerned with two problems. In the first place, we show that if a function f belongs to $L_n^1(\mathbb{R}^n)$ (see definition below), then f(x) possesses total differential of order n at almost all the points of \mathbb{R}^n (see definition below).

In the second place, if we restrict our attention to functions arising from Bessel Potentials of order n, that is

$$f(x) = \int_{B_n} G_n(x - y)g(y) \, dy$$

where $\hat{G}_n = (1 + |x|^2)^{-n/2}$, \hat{G}_n is the Fourier Transform of G_n and $g \in L^1(\mathbb{R}^n)$, our result in this case is that if $g \in L^1(\mathbb{R}^n) \cap L^1 \log^+ L^1$ then, f possesses total differential of order n at almost all the points of \mathbb{R}^n . This result is the best possible in the sense that given an Orlicz Class $L_{\phi}(\mathbb{R}^n)$ that contains a function g for which

$$\int_{R^n} |g| \log^+ |g| \ dx = \infty,$$

then there exists a function $g_0 \in L^1(\mathbb{R}^n) \cap L_{\phi}(\mathbb{R}^n)$ such that $G_n * g_0$ fails to have total differential of any order at almost all the points of \mathbb{R}^n .

These two results complete the ones in [5], [6], [7]. We are indebted to the referee for a simplification of the proof of Theorem A.

1. Notation and definitions

As usual α will denote the *n*-tuple of integers $(\alpha_1, \alpha_2, \ldots, \alpha_n)$, $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ and

$$D^{\alpha}f = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} f, \quad x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n},$$

$$\alpha! = \alpha_1! \alpha_2! \dots \alpha_n!, \quad D^0 f = f$$

The Taylor's expansion of order m will be written as

$$f(x) = \sum_{|\alpha| \le m} \frac{D^{\alpha} f(z)}{\alpha!} (x - z)^{\alpha} + \sum_{|\alpha| = m+1} \frac{(m+1)}{\alpha!} (x - z)^{\alpha} \int_{0}^{1} (1 - t)^{m} D^{\alpha} f(z + t(x - z)) dt$$

Received July 28, 1975.

(1.1) $L_k^p(R^n)$, k integer, $k \ge 0$, $1 \le p \le \infty$, denotes the Sobolev space of functions such that

$$D^{\alpha}f \in L^p(\mathbb{R}^n), \quad 0 \leq |\alpha| \leq k.$$

Here, the derivatives are taken in the distribution sense and

$$||f||_{L_k^p} = \sum_{0 \le |\alpha| \le k} ||D^{\alpha} f||_p.$$

(1.2) $\mathcal{L}_k^p(R^n)$ denotes the Bessel Potential Class of functions f represented by the convolution

$$f = G_k * g, \quad g \in L^p(\mathbb{R}^n), \ 1 \le p \le \infty,$$

$$\hat{G}_k = (1 + |x|^2)^{-k/2}, \quad |x| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}, \ k \text{ integer, } k \ge 0.$$

 G_k is called the Bessel kernel of order k. See [9 p. 130]. We define $||f||_{\mathcal{Z}_k^p} = ||g||_p$. Notice that if $1 , then <math>\mathcal{L}_k^p \equiv L_k^p$. (See [9, Chapter V].)

(1.3) Given a vector $h \in \mathbb{R}^n$, we define $\Delta_h f(x) = f(x+h) - f(x)$ and

$$\Delta_h^{(k)} f(x) = \Delta_h (\Delta_h^{(k-1)} f)(x) \quad (\Delta_h^{(1)} \equiv \Delta_h)$$

(1.4) Following [5] we shall consider the maximal operator

$$M_k^* f(x) = \sup_{h \in \mathbb{R}^n} \left| \frac{\Delta_h^{(k)} f(x)}{|h|^k} \right|$$

where f is any real valued function defined on R^n . Likewise, we are going to consider also the Hardy-Littlewood maximal operator

$$\sup_{r>0} \frac{1}{r^n} \int_{|x-y| \le r} |f| \ dy = M(f)(x).$$

Here, f is measurable and locally integrable.

(1.5) Let f(x) be a real valued measurable function defined on \mathbb{R}^n . We say that f has total differential or order k at x_0 , if there exists a homogeneous polynomial P(x) of degree k, P(x): $\mathbb{R}^n \to \mathbb{R}$, such that

$$\lim_{|h| \to 0} \frac{1}{|h|^k} |\Delta_h^{(k)} f(x_0) - P(h)| = 0.$$

2. Statement of results

(2.1) THEOREM A. Let f belong to $L_n^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$. Then

(i)
$$||M_n^* f||_p \le C_p \sum_{|\alpha|=n} ||D^{\alpha} f||_p$$
, $1 .$

Here C_p depends on n and on p only.

(ii) If p = 1 we have

$$|E(M_n^* f > \lambda)| < \frac{C_0}{\lambda} \sum_{|\alpha| = n} ||D^{\alpha} f||_1$$

- (iii) If $1 \le p \le \infty$, f possesses total differential of order n at almost all the points of \mathbb{R}^n .
 - (2.2) THEOREM B. (i) Let f be given by

$$f = G_n * g.$$

Then, if $g \in L^1(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \log^+ L^1(\mathbb{R}^n)$, f possesses total differential of order n at almost all the points of \mathbb{R}^n .

(ii) Let $L_{\phi}(R^n)$ be an Orlicz class that contains a function g for which $\int_{R^n} |g| \log^+ |g| dy = \infty$. Then there exists a function $g_0 \in L^1(R^n) \cap L_{\phi}(R^n)$ such that $G_n * g_0$ fails to have total differential of any order at almost all the points of R^n .

3. Proof of Theorem A

We are going to show (i) and (ii) for functions in $C_0^{\infty}(\mathbb{R}^n)$ since the general case follows from a standard density argument. C will denote a constant depending on n, not necessarily the same at each occurrence.

Given x and h consider the points $x_0 = x$, $x_1 = x_0 + h$, ..., $x_n = x_0 + nh$. We also consider a variable point z in the ball $B = \{z \mid |z - x_0| \le 3n|h|\}$. Let $f \in C_0^{\infty}(\mathbb{R}^n)$ and consider the Taylor expansion of f about the point z, namely

(3.4)
$$f(s) = \sum_{0 \le |\alpha| \le n-1} \frac{D^{\alpha} f(z)}{\alpha!} (s-z)^{\alpha} + n \sum_{|\alpha|=n} (s-z)^{\alpha} \int_{0}^{1} t^{n-1} D^{\alpha} f(s+t(z-s)) dt.$$

Observe that

$$\Delta_h^{(n)}\left\{\sum_{0\leq |\alpha|\leq n-1}\frac{D^{\alpha}f(z)}{\alpha!}(x-z)^{\alpha}\right\}(x)=0.$$

Consequently

$$|\Delta_h^{(n)}f(x)| \leq C \sum_{j=0}^n \sum_{|\alpha|=n} \int_0^{|z-x_j|} \rho^{n-1} \left| D^{\alpha}f\left(x_j + \rho \frac{z-x_j}{|z-x_j|}\right) \right| d\rho.$$

Integrating over $|z - x| \le 3n|h|$, we have

 $|\Delta_h^{(n)}f(x)|$

$$\leq \frac{C}{|h|^n} \sum_{j=0}^{n} \sum_{|\alpha|=n}^{6n|h|} \int_0^{6n|h|} \rho^{n-1} \int_{|z-x| \leq 3n|h|} \left| D^{\alpha} f\left(x_j + \rho \frac{z-x_j}{|z-x_j|}\right) \right| dz d\rho.$$

Observe that

$$\int_{|z-x| \le 3n|h|} \left| D^{\alpha} f\left(x_j + \rho \frac{z - x_j}{|z - x_j|}\right) \right| dz \le \int_{|z| \le 6n|h|} \left| D^{\alpha} f\left(x_j + \rho \frac{z}{|z|}\right) \right| dz$$

$$\le C|h|^n \int_{\Sigma} |D^{\alpha} f(x_j + \rho \sigma)| d\sigma.$$

Hence

$$|\Delta_h^{(n)}f(x)| \le C \sum_{j=0}^n \sum_{|\alpha|=n} \int_{|z| \le 6n|h|} |D^{\alpha}f(x_j+z)| dz$$

$$\le C \sum_{j=0} \sum_{|\alpha|=n} \int_{|z-x| \le 12n|h|} |D^{\alpha}f(x+z)| dz.$$

We conclude that

$$(3.5) |M_n^* f(x)| \le CM \left(\sum_{|\alpha|=n} |D^{\alpha} f| \right) (x).$$

Parts (i) and (ii) of the thesis follow from (3.5) and the Hardy-Littlewood maximal theorem.

The differentiability a.e. follows from the maximal inequalities and from the fact that the property holds for a dense subset $C_0^{\infty}(\mathbb{R}^n)$; see argument in [5, p. 892, Corollary I].

4. Proof of Theorem B

In the first place, we are going to show that if f is given by the Bessel potential

$$(4.1.1) f(x) = G_n * g$$

where $g \in L^1(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \log^+ L^1(\mathbb{R}^n)$ then, f(x) possesses total differential of order n at almost all the points of \mathbb{R}^n .

We shall prove first an auxiliary lemma.

(4.2) Lemma. Let K(f) be a singular integral operator, that is

$$K(f) = af + \text{p.v.} \int_{\mathbb{R}^n} K(x - y)f(y) \, dy$$
, where $K(x)$

is homogeneous of degree -n, has mean value 0 on the unit sphere and is C^{∞} in $\mathbb{R}^n - \{0\}$. Here, a stands for a fixed constant. Suppose that

$$f \in L^1(R^n) \cap L^1(R^n) \log^+ L^1(R^n).$$

Then f admits the decomposition

$$(4.2.1) f = f_1 + f_2$$

where $f_1 \in L^2(\mathbb{R}^n)$ and f_2 satisfies

$$(4.2.2) \qquad \int_{\mathbb{R}^n} |f_2| \ dx < \infty, \quad \int_{\mathbb{R}^n} |K(f_2)| \ dx < \infty.$$

Proof. There is no loss of generality if we assume that $f \ge 0$. Fix a real number $\lambda_0 > 0$ and consider the corresponding Calderon-Zygmund decomposi-

tion for f. (See [9, Chapter 1, p. 17].) There exists a family of non overlapping cubes $\{Q_k\}$, $k=1,2,\ldots$ with edges parallel to coordinate axes, and such that

$$(4.2.3) \lambda_0 < \frac{1}{|Q_k|} \int_{Q_k} f \, dx \le 2^n \lambda_0.$$

Let $G_0 = \bigcup_{1}^{\infty} Q_k$; then $f(x) \leq \lambda_0$ a.e. in $R^n - G_0$. Call m_k the mean value $(1/|Q_k|) \int_{Q_k} f dx$, Ψ_k the characteristic function of the cube Q_k . Ψ_0 will denote the characteristic function of $R^n - G_0$.

Now define

(4.2.4)
$$f_1 = \Psi_0(x)f(x) + \sum_{k=1}^{\infty} m_k \Psi_k(x).$$

Consequently

(4.2.5)
$$f_2 = \sum_{1}^{\infty} (f(x) - m_k) \Psi_k(x).$$

Clearly, $f_1 \in L^2(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$. Let now $5G_0$ be $\bigcup_{1}^{\infty} 5Q_k$, where $5Q_k$ is the dilation of Q_k 5 times about its center. By using the smoothness of K(x) outside the origin, its homogeneity and the fact that $f_2(x)$ has mean value 0 over Q_k , we have

(4.2.6)
$$\int_{R^{n-5}Q_k} |K[(f-m_k)\Psi_k]| \ dx \le C_0 \int_{Q_k} |f| \ dx.$$

Consequently

(4.2.7)
$$\int_{\mathbb{R}^{n-5}G_0} |K(f_2)| \ dx \le C_0 \int_{\mathbb{R}^n} |f| \ dx.$$

Now, using the fact that K(f) is of weak type 1-1 we have

$$(4.2.8) \qquad \int_{5G_0} |K(f_2)| \ dx \le C_1 + C_2 \int_{\mathbb{R}^n} (|f_2| + 1) \log^+ |f_2| \ dx$$

where, the constant C_1 depends on the measure of $5G_0$ which does not exceed $(5^n/\lambda_0) \int_{\mathbb{R}^n} f \, dx$ and C_2 depends on the operator K only. This finishes the proof of lemma (4.2). Let us now return to the proof of Theorem B and consider $f = G_n * g$. Consider now the decomposition of g as $g_1 + g_2$ as introduced in Lemma (4.2). From Theorem 3, p. 185 in [9], it follows that $G_n * g_1 \in L^2_n(\mathbb{R}^n)$ and consequently, it possesses total differential of order n at almost all the points of \mathbb{R}^n .

Our next step will be to show that $G_n * g_2$ belongs to $L_n^1(\mathbb{R}^n)$. Observe that $G_n * g_2$ is an L^1 -function, therefore $D^{\beta}G_ng_2$ is a tempered distribution. Denoting by \widehat{T} the Fourier transform of T we have, for $0 \le |\beta| \le n$,

$$(4.3.1) \quad (D^{\beta}G_{n}^{*}g_{2})^{\wedge} = \frac{x^{\beta}}{|x|^{\beta}} \cdot |x|^{|\beta|} \cdot (1 + |x|^{2})^{-|\beta|/2} \cdot (1 + |x|^{2})^{-(n-|\beta|)/2} \cdot \hat{g}_{2}.$$

Here $x^{\beta}/|x|^{|\beta|}$ is the symbol of a singular integral operation K_{β} satisfying the conditions of Lemma (4.2) (see [2 Chapter 5], [3]), $|x|^{|\beta|}(1+|x|^2)^{-|\beta|/2}$ is the Fourier transform of a finite measure μ_{β} (see [9 pp. 133–134]) and finally, $(1+|x|^2)^{-(n-|\beta|)/2}$ is the Fourier transform of $G_{n-|\beta|}$ if $|\beta| < n$ and that of δ if $|\beta| = n$. Consequently, we have for all $\phi \in \mathcal{S}$ (L. Schwartz space of rapidly decreasing C^{∞} functions),

(4.3.2)
$$\langle D^{\beta}G_{n} * g_{2}, \phi \rangle = \langle \hat{K}_{\beta} \cdot \hat{\mu}_{\beta} \cdot \hat{G}_{n-|\beta|} \cdot \hat{g}_{2}, \phi \rangle$$
$$= \langle \hat{\mu}_{\beta} \cdot \hat{G}_{n-|\beta|} \cdot \widehat{K_{\beta}(g_{2})}, \hat{\phi} \rangle$$

Taking anti-Fourier transforms we have

$$(4.3.3) D^{\beta}G_n * g_2 = \mu_{\beta} * G_{n-|\beta|} * K_{\beta}(g_2) if |\beta| < n,$$

(4.3.4)
$$D^{\beta}G_{n} * g_{2} = \mu_{\beta} * K_{\beta}(g_{2}) \text{ if } |\beta| = n.$$

The identities (4.3.3) and (4.3.4) should be interpreted in the distributions sense. Finally, from lemma (2.4) we have

$$(4.3.5) ||K_{\beta}(g_2)||_1 < \infty \text{for } |\beta| \le n.$$

This concludes the proof of the first part of Theorem B.

(4.4) Proof of the second part of Theorem B. Let g be a function belonging to $L^1(\mathbb{R}^n) \cap L_{\phi}(\mathbb{R}^n)$ such that

$$(4.4.1) \int_{\mathbb{R}^n} |g| \ dx < \infty \quad \text{and} \quad \int_{\mathbb{R}^n} \phi(|g|) \ dx < \infty.$$

Here ϕ is a non-negative convex function, such that $\phi(0) = 0$ and $\phi(2t) < C\phi(t)$ t > 0. Assume also that

Without loss of generality, we may assume

$$(4.4.3) |E(|g| > \lambda_1)| \neq |E(|g| > \lambda_2)| \text{if} \lambda_1 \neq \lambda_2.$$

Our next step will be to construct the function g_0 of the thesis. Call g_1 the radial non-increasing rearrangement of |g| and S_k the set $\{g_1 > 2^k\}$. Calling $\Psi_k(x)$ the characteristic function of the sphere S_k we have

(4.4.4)
$$\sum_{-\infty}^{\infty} 2^{k-1} \Psi_k(x) \le g_1(x) \le \sum_{-\infty}^{\infty} 2^k \Psi_k(x).$$

That shows that $\bar{g} = \sum_{-\infty}^{\infty} 2^k \Psi_k(x) \in L^1(\mathbb{R}^n) \cap L_{\phi}(\mathbb{R}^n)$. From (4.42) a summation by parts yields

$$(4.4.5) \qquad \qquad \sum_{1}^{\infty} k 2^{k} |S_{k}| = \infty.$$

Consider now $(G_n * \bar{g})(0)$. Notice that $G_n(x) \ge -C(n) \log |x|$ if $|x| \le \frac{1}{2}$, C(n) > 0, and in general $G_n(x) \ge 0$. Consequently,

$$(4.4.6) (G_n * \bar{g})(0) \ge C(n) \left| \sum_{k=0}^{\infty} 2^i \int_{0}^{|S_k|^{1/n}} (-\log r) r^{n-1} dr.$$

Here $|\Sigma|$ is the "area" of the unit sphere in R^n ; k_0 has been chosen so that $|S_{k_0}|^{1/n} < \frac{1}{2}$ and $|S_k| 2^k < 1$ for all $k \ge k_0$. The right hand member of (4.4.6) equals

(4.4.7)
$$C_0C(n)\sum_{k_0}^{\infty} 2^k |S_k| \{-\log |S_k| \}.$$

Notice that

$$(4.4.8) \quad -\log |S_k| = -\log (|S_k| 2^k 2^{-k}) = -\log |S_k| 2^k + k \log 2 \ge k \log 2.$$

By using this last remark and (4.4.5) we see that the series (4.4.7) is divergent and moreover

$$\lim_{h\to 0} (G_n * \bar{g})(h) = \infty.$$

Let C_i be a sequence of positive numbers such that

(4.4.10)
$$\sum_{1}^{\infty} C_{j} = 1.$$

Select a denumerable family of points $\{x_j\}$ in \mathbb{R}^n , such that the set $\{x_j\}$ is dense in \mathbb{R}^n ; let

(4.4.11)
$$g_0(x) = \sum_{i=1}^{n} C_i \bar{g}(x - x_i).$$

Clearly, $g_0 \in L^1(\mathbb{R}^n) \cap L_{\phi}(\mathbb{R}^n)$ and on account of (4.49) $g_n * g_0$ is essentially unbounded on each neighborhood of \mathbb{R}^n . Thus, $G_n * g_0$ fails to possess total differential of any order at almost all the points of \mathbb{R}^n . This concludes the proof of Theorem B.

REFERENCES

- 1. A. P. CALDERÓN, On the differentiability of absolutely continuous functions, Riv. Mat. Univ. Parma, vol. 2 (1951), pp. 203-214.
- 2. ——, Integrales Singulares y sus aplicaciones a ecuaciones diferenciales hiperbolicas, Cursos y Seminarios de Matematicas, vol. 3, Univ. Buenos Aires, 1960.
- A. P. CALDERÓN AND A. ZYGMUND, Algebras of certain singular integrals, Amer. J. Math., vol. 78 (1955), pp. 310-320.
- 4. ——, Local properties of solutions of elliptic partial differential equations, Studia Math., vol. 20 (1961), pp. 171–225.
- C. P. CALDERÓN, E. B. FABES AND N. M. RIVIERE, Maximal smoothing operations, Indiana Univ. Math. J., vol. 23, 10 (1974), pp. 889–898.
- C. P. CALDERÓN AND J. E. LEWIS, Maximal smoothing operations and some Orlicz classes, Studia Math., vol. 58, to appear.

- 7. Ju. G. Resetnjak, Generalized derivatives and differentiability almost everywhere, Soviet Math. Dokl., vol. 7 (1966), pp. 1381-1383.
- 8. J. Serrin, On the differentiability of functions of several variables, Arch. Rational Mech. Anal., vol. 7 (1961), pp. 359-372.
- 9. E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.

University of Illinois at Chicago Circle Chicago, Illinois