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Introduction

This paper is concerned with two problems. In the first place, we show that
if a function f belongs to L.(R") (see definition below), then f(x) possesses
total differential of order n at almost all the points of R" (see definition below).

In the second place, if we restrict our attention to functions arising from
Bessel Potentials of order n, that is

f(x) I" G.(x Y)O(Y) dy
JR

where (. (1 + [x12) -"/2, . is the Fourier Transform of G. and 9 U(R"),
our result in this case is that if 9 LI(R") c L log+ L then, f possesses total
differential of order n at almost all the points of R". This result is the best
possible in the sense that given an Orlicz Class L(R") that contains a function
g for which

, lol log +

then there exists a function go Lz(R") Lq,(R") such that G, go fails to have
total differential of any order at almost all the points of R".

These two results complete the ones in [5], [6], [7]. We are indebted to the
referee for a simplification of the proof of Theorem A.

1. Notation and definitions

As usual will denote the n-tuple of integers (a, 2,..., .), l!
x + 2 + + . and

D’f f, x x’"’x.=",x’ x"" ,, Df f
The Taylor’s expansion of order rn will be written as

f(x) Z oy(=)
(x

+ y,. (m + 1)(x- z)" I (1 t)"Df(z + t(x- z))dt
I=1 =m+ O Jo
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(1 l) Lk(R), kinteger, k > 0, <p < ,denotes the Sobolev space of
functions such that

fe L(R), 0 _< I1 -< k.

Here, the derivatives are taken in the distribution sense and

oll&

(1.2) (R") denotes the Bessel Potential Class of functions f represented
by the convolution

f= G, 9, 9eLP(R"), p ,
(1 + lxl)-/, Ixl x k integer, k 0.

Gk is called the Bessel kernel of order k. See [9 p. 130]. We define IIfllo
IIvll. Notice that if < p < , then L. (See [9, Chapter V].)

(1.3) Given a vector h e R, we define Af(x) f(x + h) f(x) and

A7(x) A(A-7)(x) (A A)

(1.4) Following [5] we shall consider the maximal operator

(k)

ff Sp

wher/is any real valued crio defined on R". Likewise, we are going to
consider also he Hardy-Liflewood maximal operaor

Sup --1 f ]f[ dy M(f)(x).
r>0 rn lx-y[<r

Here, fis measurable and locally integrable.
(1.5) Let f(x) be a real valued measurable function defined on R". We say

that f has total differential or order k at Xo, if there exists a homogeneous
polynomial P(x) of degree k, P(x)" R" R, such that

lim
1

.o lh IA7(x) P(h)l 0.

2. Statement of results

THEOR A. Letfbelong to L(R"), 1 p . Then

lira II.
(2.1)

(i)

Here C, depends on n and on p only.
(ii) Ifp- 1 we have

[E(M* Co,f> 2)1 <---
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(iii) If <__ p < o0, fpossesses total differential of order n at almost all the
points ofRn.

(2.2) THEOREM B. (i) Letf be given by

f=G..g.

Then, ifg LI(R") c LI(R") log+ L(R"),fpossesses total differential oforder n at
almost all the points of R".

(ii) Let Lo(R") be an Orlicz class that contains a function g for which
R,lgllog+lgldy oo. Then there exists a function go L(R") c L(R") such
that G, go fails to have total differential ofany order at almost all the points of
Rn.

3. Proof of Theorem A

We are going to show (i) and (ii) for functions in C(R") since the general
case follows from a standard density argument. C will denote a constant
depending on n, not necessarily the same at each occurrence.

Given x and h consider the points Xo x, x Xo + h,..., x, Xo + nh.
We also consider a variable point z in the ball B {z] Iz Xol < 3nih]}. Let
f C(R") and consider the Taylor expansion off about the point z, namely

(3.4) f(s)= ,
o< Il <n-

Observe that

Df(z) (s z)

+ n (s- z)’[ t"-Df(s + t(z- s))dr.
Jo

Ath"){ Df(Z ) (x z )’} (x) O.
0_< lal_<n-1 !

pn- lz-xl<_3nlhl

Consequently

IA("(x)l < C Y_, pn-1
j=o I1=. o

Integrating over ]z xl < 3nlhl, we have

IA"f(x)l
C nlhl

Observe that

Iz-xl<_3nlhl

D xj + p
lz

D’f xj + p
[z- xjl dp.

Of x + p
Iz --l dz dp.

(D’f x + p dz

<_ Clhln X= IDf(x + pa)l da.
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Hence

We conclude that

IDT"(xs + z)l dz

J= I1 Iz-xl<_12nll
[Df(x + z)l dz.

(3.5) IM*.f(x)l<CM(l<l IDYI) (x).

Parts (i) and (ii) of the thesis follow from (3.5) and the Hardy-Littlewood
maximal theorem.
The differentiability a.e. follows from the maximal inequalities and from the

fact that the property holds for a dense subset C(R"); see argument in [5, p. 892,
Corollary I].

4. Proof of Theorem B

In the first place, we are going to show that iff is given by the Bessel potential

(4. I. 1) f(x) G, O

where g e L1(R") c La(R") log+ L (R") then, f(x) possesses total differential of
order n at almost all the points of R".
We shall prove first an auxiliary lemma.

(4.2) LEMMA. Let K(f) be a singular integral operator, that is

K(f) af + p.v. f K(x y)f(y) dy, where K(x)

is homogeneous of degree -n, has mean value 0 on the unit sphere and is C in
R" {0}. Here, a standsfor afixed constant. Suppose that

f e L (R") L’ (R") log+ L (R").

Thenf admits the decomposition

(4.2.1) f fa + f2
wherefi e Lz(R") andf2 satisfies

(4.2.2) f, lf l dx < f,, lI((f )l ax <

Proof There is no loss of generality if we assume that f > 0. Fix a real
number 2o > 0 and consider the corresponding Calderon-Zygmund decomposi-
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tion forf. (See [9, Chapter 1, p. 17].) There exists a family of non overlapping
cubes {Qk}, k 1, 2,... with edges parallel to coordinate axes, and such that

(4.2.3) 20 < f dx < 2"20.

Let Go 10 Qk; thenf(x) < 2o a.e. in R"- Go. Callmkthe mean value
(1/[Qkl) .o_kfdx, ?k the characteristic function of the cube Qk. qo will denote
the characteristic function of R" Go.
Now define

(4.2.4) f Wo(x)f(x) + mktlk(X).

Consequently

(4.2.5) ./’2 (f(x)- mk)ee,(x).

Clearly,f1 e L2(R") c LI(R"). Let now 5Go be o 5Qk, where 5Qk is the dilation
of Qk 5 times about its center. By using the smoothness of K(x) outside the
origin, its homogeneity and the fact that fz(x) has mean value 0 over Qk, we
have

(4.2.6) f [K[(f-mk)%,]ldx< Co fo IJ’l dx.

Consequently

(4.2.7) fR--SaolK(f2)ldx< Co fR Ifl

Now, using the fact that K(f) is of weak type 1-1 we have

(4.2.8) f IK(f2)l dx <_ C, + C2 f (Ifzl + 1)log+ Ifzl dx
Go ./Rn

where, the constant Cx depends on the measure of 5Go which does not exceed
(5"/2o) $g. fdx and C2 depends on the operator K only. This finishes the proof
of lemma 0.2). Let us now return to the proof of Theorem B and consider

f G, . Consider now the decomposition ofg as + if2 as introduced in
Lemma (4.2). From Theorem 3, p. 185 in [9], it follows that G, 9 L](R") and
consequently, it possesses total differential of order n at almost all the points of
R
Our next step will be to show that G, fiE belongs to L(R"). Observe that

Gn * 2 is an L-function, therefore D#Gn2 is a tempered distribution. Denoting
by the Fourier transform of T we have, for 0 Ifll n,

X#
(4.3.1) (DaG92) [x[lal. (1 + Ix[E) -lal/2" (1 + Ix[E) -"-Ial)/2" 2.

Ixla
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Here x/[x[ I1 is the symbol of a singular integral operation K satisfying the
conditions of Lemma (4.2) (see [-2 Chapter 5], [3]), [x[ll(1 + Ix[2) -11/2 is
the Fourier transform of a finite measure p (see [9 pp. 133-134]) and finally,
(1 + Ix[2) -("-11)/2 is the Fourier transform of G,_I if [[ < n and that of
6 if [fl[ n. Consequently, we have for all e Y (L. Schwartz space of rapidly
decreasing C functions),

(4.3.2) (DaG, * 91, ) (Ra" fia" d,_ lal" 02, if)

Taking anti-Fourier transforms we have

(4.3.3) DG, * g2 * G,-il*K(gz) if Il < n,

(4.3.4) DG, * g2 * Ko(gz) if Il n.

The identities (4.3.3) and (4.3.4) should be interpreted in the distributions sense.
Finally, from lemma (2.4) we have

(4.3.5) [IKa(gz)[[ < for 131 n.

This concludes the proof of the first part of Theorem B.

(4.4) Proof of the secondpart of Theorem B. Let 9 be a function belonging
to L(R") L,(R") such that

(4.4.1) fg Igl dx < oo and (Igl) dx <

Here 4) is a non-negative convex function, such that 4)(0) 0 and (2t) < Cc(t)
> 0. Assume also that

(4.4.2) f gl log + gl dx

Without loss of generality, we may assume

(4.4.3) IE(lg[ > 2)1 4: IE(lgl > 2z)l if 2x 4: 2.
Our next step will be to construct the function 9o of the thesis. Call 91 the
radial non-increasing rearrangement of [g[ and S the set {g > 2}. Calling
W(x) the characteristic function of the sphere S we have

(4.4.4) 2-q(x) < g(x) < ., 2(x).

That shows that 9 -2W(x) L(R") L4,(R").
From (4.42) a summation by parts yields

(4.4.5) k2[S[
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Consider now (G,, 0)(0). Notice that G,(x) > C(n) log Ixl if Ixl 1/2,
C(n) > 0, and in general G,(x) > O.
Consequently,

(4.4.6) (G, )(0) > C(n)[E[ E 2i J0 (-log r)r"-1 dr.
ko

Here I1 is the "area" of the unit sphere in R"; ko has been chosen so that

I&ol/ < 1/2 and 1&12 < for all k > ko. The right hand member of
(4.4.6) equals

(4.4.7) CoC(n) E 2klSkl(--log ISkl}"
ko

Notice that

(4.4.8) --log I&l -log (1&122 ) -logl&12 / k log 2 > k log 2.

By using this last remark and (4.4.5) we see that the series (4.4.7) is divergent
and moreover

(4.4.9) lim (G, .0)(h) oo.
h--+0

Let C be a sequence of positive numbers such that

(4.4.10) Ci 1.

Select a denumerable family of points {xi} in R", such that the set {x} is dense
in R"; let

(4.4.11) 9o(X) ., CO(x x).
j=l

Clearly, go LI(R") c Lee(R") and on account of (4.49) #., 9o is essentially
unbounded on each neighborhood of R". Thus, G. 9o fails to possess total
differential of any order at almost all the points of R". This concludes the
proof of Theorem B.
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