CLASS NUMBER FORMULAE FOR BICUBIC FIELDS

BY
CHARLES J. PARRY

1. Introduction

While the study of biquadratic fields dates back to Dirichlet [4], except for
the paper of Cassels and Guy [3], the bicubic fields seem to have been totally
ignored. By a bicubic field we shall mean an extension of the rational numbers
of degree 9 which is obtained by adjoining the cube roots of two rational
integers. We shall also think of the normal closure of such a field as a bicubic
field.

The bicyclic biquadratic fields have been studied extensively by Kubota
[71, [8], Kuroda [9], Wada [14], and others. In particular it is relatively easy
to determine the units and class numbers for such fields when one knows the
units and class numbers of its quadratic subfields. In this article we achieve
similar results for bicubic fields.

As an application of our results we shall explicitly determine when a bicubic
field (and its normal closure) has class number divisible by 3.

2. Notation and terminology

The following notation will be used throughout this article.

C — 82"'/3.

m, n: cube free positive integers (# 1) which generate distinct pure cubic
fields.

m;(i=1,2,3,4): m; =m, my = n, my (respectively m,) is the cube free
kernel of mn (respectively m?n).

K = Q@R/m,3/n): real bicubic field.

L = Q(, 3/m, 3/n): normal closure of K.

ki = QR/m)) fori = 1,2, 3,4: pure cubic subfield of K.

K; = Q(, 3ym;): normal closure of k; for i = 1, 2, 3, 4.

k = 0.

H, h: class number of L, K respectively.

H,, h;: class number of K, k; respectively.

G = G(L/Q): Galois group of L/Q.

o; (i =1,2,3,4): nontrivial elements of G chosen so that ¢, fixes K; and
03 = 020,, 64 = 0,0,.

7: nontrivial element of G which fixes K.

E: group of units of L.

&: subgroup of E generated by the units of K;, K,, K3, K,.

8,: subgroup of & generated by the units of ky, k,, k3, k4 and their conju-
gates.
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&, (i =1,2,3,4): subgroup of E generated by the units of K, K%, K.

¢: group of units of K.

8o = € N g,: subgroup of & generated by the units of k, k,, ks, k,.

O,(Gi=1,2,3,4): unitgroup of K,.

fi;(i =1,2,3,4): subgroup of U; generated by the units of k; and its
conjugates.

R_: regulator of the field —.

R; (i =1,2,3,4): regulator of the field K.

¥~ character of G induced by the principal character of G(L/—) where —
is a subfield of L. (See Lang [11, p. 236] for definitions.)

Xi = xx, fori=12,3,4

3. Class number relations
The main goal of this section is to prove the following results.
THEOREM 1.  The following class numbers relations hold:

(1) 3°H = (E: $)H,H,H,;H,,

(2) 3%t,Hh? = (E: ¢)h*H,,

(3) 3H; = (0;: a)h},

@) 3%H = (E: 8)(0,;: 0)h* where t, = 1 or 3.

Proof. Equation (3) is proved in Honda [6] and Barrucand and Cohn [2].
Equation (4) is obtained by substituting (3) in (2). We now proceed to prove
equations (1), (2), and give an alternate proof of (4). The following relations
on the induced characters are readily verified:

) xL— % —X2— X3 — Xa + 3t =0,
6) xL— 2%k — X1 + 2%, = 0,
(M) e — 2%k — %+ 2% = 0.

It is an immediate consequence of equation (12) of Kuroda [10] that the
following equations hold:

(®) HR, = HH,H;H,R R,R3R,,
(9) thZRLRkZ‘ = thiRlz(Ri,
(10) HR, = h*RZ.

The theorem now follows from the following results on the regulators.
THeorReM I1.  The following are valid:

an @:0)R; = 3szp

(12) (E: &R, = 3°R,R,R;R,,

(13) (E:&)R.R2 = 3°t,RER, where t, = 3 or 1 according as the fundamental
unit of k; is the cube of a unit of K or not.
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Combining equations (11), (12), and (13) with equations (8), (9), and (10)
completes the proof of Theorem 1. It only remains to prove Theorem II.
Equation (11) is proved in Honda [6] and the proof will not be reproduced here.

Before proving equations (12) and (13) we need to obtain some results on the
units of L.

TueoreM III. Ifi = 1,2, 3, or 4 and x € L then x*® = x,Xx,x; with x, € K,
x, € K%, x3 € K;. Also x> = y,y,y3y, with y; € K;. Moreover each x; and y;
is a unit whenever x is a unit.

Proof.
3 = (xx)(xex7 ) (xx74)
(xxd’lxo'lz)‘t
where y = xx°** € K. But
yl +o1+012

Ty
with y!*oi+ei’ e K, and y°t € K, y°** € K°'. This proves the first result for

i = 1 and replacing g, with o, proves the result for i = 2, 3, and 4. The second
result is clear because

+ 2 2 24,2
x3 xl o1+ay x1+o'z+az x1+a'1crz+a'| a2

(xa-lxvmz)l +01202+01022
The assertion about units is immediate.

CorOLLARY I. E3 c ¢andE3 c ¢, fori=1,2,3,4.

Proof. Immediate by applying Theorem III to the elements of E.

CoROLLARY II. There exist fundamental units e and e’ of the fields K and
K% (j =1, 2,3, 4) such that ele”’ is a root of unity.

Proof. Let ey, e,, e, e, be a system of fundamental units of K and ¢; be a
fundamental unit of k; (i = 1, 2, 3, 4). It follows from Theorem III that

913 = 8‘;“83'28';”81‘4.
Now we may triangulate the matrix 4 = (a;;) to obtain a new set of fundamental
units for K which we shall continue to denote by e,, e,, €3, ,; i.e., we may as-
sume from the beginning that 4 is a triangular matrix. Thus e3 = &i!* and we
may adjust e, so thata,, = 1or 3. Settinge = e, we have (¢°')® = ¢!, Thus
ele’t is a root of unity. The same proof holds for j = 2, 3, 4.

We now return to Theorem II.
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Proof of Theorem II. Let E,, ..., Eg be a system of fundamental units of L
and &,;_;, &; be fundamental units for K; (i = 1, 2, 3, 4). Let the auto-
morphisms

2 2 2.2 2
1’ 045 01, 03, 02, 0103, 0102, 010,

be denoted by «y, ..., ag respectively. Set E;; = |E{/| for 1 < i, j < 8, and
similarly define &;;. Now E} = &} ---¢§® and |(a;)| = (&: £?) by Lemma VIII
of [12]. Thus

38RL = |(2 log Ei:})stl = I(aij)l |2 log 3ij)|
= (&: E3)|(2 log &,)|
= (8: E®)3°R,R,R;R, (computation omitted).
Thus
‘RL = (é: E3)3_3R1R2R3R4 = (E: é)_135R1R2R3R4

or (E: &R, = 3°R,R,R;R,.

To prove (13) (when i = 1) take ¢,, &,, €3, &, as a basis for the units of K
where &; = e in Corollary Il and &5 = &3f, &5 = 3!, &; = &3, and &, &g form
a system of fundamental units for K;, where ¢t = 1 or 3 according as ¢, is in k,
or not. It follows from results of Barrucand and Cohn [2] that such an &g exists.
Thus ey, . . ., & form a basis for the unit group &,. With notation as above,

3%R, = (&;: E?)I(2 log &i)sxsl
= (&: E®)I8R (log &g + 2 log &§?)/log &,.
Thus if ¢ = & then
(E: 8,)R, log ¢, log &, = 18R2 log ¢, (log ¢5 + 2 log €3?) = 9RZR,
so 1/t(E: &,)R,R?, = 9RZR,. Hence
(E: 8)R.R2 = 3*t,RER, fori=1,2,3,4.

We conclude this section by giving necessary and sufficient conditions for the
class numbers H of L and & of K to be divisible by 3.

TueoreM IV. 3| H if and only if 3| h if and only if 3 | h; for some i =
1, 2, 3, or 4. Moreover H and h are relatively prime to 3 precisely when m =
p = 2,5 (mod 9) is prime and n = 3.

Proof. 1t is proved in Honda [6] that 3 | H, if and only if 3 | A;. Thus if
3| H, then 3 | h; and so there exists an abelian unramified extension M of k,
of degree 3. Now K is a nonnormal extension of k, of degree3so M n K = k.
Thus MK is an abelian unramified extension of K of degree 3 and since
(L: K) = 2 it follows MKL = ML is an abelian unramified extension of
degree 3 over L. Thus 3 divides both # and H. Moreover the above argument
shows that 3 | 4 implies 3 | H.
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Conversely if 3| Hand 3 ¥ H; (i = 1, 2, 3, 4) then it follows from Honda
[6, p. 8] that m = p = 2, 5 (mod 9), n = 3, mn = 3p, and mn®> = 9p. Under
these conditions, the number of ambiguous classes, &, ,, of L over K| is given
by

Ak, = 377°H,.

where g* = 1, 2, or 3 (see Hasse [5, p. 98]). Since this number must be an
integer we must have ¢* = 3 and &/ x, = H, is relatively prime to 3. By
decomposing the ideal class group of L into orbits under o, it is easy to see this
implies 3 4 H. This contradicts our hypothesis so 3| H; for at least one
i=1,2,3, or4.

Finally we note that the explicit conditions for H and 4 to be relatively prime
to 3 are now immediate from the result of Honda mentioned above.

The following corollary is now easy to obtain.

COROLLARY I. If H % 0 (mod 3) then (E: &) = 3° and (E: &) = 3%,.

Proof. Immediate from equations (1) and (2) since all class numbers are
relatively prime to 3.

4. Units

In this section we obtain considerable information about the unit groups E
of L and & of K.

TueoREM V. (E:8) = 3%and (E: &) = 3° witha < 6 and b < 4.

Proof. As was noted in Corollary I to Theorem III, £3 < & and E® < &,
Thus we need only prove the inequalities on a and b. If necessary we may
change notation so that some prime of K,; which does not divide (3) will ramify
in L. If the equation E* = ¢ has a solution with E ¢ K, and ¢ € K, then L =
K,(F) and so no prime of K, not dividing (3) can ramify in L. Thus no such E
can exist. Let ¢, ¢€,,..., &g be a basis for & where ¢,, ¢, € K;;...; &, eg € K,
and E,,..., Eg be a basis for E. (Here we are interested in only nontorsion
units so we ignore roots of unity as much as possible). Since E3 < & we have

(81,...,88) = (El""’EB)A

where A4 is an 8 x 8 integral matrix. Now elementary row operations on A
correspond to a change of basis for E, thus we may assume 4 is in upper tri-
angular form with positive diagonal entries which must be either 1 or 3. As
already observed no noncube unit of K; is in £3 so that a;; = a,, = 1. Thus
(E: &) = det (4) = 3* witha < 6.

To prove the second inequality we first show that the equation

(14) E® = we
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has no solution with E€ E, e € &;, ¢ ¢ &} and w € L a root of unity. If (14) has a
solution, then multiply the equation by its complex conjugate to obtain

(15) (EE)® = ¢

which contradicts the assumption ¢ ¢ £3. As in the proof of Theorem II we may
choose a basis ¢y, . . ., &g for the group &, with ¢, &,, &, &, as a fundamental set
of units of K, &5 = &3', g = £3', &; = £3', and g, &g a set of fundamental units
for K;. Using a matrix argument as above we see that a,; = a,, = a3; =
a,, = 1. Thus (E: ) = det (4) = 3* with b < 4.

THEOREM VI. A basis for & can be chosen in one of four possible ways. If
ey, €, €3, e, is a basis for & and ¢, €,, &3, &4 is a basis for &, with ¢, € k; then
the four possibilities are characterized as follows:

(1) (2:2,) =27 and e, = g, €3 = &'¢,, €3 = &'es, €3 = &'e,.
(2 (e:8) =9ande; = ¢, e, = &, €3 = £5'€32¢;, €3 = &4'eb2,.
() (@:2) =3ande, = g, e, = &,, €3 = &3, €, = £7'e%2e%¢,.
4) (:8)) =lande, = &,e;, = &3, €3 = €3, €4 = &4.

Here a;, b;, c; are nonnegative integers less than 3 for each i.

Finally we shall give examples to show that the first three “kinds” of unit
structure actually exist in nature. We expect the fourth kind exists also, but no
such example exists with all of m,, m,, m;, m, less than 100.

Proof. 1t follows from Theorem III that 3 < &, s0 (2: 8,) = 3*witha < 4.
Now we have (g, &,, &3, &) = (ey, €, €3, e,)A where A is an integral 4 x 4
matrix. As in the previous theorem we may assume that A4 is an upper triangular
matrix with 1’s and 3’s on the diagonal. If (¢: 8,) = 3* thena,, = 3and ¢ =
e;. Thus K = k,(e,) and so only prime divisors of (3) in k, can ramify in K.
But we may renumber the fields k,, k,, k3, k4 so this is not true. Thus a < 3.

We may also assume the entrees of 4 satisfy —a; < a;; < 0 for j # i, If
(8:8,) = 27 then €% is in &, which implies a,3 = 0 (mod 3), so a,3 = 0.
Similarly a,, = a3, = 0. Thus Kind 1 conditions are satisfied. If (é:2,) = 9
then we may assume a,; = a,, = 1. As above a3, = 0, so Kind 2 conditions
are fulfilled. If (: ;) = 3 then we may take a,; = a,, = a33 = 1 and Kind 3
obviously holds. Finally if (8: ;) = 1 then Kind 4 is clearly satisfied.

We shall later give examples to show that the first three kinds of fields actually
exist.

In [2] Barrucand and Cohn give a classification of pure cubic fields k, and K.
They classify these fields into four “types” in Theorem 15.6 and conjecture that
Type 1I fields do not exist. We shall first give a simple proof of this conjecture
and then proceed to relate the “‘kind” of K (see Theorem VI above) to the type
of the subfields k,, k,, k3, k,. We establish the following notation for the
remainder of this section.
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g;: fundamental unit of &, (i = 1, 2, 3, 4).

B;: unique primitive integer of K; such that ¢; = B,;/Bf where ¢ = o, for
i#lando = o, fori = 1.

N(B) = Nx./k(Bz)-

A;: unique primitive integer of K such that B; = A,;/A{ (only defined when
N(@B) = D).

For the moment we shall only be concerned with the fields k; and K, so we
shall write ¢, B, 4 instead of ¢, By, 4,. Now k, is of Type II if and only if
N(B) = 1and A4 = eB*(3/m)' where e is a unit of K, e Ky, and t = 0, 1,
or 2 (see [2, p. 235]).

THeEOREM VII. Type I fields do not exist.

Proof. Suppose K, is a Type II field; then

A4 _ N(4)
@y (4

Taking complex conjugates and multiplying the two equations together we
obtain

¢ = B/B? =

N(AZ) _ N(AA)
( Ao‘Zo)S ')’3

g% = g =

where y € k;. Thus
_ e _ o
N(44)  N(4A4)
with @ = ¢y € k;. Now by Type II hypothesis A4 = ef*(3/m)* so

o3 o?

3
o
& = = =
N(ep*3Ym'y  N(B*3Ym') (N BY m‘)
since N(e) = 1 by Type II hypothesis. Thus 3/ € K, which is impossible since
¢ is the fundamental unit of k£, and (X;: k,) = 2.

In view of this result the classification given in [2] can be considerably
simplified. We restate their Theorem 15.6 as:

THEOREM VIII. Cubic fields k, and K, can be classified into three types
depending only on B.

Typel. NB) = 1.
Type III. N(B) is not a unit.
Type IV. N(B) = (* witha = 1 or 2.

We now proceed to investigate the relationship between the “kind” of K and
the “type” of the subfields k,, k,, k3, k,. The main reason for carrying out this
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investigation is to obtain more explicit information concerning the structure of
the unit group @ of K. We shall continue to use the notation established earlier
in this section.

THEOREM IX. The field k, is of Type I if and only if ¢ = o>[r with & € k, and
re Z. Here r must divide 9m?.

Proof. 1If k, is of Type I then as in the proof of Theorem VII, ¢ = a3/N(4A4)
with « € k;. Now r = N(AA) = Ngjp(d) € @ so e = «’/r witha e ky, r € Q.
Conversely if e = a®/r = B/B° then

r 2 r2B
B° = —B d B = ———
0(3 an (a1+a)3
so that
3
o+a2 r
(16) N(B) = Bl+ * = (gx_z—-'”‘)—sBs'

Thus B3/N(B) = &/e" (where ¢’ = ¢°*)is a cube in K;. Hence k, is not of Type
III. Now equation (16) shows N(B) is a cube in K| so it can not be a cube root
of unity different from 1, i.e., k, is not of Type IV. Thus k, is of Type I.

Finally note that K,(3/¢) = K,(3/r) so only prime divisors of three in K, can
ramify in the extension K,(3/r)/K;. Thus r divides 9m?.

COROLLARY. The fundamental unit ¢, of k, can be a cube of a unit of K only
if ky is of Type L

Proof. If €* = g, with e € K then K = k,(3/n) = k,(e) = ky(3/¢;). Thus
g, = a’n with a € k; so k, is of Type I by Theorem IX.

In the following results we shall let ¢} = ¢ and &/ = & fori =1, 2, 3, 4
where as usual ¢ = o, fori = land o = o, fori # 1.

THeEOREM X. Let k, be a Type III field. Then:

(@) € = (%, /¢, has no solution e in L.

(b) € = ((e,e,/e e3) has a solution e in L if and only if k, is a Type III and
{°N(B,) = N(B,).

(c() l)e3 = C("(:l)ezle’ls’z) has a solution e in L if and only if k, is of Type III and
{*N(By) = N(B,).

(d) e® = (e e.83/€7€5¢5) has a solution e in L if and only if

@ = {"N(By)N(B,)
N(B,)

has a solution o € k. Thus either k, or kj is of Type IlI.

Proof.(a) Ife® = (%, /e = (*(N(B,)/(B)®) then L = K,(e) = K,(VI°N(By))
so that {*N(B,) = o’n or a’n? with « € K,. There is little difference in the two
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cases so we shall only consider the former. Now Ny (B;) = N(B)N(B,) =
(a@)*n®. But it follows from Theorem 15.4 of [2] that N, ,o(B,) is the cube of a
rational integer. Thus 3/n is in K, contrary to assumption.

(b) If N(B,) = {°N(B,) then

eie; (B’ N(By)

e3 —_ Ca@ — CaN(Bl) 22_ 3
€185 N(B;) \B{

(BY e>3 — Ca N(Bl) € k.

Conversely if

then

B, N(B)

If B = (Bj/By)e¢k then k(f) = K; for some i =1, 2, 3, or 4. Thus
(*(N(B))/N(B,)) = o®m; or «®>m} for some « € k. For convenience assume the
former. Taking complex conjugates and multiplying the equations together we
obtain
_ NBINGB)

N(B,)N(B,)

But N(B,)N(B,) and N(B,)N(B,) are cubes of rational integers so m; is a cube
in Q contrary to assumption. Thus

(@®)’m}

ﬁ=§zeek and C“M
B, N(B,)

But both N(B,) and N(B,) are cube free integers of k so 8°> = 1 and {*N(B,) =
N(B,). Thus k, must also be of Type III.
() We need only observe that N(B,) = N(B,) and

e /8' = 5 = BZ — (B—Z.)a
7 \es)  \NB))  NBY

so that the proof of part (b) applies.
(d) Suppose {*(N(B;)N(B,)/N(B;)) = &> for some « € k. Then

¢ €18283 _ sa N(B,)N(B,) Bg ( aB; )3

£h2he] (BIB}® N(B;) \BB:

= po.

Conversely if

e = (o £1€283 _ sa N(B1)N(Bz)( B )3
£1€2€3 N(Bs) \BiB;
then
BIBS \' _ pu N(BON(B) _
By N(B3)
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As in part (b),
o = BiB; eck.
3
Since N(B,) is a cube free integer of k£ which is not a unit and
N(B,)N(B,)
N(B3)

it is impossible for N(B,) and N(Bs) to both be units of k. Thus either &, or k5
(possibly both) are of Type III.

a3=ca

COROLLARY 1. Let & be any unit of K,. If €® = {%,¢ has a solution e in L
then k, is of Type I.

Proof. If & = (%;¢ then (e°?)® = {%e so that (e/e”?)® = ¢,/¢;. Theorem
X(a) tells us that k, is not of Type III. However
N(B,)
BP?

(efe™)® = &yfe; =
so that N(B,) is a cube in L and hence k, is not of Type IV either.
Before stating more results we need to clean up a few minor details.
Remark A. 1f ¢ = B/B° then & = &¢’'B/(ee’ B)°.

Proof. Since ¢ = B/B° we have ¢ = B/B° = B/(B)” and ¢&" = & =
(B)”’/(B)°. Thus eg” = B/(B)°. Therefore

— ,
ee'B e’ 2

= — = g

(e¢’B)® &¢”

The significance of this remark is that if we wish to replace ¢; with & in any
part of Theorem X then we should replace N(B;) with N(¢,g;B;) = N(B)).

DeriNITION.  If o and B are in k we shall say « and S are equivalent and write
o ~ Bifa = Bora = B. Moreover we extend this definition multiplicatively.

Remark B. 1f any ¢; is replaced by &7 in Theorem X the “only if” statements
in parts (b), (), (d) hold with equality of norms replaced by equivalence.

COROLLARY II. The equation e* = e%5 with 1 < a, b <2 can have a
solution e in K only when k, and k, are of Type I.

Proof. The proof of Corollary I tells us N(B,) ~ 1 ~ N(B,). Thus both
k, and k, are of Type 1.

COROLLARY II1.  If the field k, is of Type III then e® = efeleS with1 < a, b,
¢ < 2 has no solution e in K unless N(B;) ~ N(B,) ~ N(B;). Thus all of
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ky, ky, k5 are of Type III and my, m,, m; must have a common prime divisor
p = 1 (mod 3).

Proof. From the above remarks it is clear that we may takea = b = ¢ = 1.
If &3 = g,e,¢, then (€°?)® = &}ese; and (e°2)® = &)¢,¢} so that both

€8, £,83

- and
&18; €183

are cubes of units on L. By Theorem X(b), N(B;) ~ N(B,) ~ N(B;) so k,

and k; are also of Type III. Moreover Theorem 15.4 of [2] shows m,, m,, m,

have a common prime divisor p = 1 (mod 3).

CoROLLARY IV. If k, is Type III and € = &felesed has a solution e in K
where 1 < a, b, ¢, d < 2 then at least three of the fields k,, k,, k3, k, are of
Type IIl. If k, is not of Type III then N(B,) ~ (' witht = Qor 1 and N(B,) ~
{'N(B,) ~ 'N(B;). In the latter case m,, m,, ms must have a common prime
divisor p = 1 (mod 3).

Proof. As usual we may assume e = £,,€;8, SO

() = gjesehey, (%) = elezesel, and (€7)° = elehese,.
Thus all of
£18384 €168, €183
N A4 ﬂ/’ and N
AR A €182€3

are cubes in L. Theorem X tells us that

N(BIN(By) NBIN(By) 4 NBIN(By)
N(B, ' N(By N(B3)

are equal to cubes in k and that at least two of the fields k,, k3, k, are of Type
IIL. If k4 is not of Type 111 then N(B,) = (' with0 < ¢t < 2. Thus {'N(B,) =
a3N(B,) and N(BI)N (B;) = {'a3 with «,, a, € k. Since N(B,) and N(B,) are
cube free we have o} = 1 and {'N(B,) = N(B,). Also N(B,)N(B3)N(B3) =

{'a3N (B3) But N(B;)N(Bs) is the cube of a rational integer and N(B,), N(B;)

are cube free integers of k so that a3 = N(B,;)N(B;) and N(B,) = Z;‘N(Bs)
As usual we apply Theorem 15.4 of [2] to prove the last statement.

THEOREM X1. Assume all fields k., k,, ks, and k, are of Type I or IV and
that k, is of Type IV. Then:

(@) If e = efeles with 1 < a, b, ¢ < 2 has a solution e in K then all of
ky, k3, k3 are Type IV,
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(b) Ife® = efeleSel with1 < a, b, ¢, d < 2 then exactly three of ki, kj, ks,
k4 are of Type IV .

Proof. (a) As before it suffices to take a = b = ¢ = 1. As in the proof of
Theorem X and its corollaries, e3> = g,e,e; implies that N(B,)/N(B,) and
N(B,)N(B;) are cubes in L. But these are cube roots of unity and hence are 1.
Since N(B,) is not 1 neither are N(B,) nor N(B;).

(b) Ife® = g,e,¢5¢, then as in the proof of Corollary IV to Theorem X,

N(BINB) ., NBIN(B)
N(B.) N(B;)

are cubes in L and hence are 1. If N(B,) = (* fori = 1, 2, 3, 4 then
a, + a3 + 2a, = 0(mod 3) and a; + a, + 2a; = 0 (mod 3).

Now a; # 0 (mod 3). First suppose a, # 0 (mod 3). If a; = a, (mod 3) then
a; = 2a, and a, = 0 (mod 3). If a; = 2a, then a; = 0 and a, = a, (mod 3).
Ifa, = 0(mod 3) thena; = a, and a, = 2a, (mod 3). Thus in any case exactly
one of the fields k4, k,, k3, k, is of Type I and the remaining three are of Type
1v.

We are now in a position to state the relationship between the “kind” of K
and the “type” of its subfields &, k5, k3, k4.

TueoreM XII. (@) If K is Kind 1 then either all the fields k,, k,, k3 and k,
are Type I or exactly three, say ks, ks, k4, are of Type I and ki = Q(3/3).

(b) If K is Kind 2 then the fields k,, k,, ks, k, satisfy one of the following
conditions :

(i) at least two are Type I;
(ii) at least three are Type IV and the remaining (if any) is Type I;
(iii) exactly three are Type III and one is Type I.

(¢) IfKis Kind 3 then k,, k,, k3, k, must satisfy at least one of the following
conditions:

(i) at least one is Type I;
(i) at least three are of the same type.

(d) If K is Kind 4 then there is no apparent restriction on the type of ki, kj,
ks, kg

Proof. (a) It is immediate from Theorem VI and Corollaries I and II to
Theorem X that at least three of the fields k,, k,, k3, k4 are of Type I and if
k, is not of Type I then the equations ¢} = ¢; (i = 2, 3, 4) all have solutions e,
in K. Thus K = ky(e)) for i = 2, 3, 4 and so only prime divisors of three in k;
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can ramify in the extension K/k; (i = 2, 3,4). If p # 3 is a prime divisor of m,
then p does not ramify in one of the field k; with j = 2, 3, or 4. Thus the prime
divisors of p in k; must ramify in K contrary to the observation above. Thus
m, has no prime divisors p # 3 and so k; = Q(i/ 3).

(b), (¢), and (d). Follow from analyzing the various possible cases of
Theorem VI using the corollaries to Theorem X and Theorem XI.

Finally we conclude this section by considering some examples.

THEOREM XIII. Let p, g = 2 or 5 (mod 9) be primes.

@ Ifmy =3 my=p, my=3p, my =9 then K is of Kind 1 and ¢,
382, 383, 3 &4 are a system of fundamental units for K.

(b) Let my = p, m, = q, my = pq, m, = p>q and if necessary interchange
ms and my, so that my = +1 (mod 9). Then K is Kind | and we may choose a

JSundamental system of the form g, 3/ E, i/s;,, and 3/ .9{’_84 where a = 1 or 2
andb = 0, 1, or 2.

Proof. (a) Here k, is of Type IV and k,, k3, k, are of Type I (see [2, p. 236]).
By Theorem IX, ¢; = o}/r, for i = 2, 3, 4 where «; € k and r; € Z divides 9p>.
Thus i/ri € K and hence i/a, e Kfori = 2,3, 4. It is clear from Theorem VI
that g, 3/¢,, 3/¢3, and 3/¢, form a fundamental system of units for K.

(b) Here all four cubic subfields are of Type I so Theorem IX tells us ¢; =
a}fr; for i = 1, 2, 3, 4. Moreover r; # m;, m?, and r; is a “principal divisor”
of the discriminant of k; for each i = 1, 2, 3, 4. It follows that 3 is a principal
divisor of k, and k,, that p and g are principal divisors in k; and that either
3, p, 3p, or 3q is a principal divisor in k,. Thus Y efes, /€3, Y ele, are in K
wherea = 1 or 2 and b = 0, 1, or 2. Theorem VI again applies to complete
the proof.

COROLLARY. In part (a) above, (E: &) = 3° and (E: ¢,) = 32.
Proof. Immediate from Theorem I since all class numbers all relatively
prime to 3.
5. A class number formula for K
THEOREM X1V. The class number h of K satisfies the relation
3Bh = (2: ) hyhshy,.

Proof. We may always number our fields k; (i = 1, 2, 3, 4) so that ¢, = 1
in Theorem I. In fact if one of the fields k; is of Type III then we may take this
tobek;. Lets = 0, 1, 2, 3, or 4 be the number of fields k; of Type I1l. Letting
t = 0 or 1 according as k, is of Type III or not, we have (&,: &) = 3'(2: &,)*
and (8: &) = 3*7=.
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Thus
(E:8) = 3Fs7%@2: 60)X(E: &,).

Theorem I tell us that 33H = 3%E: ¢,)4* and
3°H = (E: &)H,H,H,H,
= 30+574: 00)X(E: 8,)3 7 H2H2HE2
= 3'74@: e)H(E: &)h2hih3h2.
Thus 34 = (&: 8,)2h3h3h3h2 yielding the desired result.

CoroLLARY L. If h is not divisible by three then K is of Kind 1 and so
(8: 85) = 27.

Proof. Theorem IV tells us that all of 4,, h,, h5, and A, are relatively prime
to three. Thus Theorem XIV gives (¢: é;) = 27 and Theorem VI tell us K is
Kind 1.

CoROLLARY 1II.  If all but one of the class numbers hy, h,, hy, h, are relatively
prime to three then K is of Kind 1.

Proof. Say h, is not prime to three. If 3% || A, then it is clear from Theorem
X1V that 3**! y h. However it is easy to show by class field theory that /4, | A,
i.e., simply take the Hilbert class field k, of k, and note that k,K is an abelian
unramified extension of K of degree #;. Thus 3% || 4 and so (&: &) = 27 and
K is of Kind 1.

Combining our last theorem with Lemma 5 of [3] gives an interesting result.
First some additional notation is required.

T: ring of integers of K.

S: smallest subring of K containing 1, 3/m,, 3/m,, 3/ms, 3/my.

s; = 3orl: according as m; = +1 (mod 9) or not, fori = 1, 2, 3, 4.

COROLLARY IIL.  For any field K, (T: S) = 335,5,535,.
Proof. Lemma 5 of [3] says

(T: S)h = (é: éo)hlh2h3h43152S3S4 = 33/131S2S3S4

by Theorem XIV. This proves the corollary.

We conclude this article with a short table of class numbers for some bicubic
fields. In the table the types of the subfields k, k,, k5, k, are listed in consecu-
tive order. The class number and a system of fundamental units is given for

each field K. The class numbers of the fields k, k,, k3, k, were obtained from
the table of Selmer [13].
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