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1. Introduction

While the study of biquadratic fields dates back to Dirichlet [4], except for
the paper of Cassels and Guy [3], the bicubic fields seem to have been totally
ignored. By a bicubic field we shall mean an extension of the rational numbers
of degree 9 which is obtained by adjoining the cube roots of two rational
integers. We shall also think of the normal closure of such a field as a bicubic
field.
The bicyclic biquadratic fields have been studied extensively by Kubota

[7], [8], Kuroda [9], Wada [14], and others. In particular it is relatively easy
to determine the units and class numbers for such fields when one knows the
units and class numbers of its quadratic subfields. In this article we achieve
similar results for bicubic fields.
As an application of our results we shall explicitly determine when a bicubic

field (and its normal closure) has class number divisible by 3.

2. Notation and terminology

The following notation will be used throughout this article.
e2i]3.

m, n" cube free positive integers (# 1) which generate distinct pure cubic
fields.
m (i 1, 2, 3, 4)" m m, m2 n, m3 (respectively m,) is the cube free

kernel of mn (respectively m2n).
K Q(/m, /n)" real bieubic field.
L Q(, /m, /n)" normal closure of K.
k Q(/m) for 1, 2, 3, 4: pure cubic subfield of K.
K Q(, /m)" normal closure of k for 1, 2, 3, 4.
k Q(0.
H, h" class number of L, K respectively.
H, h" class number of K, k respectively.
G G(L/Q)" Galois group of L/Q.
a (i 1, 2, 3, 4)" nontrivial elements of G chosen so that a fixes K and

0-3 0-120-2 0"4 0"10"2,
z" nontrivial element of G which fixes K.
]- group of units of L.
." subgroup of/ generated by the units of K, K2, Ka, K4.
0" subgroup of generated by the units of k, k2, ka, k4 and their conju-

gates.
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s (i 1, 2, 3, 4): subgroup of/ generated by the units of K, K
," group of units of K.
0 c o: subgroup of generated by the units of kl, k2, k3, k4.
0s(i= 1,2,3,4): unit group of
fis (i 1, 2, 3, 4): subgroup of 0s generated by the units of ks and its

conjugates.
R_ regulator of the field
Rs (i 1, 2, 3, 4): regulator of the field

X-: character of G induced by the principal character of G(L/-) where
is a subfield of L. (See Lang [11, p. 236] for definitions.)

gr, for 1, 2, 3, 4.

3. Class number relations

The main goal of this section is to prove the following results.

THEOREM I. The following class numbers relations hoM:

()
(2)
(3)
(4)

35H (/: )H,H2H3H,,
32tsHh (. s)h2Hi,
3Hs (Oz"
33tiH (/: s)(O: O)hz where ts or 3.

Proof. Equation (3) is proved in Honda [6] and Barrucand and Cohn [2].
Equation (4) is obtained by substituting (3) in (2). We now proceed to prove
equations (1), (2), and give an alternate proof of (4). The following relations
on the induced characters are readily verified"

(s)
(6)
(7)

It is an immediate consequence of equation (12) of Kuroda [10 that the
following equations hold"

(8)
(9)
(o)

HRt. H1H2H3H4R1R2RaR4,
2 2 h2HiR2rR,Hhi RcRk,

HRs. h2R.
The theorem now follows from the following results on the regulators.

THEOREM II. The following are valid:

(11) (0," fs)Rs 3R,
(12) (/: )Rt, 35RIR2R3R4,
(13) (" i)R.Rk2, 32tsRRs where t 3 or according as thefundamental

unit ofks is the cube ofa unit ofK or not.
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Combining equations (11), (12), and (13) with equations (8), (9), and (10)
completes the proof of Theorem I. It only remains to prove Theorem II.
Equation (11) is proved in Honda [-6] and the proof will not be reproduced here.

Before proving equations (12) and (13) we need to obtain some results on the
units of L.

THEOREM III. If 1, 2, 3, or 4 and x L then x3
x1x2x3 with xl K,

x2 K’, x3 Ks. Also x3
YlY2Y3Y4 with yj Kj. Moreover each xs and y

is a unit whenever x is a unit.

x3

XXr X12)

where y xx’=" K1=. But

yl +o. +o.t

with yX +,, +,2 Kx and y" K, y’" K’’. This proves the first result for
and replacing a with as proves the result for 2, 3, and 4. The second

result is clear because

X1 +.t +o’t + 0’2 -b 0"22X -t- 10’2 -[- 0’120’22

The assertion about units is immediate.

COROLLARY I. /3 c and3 c sfor 1, 2, 3, 4.

Proof. Immediate by applying Theorem III to the elements of/.

COROLLARY II. There exist fundamental units e and e of the fields K and
K (j 1, 2, 3, 4) such that e/e is a root of unity.

Proof. Let e, e2, e3, e4 be a system of fundamental units of K and es be a
fundamental unit of ks (i 1, 2, 3, 4). It follows from Theorem III that

02 03 04

Now we may triangulate the matrix A (aj) to obtain a new set offundamental
units for K which we shall continue to denote by e, e2, ca, e4; i.e., we may as-
sume from the beginning that A is a triangular matrix. Thus ea e’ and we
may adjust el so that a or 3. Setting e e we have (e’)a ]. Thus
e/e is a root of unity. The same proof holds for j 2, 3, 4.
We now return to Theorem II.
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Proofof Theorem II. Let Es,..., Es be a system of fundamental units of L
and ez-s, ez be fundamental units for Ks (i 1, 2, 3, 4). Let the auto-
morphisms

1 O’2 O’2 O’10"2

be denoted by s,..., s respectively. Set Ej [E[ for < i, j < 8, and
similarly define ej. Now E e,l.., e,8 and I(ag)l ("/3) by Lemma VIII
of [12]. Thus

Thus

38R. 1(2 log E.)8 81 I(a)l 1(2 log

("/3)1(2 log

(," ,3)35RxR2RaR, (computation omitted).

Rz. (" 3)3-3RIR2RaR4 (" )-S35RsR2R3R,t
or (/" )Rr 35RsR2RaR,t.
To prove (13) (when 1) take es, e2, 3, e, as a basis for the units of K

where es e in Corollary II and e5 e2, e6 e1, e7 e, and e, ea form
a system of fundamental units for Ks, where 1 or 3 according as
or not. It follows from results of Barrucand and Cohn I-2] that such an es exists.
Thus el,..., es form a basis for the unit group s. With notation as above,

38Rr. (s"/ 3)1(2 log ej)8 8[

(s" g 3)18Rr2 (log e8 + 2 log e2)/log

Thus if eo e then

(/" s)Rz log ex log eo 18Rr2 log eo (log es + 2 log e) 9RR
so 1/t(g" s)R.R2k 9RRs. Hence

(_" i)RLR 32tR2rRt for 1, 2, 3, 4.

We conclude this section by giving necessary and sufficient conditions for the
class numbers H of L and h of K to be divisible by 3.

THEOREM IV. 3 H if and only if 3 h if and only if 3 h for some
1, 2, 3, or 4. Moreover H and h are relatively prime to 3 precisely when rn
p 2, 5 (mod 9) is prime and n 3.

Proof. It is proved in Honda [61 that 3 H if and only if 3 h. Thus if
3 Hs then 3 h and so there exists an abelian unramified extension M of kt
of degree 3. Now Kis a nonnormal extension of ks of degree 3 so M c K ks.
Thus MK is an abelian unramified extension of K of degree 3 and since
(L." K)= 2 it follows MKL ML is an abelian unramified extension of
degree 3 over L. Thus 3 divides both h and H. Moreover the above argument
shows that 3 h implies 3 H.
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Conversely if 3 H and 3 H (i 1, 2, 3, 4) then it follows from Honda
16, p. 8-1 that m p 2, 5 (mod 9), n 3, mn 3p, and mn2 9p. Under
these conditions, the number of ambiguous classes, zCz/r, of L over K is given
by

dL/Kt 3q*- 3H1"
where q* 1, 2, or 3 (see Hasse i-5, p. 98]). Since this number must be an
integer we must have q* 3 and /r H is relatively prime to 3. By
decomposing the ideal class group of L into orbits under tr it is easy to see this
implies 3 H. This contradicts our hypothesis so 31H for at least one
i= 1,2,3, or4.

Finally we note that the explicit conditions for H and h to be relatively prime
to 3 are now immediate from the result of Honda mentioned above.
The following corollary is now easy to obtain.

COROLLARY I. /fH 0 (mod 3) then (/: ) 35 and (g: ) 32ti.
Proof. Immediate from equations (1) and (2) since all class numbers are

relatively prime to 3.

4. Units

In this section we obtain considerable information about the unit groups
of L and of K.

THEOREM V. (/: ) 3 and (/: ) 3b with a < 6 and b < 4.

Proof. As was noted in Corollary I to Theorem III,/a c and/3 c .
Thus we need only prove the inequalities on a and b. If necessary we may
change notation so that some prime of K1 which does not divide (3) will ramify
in L. If the equation E3 e has a solution with E K1 and e K then L
K(E) and so no prime ofK not dividing (3) can ramify in L. Thus no such E
can exist. Let e,/2, /8 be a basis for where el, e2 K ;... 87, es K4
and E,..., Es be a basis for/. (Here we are interested in only nontorsion
units so we ignore roots of unity as much as possible). Since/ a c we have

(,’’’, e8) (El,’", Es)A

where A is an 8 x 8 integral matrix. Now elementary row operations on A
correspond to a change of basis for/, thus we may assume A is in upper tri-
angular form with positive diagonal entries which must be either or 3. As
already observed no noncube unit of K1 is in/ 3 SO that a a22 1. Thus
(/: ) det (A) 3 with a _< 6.
To prove the second inequality we first show that the equation

(14) E3
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has no solution with E /, e , e and o L aroot of unity. If (14) has a
solution, then multiply the equation by its complex conjugate to obtain

(15) (E)3
8
2

which contradicts the assumption 8 3. As in the proof of Theorem II we may
choose a basis 81, 88 for the group 1 with 81, 82, 8a, 8, as a fundamental set
of units of K, 85 81, 86 81, 87 8, and 81, 88 a set of fundamental units
for K1. Using a matrix argument as above we see that all a22 aaa
a4, 1. Thus (/" i) det (A) 3b with b < 4.

THEOREM VI. A basis for can be chosen in one offour possible ways. If
el, e2, e3, e, is a basis for and 81, 82, 83, e, is a basis for 0 with 8 ks then
thefour possibilities are characterized as follows"

(1) (" o) 27 and el 81, ez3 8]82, e] 8b1’83, e] el’e,.
(2) (" o) 9 and e , ez , e] o,oo

l 2 3 e btob2o

oa oa2oa3o(3) (" o) 3 and e , e2 , e , e .
(4) (: o) and e , ee ee, e , e .

Here a, b, c are nonneyative inteyers less than 3 for each i.

Finally we shall give examples to show that the first three "kinds" of unit
structure actually exist in nature. We expect the fourth kind exists also, but no
such example exists with all of ml,/7/2, m3, m, less than 100.

Proof. It follows from Theorem III that a c o so (" o) 3a with a < 4.
Now we have (81, 82, 83, 8,) (el, e2, e3, e,)A where A is an integral 4 x 4
matrix. As in the previous theorem we may assume that .4 is an upper triangular
matrix with l’s and 3’s on the diagonal. If (" o) 3" then al 3 and 81
e3. Thus K kl(el) and so only prime divisors of (3) in kl can ramify in K.
But we may renumber the fields kl, k2, k3, k, so this is not true. Thus a < 3.
We may also assume the entrees of .4 satisfy -a < aj < 0 for j # i. If

(" o) 27 then e"3 is in o which implies a23 0 (mod 3), so a23 0.
Similarly a2, a3, 0. Thus Kind conditions are satisfied. If (" o) 9
then we may assume al a22 1. As above aa, 0, so Kind 2 conditions
are fulfilled. If (" o) 3 then we may take al a22 a33 and Kind 3
obviously holds. Finally if (" o) then Kind 4 is clearly satisfied.
We shall later give examples to show that the first three kinds of fields actually

exist.
In [2] Barrucand and Cohn give a classification of pure cubic fields kl and

They classify these fields into four "types" in Theorem 15.6 and conjecture that
Type II fields do not exist. We shall first give a simple proof of this conjecture
and then proceed to relate the "kind" of K (see Theorem VI above) to the type
of the subfields kl, k2, k3, k,. We establish the following notation for the
remainder of this section.
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8,s: fundamental unit of k (i 1, 2, 3, 4).
Bs" unique primitive integer of Ks such that 8s Bs/B where a a for

1 and a a2 for 1.
N(Bs) Nr,/k(Bs).
As" unique primitive integer of Ks such that Bs As/A (only defined when

N(Bs) 1).

For the moment we shall only be concerned with the fields kl and K so we
shall write 8,, B, A instead of 81, B, A1. Now k is of Type II if and only if
N(B) and A efl3(/m) where e is a unit of K:, fl e K, and 0, 1,
or 2 (see [-2, p. 235]).

THEOREM VII. Type Hfields do not exist.

Proof. Suppose K is a Type II field; then

AA<’" N(A)
8, BIB (A=)2 (a<’)3"

Taking complex conjugates and multiplying the two equations together we
obtain

N(Ai) N(Ai)
(a,,,,)3 r3

where V kx. Thus

(8,,})3 3
N(AI) N(A$)

with a 8,V ka. Now by Type II hypothesis Ag efl3(/m) so

03 3
N(efl3 /m’) N (fl3

since N(e) 1 by Type II hypothesis. Thus 3/8, K1 which is impossible since
8 is the fundamental unit of k and (KI" kx) 2.

In view of this result the classification given in [2] can be considerably
simplified. We restate their Theorem !5.6 as"

THEOREM VIII. Cubic fields kt and KI can be classified into three types
depending only on B.

Type I. N(B) 1.

Type III. N(B) is not a unit.

Type IV. N(B) a with a l or 2.

We now proceed to investigate the relationship between the "kind" of K and
the "type" of the subfields kx, k2, k3, k4. The main reason for carrying out this
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investigation is to obtain more explicit information concerning the structure of
the unit group of K. We shall continue to use the notation established earlier
in this section.

THEOREM IX. Thefield kt is of Type I ifand only ire a/r with e kt and
r Z. Here r must divide 9m2.

Proof. If k is of Type I then as in the proof of Theorem VII, e a/N(Ag)
with kx. Now r N(Ag) Nr/o.(A) Q so e a/r with kt, r Q.

Conversely if e a/r BIB then

BO r 2 r2B-gB and B (at+)aB
so that

3

(16) N(B) Bt +.+.2 r B3
(+)3

Thus Ba/N(B) s/s" (where e" e02) is a cube in Kt. Hence kt is not of Type
III. Now equation (16) shows N(B) is a cube in Kt so it can not be a cube root
of unity different from 1, i.e., k is not of Type IV. Thus k is of Type I.

Finally note that Kt(/e) Kt(/r) so only prime divisors of three in Kt can
ramify in the extension Kt(/r)/Kt. Thus r divides 9m2.

COROLLARY. Thefundamental unit et ofkt can be a cube ofa unit ofK only
if k is of Type I.

Proofi If e3 e with e e K then K kt(/n) kt(e) kt(/et). Thus
et 3n with e kt so kt is of Type I by Theorem IX.

In the following results we shall let e’i e and e7 e’2 for 1, 2, 3, 4
where as usual tr tr2 for and tr tr for : 1.

THEOREM X. Let kt be a Type IIIfield. Then:

(a) e3 %t/e’i has no solution e in L.
(b) e3 (a(ete2/e’e’) has a solution e in L ifand only ifkz is a Type III and

aN(B,) N(B2).
(c) e ["(e,eule]e) has a solution e in L ifand only ifk is of Type III and

aN(Bt) N(B2).
(d) e3 (a(ele2e3/elee) has a solution e in L ifand only if

"U(n)N(n2)
N(B3)

has a solution e k. Thus either k or k3 is of Type I11.

Proof (a) If e %a/e] (N(Bx)/(B)) then L Kt(e) Kx(/"N(Bt))
so that aN(Bt) a3n or a3nz with a e K. There is little difference in the two
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cases so we shall only consider the former. Now Nr,lo.(B1) N(Bi)N(B)
(a)3nZ. But it follows from Theorem 15.4 of I-2] that Nr,/o.(B1) is the cube of a
rational integer. Thus /n is in Kt contrary to assumption.

(b) If N(Bt) aN(B2) then

Conversely if

then

ea__ (a 818.._..2 a N(B1)(n23

3 aN(B(B’; e
\B2 N(B2)

If fl (B’[/B2)eCk then k(fl)= Ki for some i= 1, 2, 3, or 4. Thus
a(N(Bi)/N(B2)) a3mi or a3m for some a e k. For convenience assume the
former. Taking complex conjugates and multiplying the equations together we
obtain

(a)m N(B,)N(B,)
N(B2)N(B2)

But N(Bt)N(Bi) and N(Bz)N(B2) are cubes of rational integers so mi is a cube
in Q contrary to assumption. Thus

fl B..._eek and N(Bt) f13.
B2 N(B2)

But both N(Bt) and N(B2) are cube free integers of k so fla 1 and (N(Bi)
N(B2). Thus k2 must also be of Type III.

(c) We need only observe that N(B2) N(B2) and

(
\N---)) NOB2)

so that the proof of part (b) applies.
(d) Suppose "(N(Bi)N(Bz)IN(Ba)) e for some e e k. Then

a "1"2"3 a N(B,)N(B2) B ( aB3 33
e,%% (BB2) N(B3) kBTB]

Conversely if

then

e a l11283,, a N(B,)N(B2) CB3
e.’ e.’2e N(B) \B’B.]

(B’(B’ e)3

a N(B!)N(B2) e k.
Ba N(B3)
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As in part (b),
BIB2 e e k
Ba

Since N(B1) is a cube free integer of k which is not a unit and

t3 " N(B)N(B2)
N(B3)

it is impossible for N(B2) and N(B3) to both be units of k. Thus either k or k3
(possibly both) are of Type III.

COROLLARY I. Let be any unit of K. If e3 %1 has a solution e in L
then k is of Type I.

Proof. If e3 ("ele then (e)3 (ae’e so that (e/e")3 el/e. Theorem
X(a) tells us that kl is not of Type III. However

N(BI)(e/e")3 el/i
(?)3

so that N(B) is a cube in L and hence kl is not of Type IV either.
Before stating more results we need to clean up a few minor details.

Remark A. If e BIB then 82 88’J/(88’)tr.

Proof. Since 8 BIB we have 8 B/ff B/(B)2 and 8"= 8=
()2/(). Thus 88"= /(B). Therefore

88’B 88’
88" 82.

(88’B) e’8"

The significance of this remark is that if we wish to replace 8 with 8
2 in any

part of Theorem X then we should replace N(B) with "-N(88B) N(B).

DEFINmON. If and fl are in k we shall say and fl are equivalent and write
fl if fl or ft. Moreover we extend this definition multiplicatively.

Remark B. If any 8 is replaced by 8 in Theorem X the "only if" statements
in parts (b), (c), (d) hold with equality of norms replaced by equivalence.

COROLLARY II. The equation ea 182ab with 1 _< a, b _< 2 can have a
solution e in K only when kl and k2 are of Type I.

Proof. The proof of Corollary I tells us N(B1) 1 N(B2). Thus both
k and k2 are of Type I.

COROLLARY III. If thefield kl is of Type III then e3 r-;lr-;2t3^a^b^c with 1 < a, b,
c < 2 has no solution e in K unless N(B1) N(B2) N(B3). Thus all of
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kl, ks, ks are of Type III and ml, ma, ms must have a common prime divisor
p l(mod3).

Proof From the above remarks it is clear that we may take a b c 1.
If es e152e3 then (e’3)s 8155a and (e’2)3 51525 so that both

515_2 and 515___2
lg2 5153

are cubes of units on L. By Theorem X(b), N(B1) N(B2) N(Bs) so k2

and ks are also of Type III. Moreover Theorem 15.4 of 12] shows m, m2, ma
have a common prime divisor p (mod 3).

COROLLARY IV. If k is Type III and es ^a_b^c^d has a solution e in Ke; 2t;3t;4
where < a, b, c, d < 2 then at least three of the fields kl, k2, ks, k4 are of
Type III. Ilk4 is not of Type III then N(B4) t with 0 or 1 and N(BI)
(tN(B2) (tN(Ba). In the latter case m, m2, ma must have a common prime
divisor p (mod 3).

Proof. As usual we may assume e3 51825354 so

ea2)3 e;te;2e;se;4, (e’3)3 and (e’4)3515234 ele32e;3e;4.

Thus all of

818354 515254 and 818253
lg3g4 515294 819293

are cubes in L. Theorem X tells us that

N(B,)N(Bs) N(B1)N(B) and N(B)N(B2)
N(B4) N(B2) N(B3)

are equal to cubes in k and that at least two of the fields k2, ks, k4 are of Type
III. If k4 is not of Type III then N(B4) with 0 < < 2. Thus tN(B)
3N(B2) and N(B)N(Bs) toa2 with 1, 2 e k. Since N(B) and N(B2) are
cube free we have 3 1 and (N(BI) N(B2). Also N(B)N(Ba)N(Bs)
t32N(Bs). But N(Bs)N(Bs) is the cube of a rational integer and N(B), N(Bs)
are cube free integers of k so that 2

a N(Bs)N(Bs) and N(B) ’N(Ba).
As usual we apply Theorem 15.4 of [-2] to prove the last statement.

THEOREM XI. Assume all fields k, k2, ks, and k4 are of Type I or IV and
that k is of Type IV. Then"

(a) /f e3 ^a^a..c with 1 < a, b, c < 2 has a solution e in K then all of1523

k:, k2, k3 are Type IV.
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a_b^c_a with < a, b, c, d < 2 then exactly three of kt, k2, ka,(b) Ifea
etg2ga,

are of Type IV.

Proof (a) As before it suffices to take a b c 1. As in the proof of
Theorem X and its corollaries, e3 ete2ea implies that N(Bt)/N(B2) and
N(Bt)N(Ba) are cubes in L. But these are cube roots of unity and hence are 1.
Since N(Bt) is not 1 neither are N(B2) nor N(Ba).

(b) If ea ele2eae, then as in the proof of Corollary IV to Theorem X,

N(B,)N(B) and N(B,)N(B2)
N(B4) N(B3)

are cubes in L and hence are 1. If N(B3 (’ for 1, 2, 3, 4 then

at + aa + 2a, 0 (mod 3) and at + a2 + 2aa 0 (mod 3).

Now at - 0 (mod 3). First suppose a2 0 (mod 3). If at a2 (mod 3) then
aa 2at and a4 = 0 (mod 3). If at 2a2 then aa -= 0 and a, at (mod 3).
Ifa2 0 (mod 3) then aa -= at and a, 2at (mod 3). Thus in any case exactly
one of the fields kt, k2, k3, k, is of Type I and the remaining three are of Type
IV.
We are now in a position to state the relationship between the "kind" of K

and the "type" of its subfields kt, k2, ka, k,.

THEOREM XII. (a) If K is Kind 1 then either all the fields kt, k2, ka and k,
are Type I or exactly three, say k2, ka, k4, are of Type I and kt Q(3).

(b) If K is Kind 2 then the fields kt, k2, ka, k, satisfy one of the following
conditions"

(i)
(ii)
(iii)

at least two are Type I;
at least three are Type IV and the remaining (ifany) is Type I;
exactly three are Type III and one is Type I.

(c) lfK is Kind 3 then kt, k2, ka, k, must satisfy at least one of thefollowing
conditions"

(i) at least one is Type I;
(ii) at least three are of the same type.

(d) IfK is Kind 4 then there is no apparent restriction on the type of kt, k2,
ka, k.

Proof. (a) It is immediate from Theorem VI and Corollaries I and II to
Theorem X that at least three of the fields kt, k2, ka, k, are of Type I and if
k is not of Type I then the equations ea (i 2, 3, 4) all have solutions e
in K. Thus K k(e3 for 2, 3, 4 and so only prime divisors of three in ks
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can ramify in the extension K/ks (i 2, 3, 4). Ifp 3 is a prime divisor of ml
then p does not ramify in one of the field kj with j 2, 3, or 4. Thus the prime
divisors ofp in kj must ramify in K contrary to the observation above. Thus
ml has no prime divisors p :/: 3 and so k Q((//3).

(b), (c), and (d). Follow from analyzing the various possible cases of
Theorem VI using the corollaries to Theorem X and Theorem XI.

Finally we conclude this section by considering some examples.

THEOREM XIII. Let p, q =_ 2 or 5 (mod 9) be primes.

(a) /f ml 3, m2 --p, ma 3p, m4 9p then K is of Kind and e,
/e2, /ea, /e4 are a system offundamental units for K.

(b) Let m p, m2 q, m3 pq, m4 p2q and if necessary interchange
ma and m4 so that ma + (mod 9). Then K is Kind and we may choose a

fundamental system of the form el, /ee2, /ea, and /-ee4 where a 1 or 2
and b O, 1, or2.

Proof (a) Here k is ofType IV and k2, ka, k4 are ofType I (see [,2, p. 236]).
By Theorem IX, es /rs for 2, 3, 4 where k and r Z divides 9p2.
Thus /rs K and hence /e K for 2, 3, 4. It is clear from Theorem VI
that el, (/e2, e3, and /e4 form a fundamental system of units for K.

(b) Here all four cubic subfields are of Type I so Theorem IX tells us e
/rs for 1, 2, 3, 4. Moreover rs q: ms, m2, and rs is a "principal divisor"
of the discriminant of ks for each 1, 2, 3, 4. It follows that 3 is a principal
divisor of k and k2, that p and q are principal divisors in ka and that either

3, p, 3p, or 3q is a principal divisor in k4. Thus ee2, ea, (//e’e4 are in K
where a 1 or 2 and b 0, 1, or 2. Theorem VI again applies to complete
the proof.

COROLLARY. J[gl part (a)above, (" ) 35 and (/" 1) 32.

Proof. Immediate from Theorem I since all class numbers all relatively
prime to 3.

5. A class number formula for K

THEOREM XIV. The class number h .ofK satisfies the relation

3ah (" o)hth2hah4.

Proof. We may always number our fields ks (i 1, 2, 3, 4) so that t
in Theorem I. In fact if one of the fields ks is of Type III then we may take this
to be kl. Let s 0, 1, 2, 3, or 4 be the number of fields ks of Type III. Letting
t 0 or according as k is of Type III or not, we have (: o) 3t(: 0)2

and (: o) 34-s.
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Thus
(" ) 3’+s-4(" ’o)2(/" 1).

Theorem I tell us that 33H 3t( l)h2 and

35H (if,. :)HIHzH3H4

3,+s-4(,. o)Z(/. l)3-Shhzhzh4Zz

3,-,(,. ,o)Z(. p,)h2hzzhzh4.z z

Thus 36hz (,._ z ,_2 ,_z ,.z ,_z
eo) nn2n3rl4 yielding the desired result.

COROLLARY I.
(’" o) 27.

If h is not divisible by three then K is of Kind and so

Proof. Theorem IV tells us that all of h, h2, h3, and h4 are relatively prime
to three. Thus Theorem XIV gives (," ’o) 27 and Theorem VI tell us K is
Kind 1.

COROLLARY II. If all but one of the class numbers h x, h2, h3, h4 are relatively
prime to three then K is ofKind I.

Proof. Say h is not prime to three. If 3 h then it is clear from Theorem
XIV that 3a+ ,!/h. However it is easy to show by class field theory that h h,
i.e., simply take the Hilbert class field/1 of kx and note that/K is an abelian
unramified extension of K of degree h. Thus 3" h and so (: o) 27 and
K is of Kind 1.
Combining our last theorem with Lemma 5 of [-3] gives an interesting result.

First some additional notation is required.
T" ring of integers of K.
S" smallest subring of K containing 1, (//m, ]/m2, /m3, //m4.

s 3or1: according asrn-- +1 (mod9) ornot, fori 1,2,3,4.

COROLLARY III. For anyfieM K, (T" S) 33s1s2s3s4.
Proof Lemma 5 of [3] says

(T: S)h (," o)hlh2hah4SlS2SaS4 33hsls2s3s4
by Theorem XIV. This proves the corollary.
We conclude this article with a short table of class numbers for some bicubic

fields. In the table the types of the subfields kl, k2, ka, k4 are listed in consecu-
tive order. The class number and a system of fundamental units is given for
each field K. The class numbers of the fields ka, k2, ka, k, were obtained from
the table of Selmer [13].
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