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Introduction

Consider a homomorphism F: X H--, ,4, where H and ,4 are locally
compact second countable groups and X x H is the virtual subgroup of H
defined by applying Mackey’s construction to a measure class preserving ergodic
action of H on a finite analytic measure space X, m. We obtain (under some
additional restrictions) an exact cohomology sequence (analogous to the first
few terms of the Lyndon sequence for group extensions) involving X x H,
W x A the range closure of F, and the measure groupoid (X x A) x H
defined by the skew product action (with respect to F) of H on X x A, which
plays the role of the kernel of F.
Then we are able to represent similar (in the sense of Ramsay) virtual sub-

groups of H and ,4, respectively, as contractions of a virtual subgroup of
H x ,4, obtained by the action of H x ,4 on X x ,4 that arises in Mackey’s
range closure construction. This representation leads easily to our main
result--the similarity class of the Radon-Nikodym homomorphism for a virtual
subgroup is a similarity invariant.

In Section we introduce a method for dealing with inessential contractions
(i.c.’s). Theorem 1.9 provides a method for dealing with homomorphisms as
defined by Ramsay in [10], where the composition of homomorphisms is not
necessarily defined, even though the composition of the similarity classes of
the homomorphisms is defined. Also Theorem 1.9 leads easily to the first few
terms of a Lyndon sequence for virtual groups in (2.4) in the special case where
H and ,4 are countable and the coefficient group B is an abelian analytic group.
The part of the Lyndon sequence that is needed in greater generality is estab-
lished in Theorems 2.5 and 2.6.

In Sections 3 and 4 we are concerned with similar virtual subgroupS, of H
and ,4, respectively. 3.1 and 3.2 establish that consideration of a general half
of a similarity fl: X x H --, V x A can always be reduced to consideration of
the range closure homomorphism : X x H--, W x ,4 defined by a homo-
morphism F: X x H ‘4. Then the results of the previous sections on such
an F are applicable. Theorem 3.3 and in more detail Lemma 3.4 provide the
means for establishing the applications in Section 4.
The similarity invariance of the similarity class of the Radon-Nikodym

homomorphism [p] obtained in Theorem 4.4 allows us to classify (proper)
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virtual subgroups as type III (where [p] - [1]) or as type II (where [p] [1]),
so that similar virtual subgroups are of the same type. Thus we have generalized
Proposition 6.1(b) of [4]. In the case where H is unimodular and X x H is
type II we can further classify X x H as type II1 (where there is a finite in-
variant measure in the measure class of m) or type IIo (where there is an infinite
invariant measure in the measure class of m), but this further classification is
not preserved under similarity.
The final application in Section 4 (4.5-4.8) relates the relations of similarity

and isomorphism for virtual subgroups of countable groups, through the
concept of G-equivalence of Borel sets.

Section

In dealing with virtual groups, it is frequently necessary to clip away sets of
measure zero from a measure space. This can cause technical difficulties when
we are considering a group action on the measure space. To handle such
technicalities in a systematic manner we introduce the concept of a partial
action of a group.

1.0 DEHNITION. A partial action of H on an analytic Borel space Xo with
a finite measure, mo, consists of a Borel subset Eo (Xo x H)o of Xo x H
and a Borel map a: Eo - Xo (to simplify the notation we will write h(x) or
hx for a(x, h-1)) such that:

1.1. For every x Xo the x-slice of Eo (= Eolx) is conull in H (Haar
measure.

1.2(a) If (x, h-1) and (hx, j-1) Eo then (x, (jh) -1) Eo and j(hx)
(jh)(x).

(b) If (x, h-1) Eo then (hx, h) Eo and h-l(hx) x.
(c) (x, 1) Eo and (x) x for all x Xo.
Conditions 1.2(a), (b), and (c) give Eo (Xo x H)o a groupoid structure--

we define the composition by (x, k)o (y, j) (x, kj) iff y k-ix and the
inverse by (x, k)-1 (k-ix, k-1). The map sending x Xo to (x, 1) identifies
Xo with the set of units of (Xo x H)o.
We will use standard results on Borel spaces and measures as in Chapter I

of [2].
From here on we will assume that the partial action of H on Xo preserves

the measure class of too, i.e., for every h e H and Borel set B
_

Xo we have
too(B) 0 iff mo(hB) 0, where

hB {x: (x, h) e (Xo x H)o and h-ix e B}.

1.3 Remarks. (a) If B {y} then hB {hy} if there exists (x, h)e
(Xo x H)o such that h- ix y; otherwise hB O.

(b) If we extend the map a to a Borel map a: Xo x H- Xo (arbitrary
extension) and Xo is standard then a satisfies the conditions of Lemma 3.1 in
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[10, p. 267] and consequently the partial action of H on Xo defines a Boolean
action of H on M(Xo, too), the measure algebra of Borel subsets of Xo mod
null sets.

(c) If Eo Xo x H then condition 1.1 is satisfied and the conditions
1.2(a), (b), (c) on a establish that the map sending (x, h) into a(x, h-) defines
a Borel action of H on Xo.

Suppose that X is a conull Borel subset of Xo. We can form the contraction
of the groupoid

(Xo x H)o to X {(x, h) (Xo x H)o: x and h-ix X} (X x H) E
with the inherited groupoid structure. Then E with the restriction of a to
a" (X x H)i - X defines a partial action of H on Xi, except possibly for the
condition 1.1.

1.4 LEMMA. If X1 is a conull Borel subset of Xo then there is a conull Borel
subset X2 of X such that E2 with the restriction of a to a" (X2 x H)2 --* X2
defines a partial action ofH on X2. X2 can be chosen to be a standard Borel space.

Proof We construct a sequence { U) of Borel subsets of Xo by choosing
U1 to be a conull Borel subset of X1 which is standard as a Borel space (see
[2, Chapter I, Section 2-1) and

U+l {x U" the x-slice (U x H)slx is conull in H}.

Assuming U to be a conull Borel subset of Xo, we find (Us x H)i to be a
conull Borel subset of Xo x H since, for every h H, the h-slice (U x H)slh

U c hU is conull in Xo. Then Us+ is conull in Xo by the Fubini Theorem.
By induction on all the U’s are conull Borel subsets of Xo. Then X2 o= U
satisfies the required conditions (cf. top of page 275, [10]).
We can relate partial actions of H to the universal H-space introduced by

Mackey in [7]. Let X L21oc(H) be the set of locally square integrable functions
on H mod equality a.e. The seminorms lit, [If lit2 r [f[2, K a compact
subset of H, define a polonaise topology on X and we define the Borel action
of H on X by h(f)(k) f(h-

1.5 THEOREM. There is a one to one Borel map $’Xo X such that if
(x, h-l) (Xo x H)o then htp(x) tp(hx).

Proof. The proof is similar to that of Lemma 2 of [7-1 and Lemma 3.2 in
[10-1. Assume Xo - [0, 1-1, and for xXo we define $(x) X by
(h) h(x) if (x, h-1) e (Xo x H)o and 0 otherwise. The proof that is
Borel is as described in 1-10-]. Suppose $(x) $(y). Then (h) y(h) on a
conull Borel subset Ho of H. Then we have (x, h- l) and (y, h- l) (Xo x H)o
and h(x) h(y) for all h (Eo[x) -1 c (Eoly) -1 c Ho, which is conull in H
by Condition 1.1. Hence x y by Condition 1.2.
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The Borel action of H on X preserves the measure class of m ff.(mo).
We can identify Xo with the conull analytic subset ff(Xo) of X (via ). With
this identification, we obtain the following:

1.6 THEOREM. (X, h) (Xo x H)o iff x and h-Xx Xo.

Proof The "only if" part is obvious. The proof of the "if" part is related
to that of Lemma 5.2 in [10]. We assume x and h-ix Xo. Then by Condition
1.1 the sets

{kH:(x, hk)(Xo x H)o} and {kH:(h-lx, k)(Xo x H)o}

are conull, so there exists an element k in their intersection. Then the com-
position (x, hk) (h-ix, k)- is defined and equals (x, h) (Xo x H)o.
From here on we will assume that the action of H on X is ergodic, i.e., the

measure algebra M(X, m)n of H invariant elements in M(X, m) is trivial. We
form the virtual group (or ergodic groupoid) X x H, by Mackey’s construc-
tion, as in I-8] or 1-10] (see these references for the standard terminology regard-
ing virtual groups). Then the inessential contraction (i.c.) ofX x H to a conull
Borel subset Xi of Xo is the same (algebraically) as (Xi H). Accordingly,
we will regard (X x H) as a virtual group, with the Borel and measure class
structure it inherits as a subset of X x H, m x Haar measure on H. We use
the definitions of strict homomorphism, homomorphism, strict similarity, and
similarity as given in [10, 6.1-6.14-1.

Consider a homomorphism F: X H A. Then there is a conull Borel
subset Xo of X such that the restriction F: (Xo x H)o A is a strict homo-
morphism, i.e., F is a Borel map and F(x, h)F(h-x,j)= F(x, hj) for x,
h-x, and (hj)-ix Xo, h and j H. By Lemma 1.4 we can choose Xo so that
(Xo H)o also satisfies Condition 1.1. Then F defines a partial action of
G H x A on Yo Xo x A (m x m’, m’ is a finite measure equivalent
to Haar measure on A) as follows:

(1.7) ((Xo x A) x G)o {((x, a), (h, b)): h-x and x Xo},
(h, b)(x, a) (hx, baF(x, h-1)). (cf. [8])

By Theorem 1.5 we can regard the partial action of G on Y0 as the restriction
to Yo of a Borel action of G on an analytic measure space Y, which preserves
the measure class of a finite measure m" on Y. The restriction of this action to
H (= H x { 1)) is called the skew product action of H, since it generalizes the
skew product transformation of Anzai in [1], as discussed in [8].

1.8 DEFINITIONS. The ergodic action of A on the analytic finite measure
space W, u induced by the Boolean action of A on M(Y)n (using Mackey’s
point realization technique, of. [10]) is called the range closure action for F,
and the resulting virtual subgroup W x A of A is called the range closure of
F, as in [8]. The homomorphism u: X x H W x A given below is called
the range closure homomorphism for F.
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The inclusion M(Y)n--, M(Y) defines (by Theorem 3.6 in !-10-1) an A
equivariant, H invariant Borel map p" Y’ W, where Y’ is a G invariant
conull analytic subset of Y. We select an analytic conull subset X1 of Xo so
that Y1 X x A G Y’ and X has the same properties as required of Xo.
Then

: (X x H)t W x A; (x, h)= (p(x, 1), F(x, h))

is a strict homomorphism. Note that

F(x, h)p(h-Ix, 1) p(h- x, F(x, h)) p(h- (x, 1)) p(x, 1).

1.9 THEOREM. Given the homomorphism F: X x H A, there are homo-
morphisms p, , and such that:

(a) dp and p establish a similarity of Y x G and X x H.
(b) The diagram

X x H.---W x A

commutes rood similarity, where is the range closure homomorphism for F.
(c) (4),m =_ m (where d: Y X is the restriction o.f d to units).
(d) (/).m" u.

Proof (a) The similarity homomorphisms are given by

b: (Yo x G)o (Xo x H)o; b((x, a), (h, b)) (x, h)
and

: (Xo x H)o (Yo x G)o; if(x, h) ((x, 1), (h, F(x, h)).

It is easy to verify that b is a strict homomorphism, ff is a Borel map and direct
calculations show that it is algebraically a homomorphism. In general, ff is
not a homomorphism in the sense introduced by Mackey in [8], since the
restriction to units fro: Xo Yo; (x) (x, 1) has too "thin" an image.
However, o does satisfy Ramsay’s condition in [10, Definition 6.1], since a
(Yo x G)o saturated subset B of Yo satisfies the equation B B’ x A where
B’ (ff)-(B) is an (Xo x H)o saturated subset of Xo. Hence B’ is null if
B is null, so ff is a strict homomorphism. off is the identity map and
is strictly similar to the identity map via the Borel map 0: Yo (Yo x G)o;
O(x, a) ((x, a), (1, a)), i.e.,

O(x, a) (ff b)((x, a), (h, b)) ((x, a), (h, b))o O(h-x, b-laF(x, h)).

(b) The map : (Y x G) W x A; V(y, (h, b))= (p(y), b) is a strict
homomorphism (note o p on Yt), and

p(x, h) (p(x, 1), F(x, h)) (x, h) for all (x, h) e (X x H)l.

(c) and (d) are easily established for the given b and .
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1.10 Remarks. (a) The similarity of Y x G and X x H is also evident
from [10, Theorem 6.17-1, since the contraction of (Yo x G)o to Xo x {1}
(with the appropriate measure class) is isomorphic as an ergodic groupoid to
(Xo x H)0.

(b) Replacing X x H, a by Y x G, by use of 1.9(a) has two advantages.
First, use of the homomorphism avoids the technical problems that arise when
a homomorphism has too "thin" an image (cf. 1.9(d)). Second, there is an
algebraic simplification, so that roughly speaking the formation of the skew
product action of H is similar to the restriction from Y x G to Y x H, i.e.,
the diagram

y x H--- y x G

y x H --.--, X x H

commutes mod similarity, where I(y, h) (y, (h, 1)) and pF((x, a), h) (x, h).

Section 2

Suppose that B is a Borel group and is a measure groupoid, i.e., "satisfies all the conditions for an ergodic groupoid except for the ergodic con-
dition (cf. [11]). Then cohomology groups H"(-; B), n > 0, can be defined as
in [12] if B is abelian, and we define Hi(#’; B) {homomorphismsf: B}
mod similarity, if B is nonabelian. For convenience, we will write H"(-)
instead of H’(-; B). The definitions and results of [12], before 3.51, apply
to the above setting. In particular, if Se is an inessential contraction of - then
the inclusion map 6e --, - induces an isomorphism of the cohomology groups
if B is abelian (see [12, Theorem 3.5]), and induces a bijective map in the case
where B is nonabelian. Accordingly, we will identify H(-) and H(6e) in
the following discussion.
To obtain Theorem 3.51 of [12] (that H(-; B) B) it is necessary that
be ergodic and that the Borel structure of B be countably generated, so that

we can regard B as a subset of [0, 1] (Definition 2.0 of [12] should be corrected
to include this requirement on the coefficient group). From here on we will
assume that B is analytic.

Consider the homomorphism F: X x H --, A, as in Section 1. The homo-
morphism b: (Yo x G)o--* (Xo x H)o, from 1.9(a), satisfies the conditions
for a strict homomorphism in [12, Definition 3.3-1, by 1.9(c). Hence b induces
group homomorphisms

"*: H"(X x H)--. H"(Y x G)

if B is abelian, and induces a map

b*: HI(X x H) H(Y x G)

if B is nonabelian. Unfortunately, (from 1.9(a)) does not in general satisfy
the conditions for Definition 3.3 in [12]. However, using some ideas from
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[10], in particular the proof of Lemma 6.6 in [10], we obtain the following
result.

2.1 THEOREM. b"*; H"(X x H) H"(Y x G) is an isomorphism for n > 0
in the case where .B is abelian and b*: HI(X x H) HI(Y x G) is bijective
for the case where B is nonabelian.

Proof Omitted--for the case n 1, see [10, 6.12-6.13].

Let / /(Y; B) be the set of all Borel maps f: Y B mod equality a.e,
with the group structure defined by pointwise composition. G acts on g (as a
group ofautomorphisms) by gf(y) f(g- ay). We observe thatp*: /(W; B)
/,n, the H invariant elements in ///, where p" Y’ W is defined in 1.8, is an
A equivariant isomorphism.
We will assume that H and A are countable groups and that B is abelian in

obtaining the exact sequences 2.2, 2.3, and 2.4. Then g is a G module. The
group cohomology for a G module is as defined in [9]. We regard H as a
normal subgroup of G H x A and identify A with the quotient group
(H x A)/H. Then the first five terms of the Lyndon spectral sequence (see [5],
or [9, p. 354]), appear in our setting as the exact sequence

0 Ha(A dn) 2-* HI(G d) ’" Ha(H; d)a

(2.2)
H2(A; ,/H) H2(G;

where p2(h, b) b and i(h) (h, 1).
For H and A countable, we can transform the above sequence to a co-

homology sequence for virtual groups, using the law of exponents as in [13-1,
to obtain the following exact sequence"

0 H’(W x A) * a( G)
1,

a(H Y x --H Y x H)a
(2.3)

H2(W x A) * 2(----’H Yx G)

where is as in 1.9(b), and I(y, h) (y, (h, 1)).
Now we replace H(Y x G) by H(X x H) via the isomorphisms b* of

Theorem 2.1 to obtain a "skew product exact sequence"

0---’ HI(w x A) o__, Ha(X x H) Ha(Y x H)a
(2.4)

H2(W x A) --* H2(X x H).

relating the cohomology for X x H, Y x H (the kernel of F), and W x A
(the range closure of F). The result looks like the first few terms of a "Lyndon
sequence for virtual groups."
Now we return to the general setting--H and A are not necessarily discrete

and B is not necessarily abelian. To interpret the first two terms of the sequence
(2.4) in our general setting we will prove the following theorem.
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2.5 THEOREM. The map * H (W A) - H1(X H) is injective.

Proof. In view of Theorem 1.9(b) it suffices to prove that

7*: HI(W x A)- HI(Y x G)

is injective. Recall the notation from 1.8-1.9. Suppose IS] and IT] e
H(W x A) and ?.(rs])= ?*([T]). Then To 7 and S 7 are defined, by
1.9(d), and are similar homomorphisms. Then there is a conull Borel subset
Y2 of Y1 and a Borel map L: Y2 - B such that

T ?(y, h, b) L(y)So V(y, h, b)L((h, b)-ly)-1

for all (y, h, b) such that y and (h, b)-ly e Y2. Setting b 1, we obtain
L(y) L(h-ly) for y and h-ly e Y2. Then there is a conull Borel subset Wo
of W such that S and T are strict on the i.c. to Wo and such that there is a Borel
map E: Wo B such that E(p(y)) L(y). Then

T(p(y), b) E(p(y))S(p(y), b)L(b- Ip(y))-

for all (p(y), b) such that p(y) and b-p(y) Wo. Hence S is similar to T.
This result can be applied as described in the introduction to [14] to show

that the 1-cohomology group for a certain virtual group (with B the circle
group) is very "large," i.e., it contains every compact abelian second countable
group.
To interpret the second and third terms of the sequence (2.4) in the general

setting, we define the kernel of

p" HI(X x H)-, Ht(Y x H)

to be (p)- 1([-1]) where [-1] is the similarity class of 1" Y x H --, B; l(y, h) 1.
We obtain half of the expected exactness result below.

2.6 THEOREM. The kernel ofp contains *(Hi(I x A)).

Proof In view of" Theorem 1.9(b) it suffices to prove that the kernel of
I*:Hi(Y x G)--, HI(y x H) contains y*(H(W x A)). SupposeM: Y x G -,

B is a homomorphism in the similarity class y*(FT]) for some homomorphism
T: W x A--, B. Toy is defined, by 1.9(d), so Mis similar to ToT. Then
MoleI*([M]) and MoIis similar to Toyo/, which is on Y x H.
Hence rM] is in the kernel of I*.
We use this result in the next section. Further generalization of (2.4) is

possible, but is not needed for this paper.

Section 3

A homomorphism fl:X x H --, V x A is called half of a similarity if the
similarity class I-fl] is invertible in the category of similarity classes of homo-
morphisms between virtual subgroups (cf. rio, Definition 6.14]). Given a half
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of a similarity fl, we define F: X x H A by F(x, h) the second com-
ponent of fl(x, h). Then F is a homomorphism and we can form the range
closure homomorphism " X H - 14’ A for F, as in 1.8.

3.1 THEOREM. The Borel map g: Xo x A - V; g(x, a) aft(x, 1) induces
an A equivariant Boolean isomorphism g* M(V) - M(W).

Proof See the proof of Theorem 7.11 in [10, pp. 299-303].

3.2 Remark. By Theorem 3.5 of [10] the map g* is induced by an A
equivariant Borel map " W’ - V’, where W’ and V’ are A equivariant
conull analytic subsets of W and V respectively. Then defines an isomorphism
(mod i.c.’s) g’: W A - V A; 9’(w, b) (9(w), b) for w and b-lw W’,
and the diagram

X x H ---, V x A

commutes mod similarity.
Consequently, the case where fl: X H- V A is half of a similarity

can be examined in the setting of Sections and 2, replacing fl by : X H -W A, where is the range closure homomorphism for a homomorphism
F:X H A.

3.3 THEOREM. Given a homomorphism F: X H- A, the following con-
ditions on t: X x H- W A, the range closure homomorphism for F, are
equivalent.

(1) is half of a similarity.
(2) * H (W x A H) - H (X x H; H) is surjeetive.
(3) There is a homomorphism T: W x A H such that the action of

A x H G’ on U (defined by T as in 1.7) is isomorphic (mod 0) to the action

of G on Y (identifying G’ and G by interchange of components) and the diagram

YxG UxG’
, l, o ],o (as in 1.9(b))
X x H--- W x A

commutes rood similarity.

Proof. (1) implies that the * of (2) is bijective, by [10, 6.12, 6.13]. (3)
establishes the chain of similarities X x H Y G - U x G’ W ,4,
and that is half of a similarity. The difficult part of the proof is to show that
(2) implies (3). Assuming * is surjective, we see by Theorem 2.6 thatp equals
[1] on HI(X x H). Since the homomorphism f: Y x H- H; f(y, h) h,
satisfies If] p([f"]), f’(x, h) h, we havef similar to 1. Hence there is a
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Borel subset Y2 of Y1 and a Borel map 0:Y2 - H such that h O(y)O(h-ly)-1
for y and h- ly e Y2. The measure class of O,(m") on H is H invariant and hence
by [6] is equivalent to Haar measure on H. Then 0": M(H) M(Y);
O*(E) 0- I(E), is an H equivariant r-homomorphism. Then by [10, Theorem
3.6], there is an H invariant conull analytic subset Y" of Y’ (see 1.8) and an
H equivariant Borel map 0: Y" H. We note that W" 0-1(1) is a Borel
transversal for the action of H on Y", and the action of H is strictly free ([11-]
shows that this is equivalent to (1)). We define P: Y"- W" by P(y)=
O(y)-ly. p is a Borel map and induces the measure P,m" u" on W". Then
the mapping I: W" W; I(w)= p(w) defines an A equivariant Boolean
isomorphism I*: M(W) - M(W"). Using Theorem 3.5 of [10] we can find
conull subsets W and W2 of W" and W respectively, which are standard as
Borel spaces, such that I(W) W2 and I: W1 W2 is bijective, and so that
(W2 x A)2 satisfies Condition 1.1. Then P-i(W)= Ya is an H invariant
analytic conull subset of Y" and the diagram

commutes.
We define the strict homomorphism T: (W x A) H by

T(p(y), b) O(y)- O(b- Xy)

(independent of y for fixed p(y)). Then T defines a partial action of A x H on

U2 W2 x H as in Section 1, with the appropriate notation changes"

(b, h)(w, k) (bw, hkT(w, b-)).
Then Theorem 1.9 establishes that (U2 x (A x H))2 is similar to (W2 x A)2
(via homomorphisms o and o corresponding to the and ff of Theorem 1.9).
We also obtain a partial action of H x A on U2, where (h, b) acts as (b, h).
Then (3) is obtained as a result of the following lemma.

3.4 LEMMA. The map p x O: Ya U2
(a) is bijective,
(b) commutes with the partial actions ofH x A, and
(c) is a Borel and measure class isomorphism.

Proof (a) The map sending (w, h) to hi-(w) is the inverse to p x 0.
(b) p x O((h, b)y) (p(by), O(hby)) and

(b, h)(p(y), O(y)) (bp(y), hO(y)(p(y), b-)) (p(by), O(hby))

(c) p x 0 and its inverse are Borel maps. We know that p,(m") is in the
measure class for W2, O,(m") is equivalent to Haar measure on H, and the
measure class of v (p x O),(m") is H invariant. H acts on itself and on the
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second component of W2 x H, on the left, and the Borel map P2:W2 H -H; P2(W, h) h, is an equivariant fibration in the terminology of [2]. Then,
according to Proposition 2.6 of [2, p. 72], v decomposes into a measure
O.(m") and a collection of measures {Vh}h H, where the vh’s are all equivalent
measures on W2. Then the vh’s are all equivalent to p.(m"), and hence v is
equivalent to p.(m") x Haar measure on H.
Applying Lemma 3.4 we see that the map

: (Ya x (H x A))a (U2 (A x H))2; (y, (h, b)) ((p(y), O(y)), (b, h))

is an isomorphism of ergodic groupoids.

Section 4

Mackey introduced, as an example in [-8], the homomorphism defined by
taking Radon-Nikodym derivatives of an ergodic group action, except for some
a.e. difficulties. These a.e. problems are now easily settled, with the results of
Ramsay on a.e. homomorphisms, in [10].

Consider a measure class preserving ergodic action of H on X, m and a
a-finite (not necessarily finite) measure , equivalent to m.

4.0 THEOREM. There is a unique (mod i.c.’s) homomorphism (called the
derivative for X x H, ) r: X x H R+ such that

ff(hx) d(x) f(x)r(x, h) d(x)

for every Borelfunctionf >_ O, h H.

Proof As in example B, page 198 of [8], there is a Borel function to:
X x H- R+ such that for almost every h e H, to(X, h) can be used as the
Radon-Nikodym derivative (dh./d)(x). Then for almost every (x, h, h’)
X x H x Hwehave

ro(x, h)ro(h-x, h’) ro(x, hh’),

so ro satisfies the conditions for Theorem 5.1 of [10], i.e., ro is an almost every-
where homomorphism. Hence we can change ro on a null subset of X x H to
obtain r, so that r is a strict homomorphism on some i.c. of X x H. Then

{hH:f(hx) d(x)=f(x)r(x,h)d(x)forallBorelf>_O}
is H invariant (on the left) and conull in H, and hence equals H. If r’ is a
homomorphism with the same properties as r, then r r’ a.e. on X x H, so
r r’ on some i.c. of X x H by Lemma 5.2 of [10].

4.1 THEOREM. A homomorphism : X x H R+ is similar to the derivative
r for X x H, iff there is a (a-finite) measure r equivalent to such that is
the derivativefor X x H, r.
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Proo (=) There is a conull Borel subset X1 of X and a Borel map
t: X1 R+ such that

r (x, h) t(x)r (x, h)t(h- xx)- 1.

Then let r(E) E t(x) din(x) for a Borel set E
_
X (t 0 off Xx) and obtain

as the derivative for n.
() Let dr/dm. Then the homomorphism r’,

r’(x, h) t(x)(x, h)t(h- x)- ,
equals r a.e. on X x H, so r’ r on an i.c. of X x H. Hence r is similar to .

4.2 Remarks. (a) The similarity class of the derivative r for X x H, m,
is uniquely determined by the measure class of m, C[m].

(b) l-r] [1] iff the action of H on X preserves a measure in C[m].

Let An: H R+ be the modular function for H, so that

ff(kh) dh=f(h)An(k)dhandf(h-)dh=t’(h)An(h)dh,
where dh represents right Haar measure on H.

4.3 DEFINITION. The Radon-Nikodym (R-N) homomorphism for X x H, m
is the homomorphism p: X x H-} R+; p(x, h) r(x, h)/An(h), where r is
the derivative for X x H, m.

To motivate the choice of p, consider the unimodular group H x R, R the
set of real numbers, (h, s) (k, t) (hk, s + An(h)t) with the action ofH x R
on X x R given by (h, s)(x, t) (hx, s + An(h)t). Then the contraction of
(X x R)x (H x R) to X x {0) is naturally isomorphic to X x H, so
(X x R) x (H x R) is similar to X x H by Theorem 6.17 of [10]. This
similarity can be established by the homomorphisms b(x, t, h, s) (x, h) and
$(x, h)= (x, 0, h, 0). We calculate the derivative r’:(X x R) x (H x R)-}
R+ for m x Lebesgue measure by

f((h, s)(x, t)) din(x) at .ff(hx, s + A,(h)t) din(x) dt

f(x, t)r (x, h)An(h)- am(x) dt,

so r’(x, t, h, s) p(x, h). Hence the diagram

(X x R) x (H x R) "---R +

X x H ,R+

commutes mod similarity.
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Our main result is that the similarity class, of p is a similarity invariant.

4.4 THEOREM. If X x H W x A is halfofa similarity and p (resp. P3)
is the R-N homomorphism for X x H, m (resp. W x A, u) then 0*[pa] [p].

Proof We construct the action of G H x A on Y as in Section 1,
(F(x, h) is the 2nd component of (x, h)), and compute the R-N homomorphism
P for Y x G, m x ma (mA is right Haar measure on A), which is equivalent
to the measure m x m’ used in Section 1. Then

f(x, a)rx(x, a, h, b) dm(x) dma(a) f((h, b)(x, a)) dm(x) dmA(a)

.ff(hx, baF(x, h-i)) dm(x) dmA(a)

f(x, a)r(x, h)Aa(b) dm(x) dma(a),

so px(x, a, h, b) r(x, h)]An(h) * p(x, a, h, b) on some i.e. of Y x G.
A similar argument for W x A yields P2 p on some i.e. of U x
(A x H). Using Theorem 3.3 and Lemma 3.4 we can regard U2 as a conull
Borel subset of Y, via (p x 0)-1, and the partial actions of H x A on Y and
U2 as restrictions from the action of H x A on Y. Then the calculation of p
and P2 is just the calculation of the R-N homomorphisms for two equivalent
measures on Y, which yields similar homomorphisms. Then

O*[p2] [Pl] and *[p] $*o(I)*o [p] $*[p,] [p].

From here on we will assume that H and A are countable groups. Then any
partial action of H, A or G H x A is an action in the usual sense. Accord-
ingly, we will ignore the complications due to taking inessential contractions
and will regard sets as equal if they differ by a null set, functions as equal if
they are equal a.e., and an ergodic groupoid "isomorphism" means "iso-
morphism (mod i.e.’s)."
Given the half of a similarity : X x H W x A, and notation as in 3.3

and 3.4, consider the (nonnull) subsets

X X x {1} and W (p x O)-I(W x {1})

of Y= X x A. The map

X-X; x(x, 1)

identifies X with X and the map

W W; (x,a)-p(x,a)

identifies W with W.
We use the definition of G-equivalence as in [3].
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4.5 DEFINITION. The nonnull Borel subsets E and F of Y are G-equivalent
iff there exist sequences of sets {E) and {F}, and a sequence {tT} in G such
that E, c Ej F, c Fj 0 whenever # j, ) E, E, ) Ff F, and
g(E3

4.6 Remark. If E is G-equivalent to F then " E F; O(x)= g(x) iff
x E,, is a Borel and measure class isomorphism (mod 0).

4.7 THEOREM. The half of a similarity " X x H W x A is similar to
an isomorphism iffX and W are G-equivalent.

Proof () From the definition of G-equivalence we have X 13 X,
W1 {3 W, tT (ki, b), where #(X) W. We define 0’X W x A
by Ox(x) (p(x, hi), b) iff (x, 1) Xi. Then

(x, h) 0 (x)(x, h)O (h- x)-

defines an isomorphism " X x H W x A. In fact, the diagram

X W

commutes, where B is the restriction of B to units.
() Suppose B(x, h) O(x)e(x, h)O(h-x)- is an isomorphism, for some

0" X W x, A. Since G is countable, we write a {}, (k, b). Let

X {(x, 1)" (k, b)(x, 1)e W and P2 O(x) b}

(where p2(w, a) a) and W (k, )X. Then X and W are G-equivalent.

4.8 COROLLARY. If neither of the actions ofH on X and ofA on Wpreserve
afinite measure and " X x H W x A is ha’ofa similarity then is similar
to an isomorphism.

Proof Since the actions are of infinite type the corresponding sets X and
W are G-equivalent by [3, Corollary 3, p. 416], and the result follows by
Theorem 4.7.
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