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ON A PROBLEM OF STOLZENBERG IN
POLYNOMIAL CONVEXITY

BY

H. ALEXANDER

1. Introduction

The following problem has been posed by G. Stolzenberg [3, p. 350, Problem
9]" Let be a uniform algebra on the unit circle T which is generated by a
finite number of functions of constant unit modulus. Show that tr(d)\T has the
structure of a (possibly empty) one-dimensional analytic space, where a() is
the spectrum of the Banach algebra . By using the finite set of n, say, unimod-
ular generators to imbed T into the torus T", one can reformulate the problem
in a more geometric setting as that of showing, for a Jordan curve F contained
in , that ’\F is a (possibly empty) one-dimensional analytic subset of C"\F,
where denotes the polynomially convex hull. Our first result includes a
solution to this problem as a special case.
We will say that a compact subset Z of 7 is an AC set (a union of a set of

Arcs with a polynomially Convex set) provided that there is a compact polyno-
mially convex set K

_
Z such that Z\K has the structure of an arc at each of its

points. By the latter we mean that for each p Z\K there exists a homeomor-
phism of a neighborhood of p in Z\K with some open interval on the real axis.

THEOREM 1. Let X be a compact subset of 7" which is contained in an AC set
Z. Then )\X is a (possibly empty) analytic subset ofpure dimension one in C"\X.
Moreover, ,\X is algebraic, in the sense that there exists a global algebraic
subvariety B ofC such that )\X B (U--\T"), and (, \X)- 7 is a union of
real analytic curves contained in X.

Results of this type were first obtained by Wermer [10], Bishop [4], and
Stolzenberg [8], under smoothness restrictions, for real curves. In Theorem 1,
no smoothness is assumed, but rather there is the geometric hypothesis that X
lies in the torus. It is interesting to note, however, that the boundary curves of
the hull are shown, a posteriori, by the application of a reflection principle, to
be in fact real analytic.
For X a Jordan curve, we can, for the theorem, take Z X with K empty.

When X is a Jordan arc, take Z X with K the set of two endpoints, to
conclude that .\X is either analytic or empty. From the argument principle (cf.
[8], [11]), it follows that the latter must be the case; i.e., X is polynomially
convex. Thus we recover the following result of Stolzenberg [7].
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COROLLARY 1.
P(r) c(r).

Every Jordan arc F in 7 is polynomially convex and satisfies

The last assertion, as Stolzenberg observes, follows from the polynomial
convexity because it implies that each Zk is invertible in P(F) (cf. Lemma lb
below).

Since every compact totally disconnected subset E of T" is contained in a
Jordan arc, Corollary 1 implies that such E is polynomially convex. From this
we get:

COROLLARY 2. IfJ is a finite union of(not necessarily disjoint)Jordan curves
and Jordan arcs contained in T", then J is an AC set and so the conclusion of
Theorem 1 applies to J.

To see this, note that if J {Jk" 1 < k <_ s} where each Jk is a Jordan
curve or arc in T", then defining Eik to be the relative boundary ofJ Jk in JR
for k and E, to be the set ofendpoints (if any) ofJ and putting K ER,
a totally disconnected (cf. [2])and hence polynomially convex set, we conclude,
since J\K clearly has the structure of an arc at each point, that J is an AC set.
Theorem 1 and its corollaries suggest the following:

Problem. If X
_

T" and 0 ., show that there exists a subvariety V of
C\X such that 0 e V

_
X.

A first step might be to show, say for n 2, that a minimal set X
___
T2 such

that 0 X (adduced from Zorn’s lemma) has no interior in T2.
After giving the proof of Theorem 1 in Section 2, we shall return to the

original problem of Stolzenberg in Section 3, where we derive a necessary and
sufficient condition that the algebra on the circle be a proper subalgebra of
C(T).

2. Proof of Theorem 1

We shall employ the theory of uniform algebras, convenient references being
the books of Stout [9] and Wermer [11]. Rossi’s local maximum modulus
principle will be referred to as LMMP. The open unit disc will be denoted by
U; and the unit circle by T. Thus U" is the unit polydisc and 7 the torus in C".
For X a compact set in C", the polynomially convex hull, denoted ., is {z C""
Ip(z) -< Ilpllx for all polynomials in z (z l, z,)}. The maximal ideal space
of P(X), the uniform closure in C(X) of the polynomials in z, is (identified
with).
LEMMA 1. (a) If X

_
T" is not polynomially convex, then . meets the com-

pact set C {z e n. zl z2 zn 0}.
(b) IfX

_
T" is polynomially convex, then there exists a compact neighbor-

hood Y ofX in T" such that Y is polynomially convex.
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Proof. (a) If C were empty, then each Zk would be invertible in P(X).
Consequently k 1/Zk P(X) and the Stone-Weierstrass theorem implies
P(X) C(X) and hence that X is polynomially convex.

(b) Let Yk {Z 7" dist (z, X) < l/k}. Then Yk $ X implies I?k $ - X.
Thus Yk C is empty for large enough k and then Yk is polynomially convex by
(a), Q.E.D.

At this point we state a useful consequence of Theorem 1.

COROLLARY 3. Let X
_
T be such that there is a compact polynomially

convex set K
_
X with X\K totally disconnected. Then X is polynomially

convex.

Proof. By Lemma l(b), we can choose a polynomially convex set L
_

7
such that L

_
K, where the interior is taken in T". Then E X\L is a compact

totally disconnected set and therefore there exists a Jordan arc t such that
E
_ _

T". Set Z L w . Then Z is clearly an AC set containing X and so by
Theorem 1, V .\X is an analytic variety and tV 17\V is either empty or a
union of real analytic curves with dV

___
X but dV K, as K is polynomially

convex. Since X\K is totally disconnected, the later possibility gives a contra-
diction, unless dV is empty and, consequently, so is V; i.e., X X, Q.E.D.

In the next lemma, we identify C with the hyperplane in C obtained by
holding one of the coordinate projections fixed.

LEMMA 2. If F is polynomially convex in C, then L F C is polyno-
mially convex in C 1.

Proof. Say C
_
C is (identified with) {z C" z }. Take

P=(P,P2,...,P,-)C- withpCL

Then q= (Pl, P2,..., P,-1, ) F. Hence there is a polynomial
f(z, z2,..., z,) such that If(q)[ > If Then, putting g(z, z2,..., z_ )=
f(zl, z,-l, ), we have I (p)l If(q)l > Ifl >- Q.E.D.

We now begin the proof of Theorem 1 by induction on n, the case n 1
being obvious. Recall, in what will be our fixed notation, that X is contained in
the AC set Z with a polynomially convex set K

_
Z such that Z\K V has the

structure of an arc at each of its points. Let Vo {P X" there exists an open
subarc 09 of such that (i) p 09

_
X and (ii) some coordinate function Zk is

constant on 09}. Note that 0 is a relatively open subset of X and define the
compact set X1 X\7o.

LEMMA 3. (a) ,, U"
_

)71.
(b) z 1{} (X1 \K) is totally disconnected for T and for each k.
(c)
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Proof. (a) Let p e c U and let tr be a (positive) representing measure
on X for p for the algebra P(X). Then, for each k, Zk,(tr) represents Zk(P) U for
the disc algebra. Since Zk*(a) lives on T, it is harmonic measure and, in partic-
ular, it is absolutely continuous with respect to Lebesgue measure on T.
We claim that tr is supported on X (this implies p X , as desired). To see

this, let qX\X. Then qyo and so there is an o9X such that
zklo-- T for some k. As indicated above, zk,(tr){O}= 0 and hence
tr(z; {t} X)= 0. Thus a(o)= 0 and so q spt a.

(b) By construction, z-{} c X contains no subarc; i.e., this set is
totally disconnected.

(c) As each point of T" is a peak point for P(T"), it follows that. 7" X. To show that . c (oun\T") is empty, we argue by contradic-
tion and suppose that there is a point p e X such that Zk(P) O T for some k
and p 7. Let F z- 1{} X1. Since p e i Z/1{}, which is a peak set
for P(X) (with peaking function f(z)= (1 + z)/2), it follows that p ft. On
the other hand, F K is polynomially convex in C"- (= z; a{}) by Lemma 2
and F\(F K) is totally disconnected by part (b). Using the induction hypoth-
esis, we can invoke Corollary 3 (in C"-) to conclude that F is polynomially
convex. This is a contradiction, Q.E.D.

Define X2 ---X f’ (. un) It follows from the LMMP and Lemma 3
that X \T’ X c U.
LEMMA 4. The mapping z," X2 \K T is an open mapping.

Proof Fix p (p’, ) X2 \K where p’ e 7"- and e T. We shall identify
C"- with {z C"" z, }. Let q/be a neighborhood of p in C" which is disjoint
from K. We shall show that z,(q/ X2) contains a neighborhood of in T.
From Lemma 3(b) and (e),

z; \K) z; \K)
is a totally disconnected set; call it A and view it as a subset of C"-. Take a
neighborhood V of p’ A in C"-1 such that OV A 0 and I7 __. q/
with V compact. Hence OV c Xz 0. Therefore, there is a 6 > 0 such that

(i) OV x {2 C" 12- < 6} is disjoint from z and
(ii) W V x {2 C: [2 [ < 6} is a relatively compact subset of

Let Y Xz c W and observe that the topological boundary of Y in Xz is
contained in {z X." [z,- [ 6}. Let Q z.(Y) and note that Q is con-
tained in the intersection S of {2 C" [2 1 < 6} with/.7; S is a dosed planar
set bounded by two circular arcs, one of which, F, is a neighborhood of in T.
By definitio of X,_, p is a limit of points in X c U" and so there is q Y such
that z.(q) lies in the interior of S. Apply the LMMP to P(Y) to see that the
Shilov boundary of Y is contained in z (OS) Y. Let a be a representing
measure for P(Y) supported on the Shilov boundary of Y. It follows that z,,(a)
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has support contained in OS and represents z,(q) for P(Q). We conclude that
z,,(a) is harmonic measure on 0S and, in particular, its support is all of OS and
so contains F. Therefore z,(Y X.)_ F and so z,(Og c Xz)-
z,,(I, m X2)- F, Q.E.D.

LEMMA 5. The mapping z," X2 \K T is locally one-to-one and X2 \K is a
relatively open subset of 7.

Proof To verify the first statement we argue by contradiction and suppose
that there is some p X2 \K such that z.IX 2 is not locally 1-1 in any neighbor-
hood of p. Fix a small neighborhood of p in C" such that (i) Z c q/is an
open Jordan arc y

_
7 and (ii) z, maps / into a subarc of T of arclength less

than n. By our assumption, there are q 4:q2 in 7 c X2 such that z,(q)=
z,(q2) . By the construction of X1 - X2, 71 c z-l{t} c X2 is totally di-
sconnected and, since it contains at least the two points q and q2, there is a
nonempty open subarc /2 of y such that z, takes the endpoints of /2 to and
Z 0 on 72 (’ X2. This implies that the map

z." 7 X2 T\{o}
is a proper mapping. As a consequence, the image is closed in T\{}. By Lemma
4, the map is also open. Thus, by connectedness, z,(72 c X2) is either all of
T\{} or is empty. Because of (ii) above, the former possibility is ruled out and
we conclude that 72 X2 is empty.

Let the endpoints of 72 be P and P2. Choose any q 71 c X2 such that
z.(q) 4: (= z,(p)). Then for one of the points p and P2, say p, the open
subarc 73 of 7 joining q to p (i 1, 2) is disjoint from 2. By the last para-
graph, (X2 c /3) w {pt} is a neighborhood of p in X2 and therefore its image
under z, is a neighborhood of in T. Let/3 z,(q) 4: ) and put E X2
73 \Z-I() Consider the map z,: E w {Pl} T\{fl} and note that E
contains, at least, the point p 1. By the argument of the last paragraph, since this
map is proper, we conclude, this time, that E w {P l} is empty. This is a
contradiction.
Now we know that z,: X2 7 T is an open, continuous map which is

locally 1-1. It follows that this map is a local homeomorphism. Therefore
X2 c has the structure of an arc at each of its points. It follows that X 2 c 7 is
relatively open in 7, Q.E.D.

LEMMA 6. For each point p X2 \K there is a neighborhood W of p in C"
such that W c ,

2 Un is a pure one-dimensional analytic subvariety of W\T".

Proof We shall employ the notation and information contained in the
proof of Lemma 4. By Lemma 5, we first choose a neighborhood q/of p such
that z, is 1-1 on g X2 - 7. Repeating the construction of Lemma 4, we get
W, Y, Q, S and F. By an argument of Bishop [4, p. 496], the topological
boundary of Q is contained in the Shilov boundary of P(Q) which is OS. This
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implies that Q S. Also, because z, is a homeomorphism of Y c z2 I(T) to
F
_

T, by a further argument of Bishop [4, p. 497], W c 2 Y c z 1(S) is
an analytic subvariety of z-(S) of dimension one, Q.E.D.

LEMMA 7. The set X2 \K is locally a real analytic arc.

Proof. For p X2 \K choose a neighborhood W given by Lemma 6 with
W p(W) where p(z, z2, z.)= (1/, 1/72, 1/,). Let V W c

X2 c U" and observe that V V w p(V) is a subvariety of pure dimension
one of W\T" satisfying p(V)= VI. By the extension result of [1], W lTis an
analytic subvariety V2 of W. Hence X2 c W T" c V2 is a real analytic arc,
Q.E.D.

Remark 1. The result of [1] actually extends varieties through R. To apply
it in Lemma 7, use, locally, the map

which takes R" to T". The global version of this was obtained by Shiffman [5],
[6] who applied it to prove the following result of Tornehave. If A is a subvari-
ety of U" of pure dimension one, such that ,\A

_
T, then there is an algebraic

subvariety B in C" of pure dimension one with A B U". We shall use this
below.

Remark 2. An alternate proof of Lemma 7 can be obtained from the
Schwarz reflection principle. In the notation of Lemma 6, Bishop’s argument
shows that z." W X2 --, SO is a homeomorphism and

A (z.I w
is analytic on So with fk(2) 1 as 2 OS c T for 1 < k < n. Thusfk reflects
to be analytic across OS c T and then

OS T 2 (f,(2), f,(2))
gives a real analytic parameterization of a neighborhood of p in Xz.
LEMMA 8. Let V be an analytic subvariety of C"\T" of pure dimension one

which is contained in U". Put cOV =_ \V(_ T").

(a) The variety V has a finite number of irreducible analytic components.
(b) Each analytic component lies either in U" or in a polydisc Uk contained in

(c) If o9

_
T" is an open Jordan arc such that o9 c OV is nonempty and

relatively open in O V, then o9 is a real analytic subarc of O V.

Proof (a) Apply Lemma l(a) to conclude that each component of V meets
the compact set C defined there.
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(b) Let W be a component of V. For each coordinate function z, either
< 1 on w or attains the value 1 on W and so, by the maximum

principle, z[W is a constant of modulus one. The first alternative must occur
for at least one j; say for j, j, j. Then

u*- I-I {Izsl < l:j=j,,j2, ...,Jn}
with a certain abuse of notation.

(c) We claim that co coV is relatively open in 09. In fact, if x 09 cOV,
since 09 c dV is relatively open in dV which is a real analytic curve by the
reflection argument of Lemma 7, it follows that the germs at x of the sets to and
dV are identical. Consequently, 09 dV is relatively open in 09. As 09 c cOV is
relatively closed in co, it follows by connectedness that co

_
cOV. Thus 09 is an

open subarc of cOV and hence is real analytic, Q.E.D.

LEMMA 9. Let q ()\X) tU". Then there exists an analytic subvariety V
of C"\T" of pure dimension one such that q V

_
) and t3V \V is a real

analytic curve contained in X.

Proof. One of the coordinates of q, say the nth, has unit modulus; i.e.,
z,(q) 0 T. Then q / where L= X z-l{a} (because . z-l{a} is a
peak set; cf. the proof of Lemma 3(c)). Let a be the relative interior of L y in. Let K1 K z,- 1{0}, a polynomially convex set by Lemma 2. Then L\a is
the union of K1 and a totally disconnected set and so is polynomially convex
by Corollary 3 and induction. This shows that L is an AC set in C
(= z- {}). By induction, \L is an analytic subvariety of C\L. We can take V
to be this set. The reflection argument of Lemma 7 implies that cOV is a real
analytic curve, Q.E.D.

Now put X3 (.\X)- c X. Then X 3 --- X 2 and X 3 locally has the struc-
ture of a real analytic arc at points ofX 2 \K from Lemma 7. Also . 3 --- .\X by
the LMMP.

LEMMA 10. The set X3 locally has the structure of a real analytic arc at
points of X3 \K.

Proof. By what we have just observed, we need to verify this only for points
p 6 X3 \(X2 w K). Such a point p is in the closure of ()\X) cOU". Letfbe a
polynomial which peaks on U at p. Hence there is an open Jordan subarc 09 of
; containing p and 0<b< 1 such that fl <b on X\co. Choose
q ()\X) cU" so close to p that f(q)[ > b. Let V be the variety produced
in Lemma 9 for this point q. Since f(q)l -< If I,’.v and If Ix\o < f(q)l, it
follows that c3V co is nonempty. Also since coV X and co is relatively open
in X, co coV is relatively open in cOV. By Lemma 8(c), co is real analytic, Q.E.D.

Proofof Theorem 1. We know that .\X . 3 \X 3 and that X 3 \K is locally
a real analytic arc. By a basic theorem of Stolzenberg [8], -3 \X3 A is an
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analytic subvariety of Cn\X 3 of pure dimension one. By Lemma 8, A
_

U") has
a finite number of components, each contained in some Uk. Applying the
Tomehave-Shiffman result (see Remark 1 after Lemma 7)to each analytic
component, we conclude that A extends to be a global algebraic subvariety B in
C". This implies that A c T" B T" is a set of real analytic curves, Q.E.D.

3. Stolzenberg’s problem

We shall now return tothe original problem of Stolzenberg. Let b 1, (]12,
b, be continuous, unimodular, nonconstant functions on T which separate the
points. Let F {(bl (z), 2(z),..., b,(z))" z T} c_ T". We know that either F is
polynomially convex or F is a nonempty algebraic variety. Assuming that the
latter is the case, we shall derive some necessary conditions on the

Because the b, are nonconstant, it follows from our previous work that the
coordinate projections restricted to F are locally one-to-one maps. This implies
that each b is a covering projection of the circle to itself with winding number
mi 4:13.

LEMMA 11. The mi are all of the same sign.

Proof. Suppose not; say, without loss of generality, that ml > 0 and m2 < 0.
It follows that f= z-{mz has a continuous logarithm on F. By the argument
principle, f has no zeros on " and, in particular, z is invertible in P().
Therefore [z [i,< [z [r=^l and I S’le_< 1. Consequently,z is of
constant modulus one on F and, as F\F is analytic, z is constant on F and so
on Fwa contradiction, Q.E.D.

Because b is a coveting projection, we can make a change of variable on T
so that b() becomes ’. More precisely, there is a homeomorphism
h: T T so that bl(h()) ml for T. Now we replace each of the functions
b by b h and refer to this change of variable as "normalizing in the first
variable’s. Define (I): T C" by

where, here and below, normalization in the first variable is in force.
For any polynomial f in Cn, 2 T and an indeterminant X define

Ql(f, 2, X)= 1-I [X --f((2k))],
k=l

where 21, 22, 2, are the m values of 21/ 1. The subscript 1 of Q refers to the
fact that we have normalized in thefirst variable. Then Q l(f, 2, x) is, forffixed,
a polynomial in X with coefficients in C(T) whose roots, for a given 2 T, are
the values off on

LEMMA 12. The coefficients ofQ l(f, 2, X) are the restrictions to T ofrational
functions having no poles in U.
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Proof. We know that f" is the intersection of iT" with an algebraic subvari-
ety B ofC" and that the coordinate projection zl" B C is m1-to-1 over T and is
a (branched) rnl-to- 1 cover over U. Let

and form
(Z B)- 1(,)__ {Pl, P2," Pmx} Cn for 2 U

ml

Pl(f, 2, X)= 1-I [x f(Pk)]
k=l

for any polynomialfand 2 U. Then P1 is a polynomial in the indeterminant
X with analytic functions in U as coefficients. Moreover, as
B {z C"" [zl > 1} and the coefficients of P1 for > x are obtained by
reflection in T" and T respectively (cf. [5]), it follows that (i) n =/ (Y, the
closure of B in " (where (2 is the Riemann sphere), is such that the coordinate
projection zl" H (2 is a branched cover of order ml and (ii) P l(f, 2, X) has
coefficients which are meromorphic on C; i.e., P has rational coefficients. For

1, Pl(f, 2, X) and Q,(f, 2, X) have the same roots and therefore these
monic polynomials have the same coefficients. This shows that Ql(f, 2, x)has
rational coefficients which are analytic on U, Q.E.D.

We shall summarize this state of affairs by saying that "normalizing in the
first variable leads to polynomials Q1 (f, 2, X) with rational coefficients".

LEMMA 13. Each Ql(f, I],, X) is a power ofan irreducible polynomial in [X]
where is the field of rational functions in 2.

Proof In fact, let 9(2, X) and h(2, X) be any two irreducible factors of Q1
and let and h be the polynomials in two variables obtained from 9 and h,
respectively, by rationalizing the denominators of the coefficients in 2.

Let rl(f)= T} =_ O. Because we have normalized in
the first variable, bj(2 < j < n) is real analytic; indeed, we can write, locally,
tj(i],)-- Zj (Z l")-1 2ml which is the composition of real analytic homeo-
morphisms. Hence (bl(),f(()))is real analytic on T. Therefore
j(4(),f(())) and ff((),f(())) are real analytic for e T and, as each
vanishes on an open subset of T, it follows that each vanishes identically on T.
Thus the irreducible polynomials j and h’both vanish on the set F l(f)which is
not a discrete set. Consequently, j and/ are, up to a unit, identical; i.e., O and h
agree up to a unit, Q.E.D.

Of course, we can also normalize with respect to the kth variable. Then, for a
polynomial f in C", we will obtain Qk(f, 2, X) with the same properties as
Ql(f, 2, x). Thus we have verified the necessity of the conditions in the follow-
ing theorem.

THEOREM 2. Let (1, (2, (n be nonconstant continuous unimodularfunc-
tions which separate the points of T with s/ the uniform aloebra on T which they
9enerate. If/ is a proper subalgebra of C(T), then"
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(a) The ci are covering projections of the circle.
(b) The winding numbers {m,} of the {i} are all of the same sign.
(c) For each k, 1 <_ k <_ n, andfor any polynomialfin C", normalization in the

kth variable leads to polynomials Qk(f, 2, X) which have coefficients rational in 2,
without poles in , and which are powers of an irreducible polynomial in [X],
where is the field of rational functions in 2.

Conversely, suppose that (a), (b), and (c)hold. Then is a proper subalgebra
of C(T).

Remark. In order that Qk(f, 2, X) in C(T)[X] be defined, it is necessary that
normalization in the kth variable be possible; i.e., that (a) holds. The import of
(c) is then that the coefficient functions of Qk are restrictions to the circle of
rational functions.

Proof of sufficiency. Write Qkj(2, X) for Qk(Zj, 2, X), where zj is the jth
coordinate polynomial. Let Pk be the polynomial in two variables obtained by
rationalizing the 2 denominators of Qk. We shall view Pk(Zk, Z) as a polyno-
mial in C". Let Vl={ZeC": Pxj(z)=0, 2<j<n}. Then V is a one-
dimensional algebraic subvariety of C" containing r’. Also

{z c". Iz l 1}
_

T"

because, for zx 1, Paj(zx, X) has m roots, all of unit modulus.
Fix (o T such that the discriminant of the unique irreducible factor of each

Qx,j((o, x) is different from zero for 2 < j < n. This means that the map
z" Vx --. C is unbranched over a neighborhood of (o. Let

Vx zi-X{(o} {Px, P2, Pu} --- 7"

with Px, P2, P e F and Psi+ , PU F. Choose a polynomial f which
separates the N points p. Form Q x(f, 2, X) and rationalize the 2 denominators
to get R a(f, 2, X). Define a polynomial h in C" by

h(z,, z,)= R,(f, z,,f(z,, z,,)).
Define W V {z e C"" h(z)= 0}. Then W is an algebraic subvariety of C"
for which the map z" Wa -, C is a proper branched cover over U. As W is
ma-to-1 over a neighborhood of (0, it follows that W is ma-to-1 (with possible
branching) over . Since h -= 0 on F, we conclude that W c F contains, and
therefore is equal to, F. Also, as z" F T is m-to-1, it follows that Wa is an
unbranched covering of some annulus about T; more precisely, there is a
neighborhood ’ of T’ in C" and 6 > 0 such that the map z 1" W c s, {2"
1 6 < 121 < 1 + 6} is a covering projection of order m . Then ( c Wa)\F is
a union of two annular regions f and ’2 with za(fl) U and

__q u* c\tT.
We know that zj for 2 < j < n maps F into T in a locally one-to-one way.

Therefore, if is a sufficiently small neighborhood of T", zj(f), for s 1 or 2,
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is contained in either U or U*. Because z lr and z r have, by (b), winding
numbers with the same sign, it follows, from the argument principle, that
z(f)

___
U and also that z(f2) --- U* for 2 < j < n. From this we conclude that

for some neighborhood q/of 7 in C", that W /is a disjoint union of three
nonempty subsets" one in U", one in U*", and F in 7.

In a completely analogous way, for 2 < k < n, we obtain varieties W2,
W3, W in C", containing F, and such that (i)

{z c Iz l-- 1}- F

and (ii) near T, Wk splits into three nonempty subsets" one in U", one in U*",
and F in 7. Now consider the algebraic variety

B=WcW:c...cW
in C. Observe that F m_ B. Furthermore, (i)implies that B O(U) F. By (ii),
there is a neighborhood q/of T such that B ’ m_ U w F w (U*’. It fol-
lows that B U is nonempty, because otherwise 1/z would be analytic on
B q/and would attain its maximum modulus at each point of F.
Thus B U A is a nonempty subvariety of C\F with t3A A\A F.

Hence A F is the maximal ideal space of, which is consequently a proper
subalgebra, Q.E.D.

Remark 1. As the proof shows, a necessary condition that be proper is
that tkl, 2, b can be made real analytic by a change of variable on the
circle.

Remark 2. In many examples, the variety B is actually equal to one of the Vk
(in the notation of the proof of Theorem 2). It would be interesting to verify
whether B is always equal to V1 V2 .
Remark 3. In the case n 2, it is easy to see that

B {z C2" P,2(z)= 0}.
Thus, for two generators, (c) can be replaced by the weaker statement that the
single polynomial Q2 has rational coefficients with poles off U.

Example. Consider (2) 2 and 2(2) .. Clearly (a) holds and also the
Qk(f, 2, X) have rational coefficients, which may, however, have poles in U.
Here F lies in an algebraic variety; namely, {(z, z2)" zl z2 1}. However, F
does not bound a relatively compact subset of this variety.
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